t designs with small t, id ge 5700
 # 5700: 5-(24,8,46) 
 # 5701: 5-(24,8,460) 
- clan:  5-(24,8,460)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5702: 5-(24,8,461) 
- clan:  5-(24,8,461)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5703: 5-(24,8,462) 
 # 5704: 5-(24,8,463) 
- clan:  5-(24,8,463)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5705: 5-(24,8,464) 
- clan:  5-(24,8,464)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5706: 5-(24,8,465) 
 # 5707: 5-(24,8,466) 
- clan:  5-(24,8,466)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5708: 5-(24,8,467) 
- clan:  5-(24,8,467)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5709: 5-(24,8,468) 
 # 5710: 5-(24,8,469) 
- clan:  5-(24,8,469)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5711: 5-(24,8,47) 
 # 5712: 5-(24,8,470) 
- clan:  5-(24,8,470)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5713: 5-(24,8,471) 
 # 5714: 5-(24,8,472) 
- clan:  5-(24,8,472)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5715: 5-(24,8,473) 
- clan:  5-(24,8,473)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5716: 5-(24,8,474) 
 # 5717: 5-(24,8,475) 
 # 5718: 5-(24,8,476) 
 # 5719: 5-(25,8,560) 
 # 5720: 5-(24,8,477) 
 # 5721: 5-(24,8,478) 
- clan:  5-(24,8,478)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5722: 5-(24,8,479) 
- clan:  5-(24,8,479)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5723: 5-(24,8,48) 
 # 5724: 5-(24,8,480) 
 # 5725: 5-(24,8,481) 
- clan:  5-(24,8,481)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5726: 5-(24,8,482) 
- clan:  5-(24,8,482)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5727: 5-(24,8,483) 
 # 5728: 5-(24,8,484) 
- clan:  5-(24,8,484)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5729: 5-(24,8,485) 
- clan:  5-(24,8,485)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5730: 5-(24,8,486) 
 # 5731: 5-(24,8,487) 
- clan:  5-(24,8,487)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5732: 5-(24,8,488) 
- clan:  5-(24,8,488)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5733: 5-(24,8,489) 
 # 5734: 5-(24,8,49) 
 # 5735: 5-(24,8,490) 
- clan:  5-(24,8,490)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5736: 5-(24,8,491) 
- clan:  5-(24,8,491)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5737: 5-(24,8,492) 
 # 5738: 5-(24,8,493) 
 # 5739: 5-(24,8,494) 
 # 5740: 5-(24,8,495) 
 # 5741: 5-(24,8,496) 
- clan:  5-(24,8,496)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5742: 5-(24,8,497) 
- clan:  5-(24,8,497)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5743: 5-(24,8,498) 
 # 5744: 5-(24,8,499) 
- clan:  5-(24,8,499)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5745: 5-(24,8,5) 
 # 5746: 5-(24,8,50) 
 # 5747: 5-(24,8,500) 
- clan:  5-(24,8,500)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5748: 5-(24,8,501) 
 # 5749: 5-(24,8,502) 
- clan:  5-(24,8,502)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5750: 5-(24,8,503) 
- clan:  5-(24,8,503)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5751: 5-(24,8,504) 
 # 5752: 5-(24,8,505) 
- clan:  5-(24,8,505)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5753: 5-(24,8,506) 
- clan:  5-(24,8,506)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5754: 5-(24,8,507) 
 # 5755: 5-(24,8,508) 
- clan:  5-(24,8,508)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5756: 5-(24,8,509) 
- clan:  5-(24,8,509)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5757: 5-(24,8,51) 
 # 5758: 5-(25,8,60) 
- clan:  17-(36,18,1), 1 times reduced t, 10 times derived, 1 times residual
 - 
Tran van Trung construction (left) for 5-(24,8,51) (# 5757)  : der= 5-(24,7,9) and res= 5-(24,8,51) - the given design is the residual.
 - 
derived from 6-(26,9,60) (# 10590)  
 
