t designs with small t, id ge 8500
 # 8500: 5-(32,8,1430) 
 # 8501: 5-(32,8,1435) 
 # 8502: 5-(32,8,1440) 
- clan:  10-(36,12,160), 1 times reduced t, 4 times derived
 - 
 $PSL(2,31)$ 
 - 
derived from 6-(33,9,1440) (# 12518)  
 - 
design 6-(32,8,160) (# 16272)  with respect to smaller t
 - 
derived from supplementary of 6-(33,9,1485) (# 16274)  
 - 
supplementary design of 6-(32,8,165) (# 16275)  with respect to smaller t
 - 
Tran van Trung construction (right) for 5-(31,7,160) (# 16277)  : der= 5-(31,7,160) and res= 5-(31,8,1280) - the given design is the derived.
 - 
Tran van Trung construction (left) for 5-(31,8,1280) (# 16278)  : der= 5-(31,7,160) and res= 5-(31,8,1280) - the given design is the residual.
 
 # 8503: 5-(32,8,1445) 
 # 8504: 5-(32,8,1450) 
 # 8505: 5-(32,8,1455) 
 # 8506: 5-(32,8,1460) 
 # 8507: 5-(33,6,4) 
 # 8508: 5-(33,6,8) 
 # 8509: 5-(33,6,12) 
 # 8510: 5-(33,7,42) 
 # 8511: 5-(34,6,5) 
- clan:  27-(56,28,5), 22 times derived
 - 
 \cite{Sebille98} $P\Gamma L(2,16)\times C_2$ 15 solutions, $PGL(2,16)\times C_2$ more than 250000000 solutions 
 - 
  $P\Gamma L(2,32)+$ 6 solutions 
 - 
  $P\Gamma L(2,16)\times C_2$ 23 solutions 
 
 # 8512: 5-(34,6,4) 
 # 8513: 5-(34,6,9) 
 # 8514: 5-(34,6,12) 
 # 8515: 5-(34,7,196) 
 # 8516: 5-(34,7,210) 
 # 8517: 5-(34,7,70) 
 # 8518: 5-(35,7,75) 
- clan:  27-(56,28,5), 1 times reduced t, 21 times derived
 - 
Tran van Trung construction (left) for 5-(34,7,70) (# 8517)  : der= 5-(34,6,5) and res= 5-(34,7,70) - the given design is the residual.
 
 # 8519: 5-(36,6,1) 
 # 8520: 5-(36,6,10) 
 # 8521: 5-(36,6,11) 
 # 8522: 5-(36,6,12) 
 # 8523: 5-(36,6,14) 
 # 8524: 5-(36,6,15) 
 # 8525: 5-(36,6,16) 
 # 8526: 5-(36,6,2) 
 # 8527: 5-(36,6,3) 
 # 8528: 5-(36,6,4) 
 # 8529: 5-(36,6,5) 
 # 8530: 5-(36,6,6) 
 # 8531: 5-(36,6,7) 
 # 8532: 5-(36,6,8) 
 # 8533: 5-(36,6,9) 
 # 8534: 5-(36,7,165) 
 # 8535: 5-(37,7,176) 
- clan:  29-(60,30,11), 1 times reduced t, 23 times derived
 - 
Tran van Trung construction (left) for 5-(36,7,165) (# 8534)  : der= 5-(36,6,11) and res= 5-(36,7,165) - the given design is the residual.
 
 # 8536: 5-(38,6,12) 
 # 8537: 5-(38,6,9) 
 # 8538: 5-(38,7,198) 
 # 8539: 5-(38,7,264) 
- clan:  30-(62,31,16), 1 times reduced t, 24 times derived
 - 
  $PGL(2,37)$  halving 
 - 
design 6-(38,7,16) (# 12900)  with respect to smaller t
 - 
supplementary design of 6-(38,7,16) (# 12900)  with respect to smaller t
 - 
Tran van Trung construction (right) for 5-(37,6,16) (# 12901)  : der= 5-(37,6,16) and res= 5-(37,7,248) - the given design is the derived.
 - 
Tran van Trung construction (left) for 5-(37,7,248) (# 12902)  : der= 5-(37,6,16) and res= 5-(37,7,248) - the given design is the residual.
 - 
derived from 6-(39,8,264) (# 12906)  
 - 
derived from supplementary of 6-(39,8,264) (# 12906)  
 
 # 8540: 5-(39,6,16) 
 # 8541: 5-(42,6,13) 
 # 8542: 5-(42,7,306) 
 # 8543: 5-(46,8,1060) 
 # 8544: 5-(46,8,1120) 
 # 8545: 5-(46,8,1220) 
 # 8546: 5-(46,8,1280) 
 # 8547: 5-(46,8,1380) 
 # 8548: 5-(46,8,1440) 
 # 8549: 5-(46,8,3840) 
 # 8550: 5-(46,8,4160) 
 # 8551: 5-(46,8,4580) 
 # 8552: 5-(46,8,5380) 
 # 8553: 5-(46,8,800) 
 # 8554: 5-(46,8,900) 
 # 8555: 5-(46,8,960) 
 # 8556: 5-(48,6,1) 
 # 8557: 5-(48,6,13) 
 # 8558: 5-(48,6,17) 
 # 8559: 5-(48,6,18) 
 # 8560: 5-(48,6,2) 
 # 8561: 5-(48,6,20) 
 # 8562: 5-(48,6,21) 
 # 8563: 5-(48,6,3) 
 # 8564: 5-(48,6,4) 
 # 8565: 5-(48,6,5) 
 # 8566: 5-(48,6,6) 
 # 8567: 5-(48,6,7) 
 # 8568: 5-(48,6,8) 
 # 8569: 5-(48,7,273) 
 # 8570: 5-(49,7,286) 
- clan:  41-(84,42,13), 1 times reduced t, 35 times derived
 - 
Tran van Trung construction (left) for 5-(48,7,273) (# 8569)  : der= 5-(48,6,13) and res= 5-(48,7,273) - the given design is the residual.
 
 # 8571: 5-(49,7,294) 
 # 8572: 5-(49,7,316) 
 # 8573: 5-(52,6,2) 
 # 8574: 5-(54,6,24) 
 # 8575: 5-(63,7,648) 
 # 8576: 5-(64,6,11) 
 # 8577: 5-(64,6,3) 
 # 8578: 5-(64,7,120) 
 # 8579: 5-(64,7,192) 
 # 8580: 5-(64,7,240) 
 # 8581: 5-(64,7,316) 
 # 8582: 5-(64,7,336) 
 # 8583: 5-(64,7,343) 
 # 8584: 5-(64,7,364) 
 # 8585: 5-(64,7,388) 
 # 8586: 5-(64,7,408) 
 # 8587: 5-(64,7,456) 
 # 8588: 5-(64,7,511) 
 # 8589: 5-(64,7,528) 
 # 8590: 5-(64,7,576) 
 # 8591: 5-(64,7,651) 
 # 8592: 5-(64,7,675) 
 # 8593: 5-(64,7,696) 
 # 8594: 5-(64,7,72) 
 # 8595: 5-(64,7,703) 
 # 8596: 5-(64,7,723) 
 # 8597: 5-(64,7,744) 
 # 8598: 5-(64,7,840) 
 # 8599: 5-(64,8,700) 
created: Fri Oct 23 11:12:00 CEST 2009