 # 5759: 5-(26,8,70) 
- clan:  17-(36,18,1), 2 times reduced t, 10 times derived
 - 
Tran van Trung construction (left) for 5-(25,8,60) (# 5758)  : der= 5-(25,7,10) and res= 5-(25,8,60) - the given design is the residual.
 - 
 $PSL(2,25)$ 
 
 # 5760: 5-(24,8,510) 
- clan:  17-(36,18,10), 10 times derived, 2 times residual
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 - 
residual design of supplementary of 6-(25,8,81) (# 10411)  
 - 
derived from supplementary of 6-(25,9,459) (# 13782)  
 - 
residual design of 6-(25,8,90) (# 13783)  
 - 
derived from 6-(25,9,510) (# 13784)  
 
 # 5761: 5-(24,8,511) 
- clan:  5-(24,8,511)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5762: 5-(24,8,512) 
- clan:  5-(24,8,512)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5763: 5-(24,8,513) 
- clan:  15-(32,16,9), 2 times reduced t, 8 times derived
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 - 
supplementary design of 6-(24,8,72) (# 9851)  with respect to smaller t
 - 
Tran van Trung construction (right) for 5-(23,7,81) (# 9854)  : der= 5-(23,7,81) and res= 5-(23,8,432) - the given design is the derived.
 - 
Tran van Trung construction (left) for 5-(23,8,432) (# 9855)  : der= 5-(23,7,81) and res= 5-(23,8,432) - the given design is the residual.
 - 
design 6-(24,8,81) (# 13382)  with respect to smaller t
 - 
derived from supplementary of 6-(25,9,456) (# 13391)  
 - 
derived from 6-(25,9,513) (# 13393)  
 
 # 5764: 5-(24,8,514) 
- clan:  5-(24,8,514)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5765: 5-(24,8,515) 
- clan:  5-(24,8,515)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5766: 5-(24,8,516) 
 # 5767: 5-(24,8,517) 
- clan:  5-(24,8,517)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5768: 5-(24,8,518) 
- clan:  5-(24,8,518)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5769: 5-(24,8,519) 
 # 5770: 5-(24,8,52) 
 # 5771: 5-(24,8,520) 
- clan:  5-(24,8,520)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5772: 5-(24,8,521) 
- clan:  5-(24,8,521)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5773: 5-(24,8,522) 
 # 5774: 5-(24,8,523) 
- clan:  5-(24,8,523)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5775: 5-(24,8,524) 
- clan:  5-(24,8,524)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5776: 5-(24,8,525) 
 # 5777: 5-(24,8,526) 
- clan:  5-(24,8,526)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5778: 5-(24,8,527) 
 # 5779: 5-(24,8,528) 
 # 5780: 5-(24,8,529) 
- clan:  5-(24,8,529)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5781: 5-(24,8,53) 
 # 5782: 5-(24,8,530) 
- clan:  5-(24,8,530)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5783: 5-(24,8,531) 
 # 5784: 5-(24,8,532) 
 # 5785: 5-(24,8,533) 
- clan:  5-(24,8,533)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5786: 5-(24,8,534) 
 # 5787: 5-(24,8,535) 
- clan:  5-(24,8,535)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5788: 5-(24,8,536) 
- clan:  5-(24,8,536)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5789: 5-(24,8,537) 
 # 5790: 5-(24,8,538) 
- clan:  5-(24,8,538)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5791: 5-(24,8,539) 
- clan:  5-(24,8,539)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5792: 5-(24,8,54) 
 # 5793: 5-(24,8,540) 
 # 5794: 5-(24,8,541) 
- clan:  5-(24,8,541)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5795: 5-(24,8,542) 
- clan:  5-(24,8,542)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5796: 5-(24,8,543) 
 # 5797: 5-(24,8,544) 
 # 5798: 5-(24,8,545) 
- clan:  5-(24,8,545)
 - 
 $ {\bf PSL(2,23)} \geq 1$ %  -group 3 PSL 2 23  PSL_2_23 
 
 # 5799: 5-(24,8,546) 
created: Fri Oct 23 11:10:11 CEST 2009