t designs with small t, id ge 3200
 # 3200: 5-(24,12,18306) 
 # 3201: 5-(24,12,18312) 
 # 3202: 5-(24,12,18318) 
 # 3203: 5-(24,12,18324) 
 # 3204: 5-(24,12,18330) 
 # 3205: 5-(24,12,18336) 
 # 3206: 5-(24,12,18342) 
 # 3207: 5-(24,12,18348) 
 # 3208: 5-(24,12,18354) 
 # 3209: 5-(24,12,18360) 
 # 3210: 5-(24,12,18366) 
 # 3211: 5-(24,12,18372) 
 # 3212: 5-(24,12,18378) 
 # 3213: 5-(24,12,18384) 
 # 3214: 5-(24,12,18390) 
 # 3215: 5-(24,12,18396) 
 # 3216: 5-(24,12,18402) 
 # 3217: 5-(24,12,18408) 
 # 3218: 5-(24,12,18414) 
 # 3219: 5-(24,12,18420) 
 # 3220: 5-(24,12,18426) 
 # 3221: 5-(24,12,18432) 
 # 3222: 5-(24,12,18438) 
 # 3223: 5-(24,12,18444) 
 # 3224: 5-(24,12,18450) 
 # 3225: 5-(24,12,18456) 
 # 3226: 5-(24,12,18462) 
 # 3227: 5-(24,12,18468) 
- clan:  7-(24,12,2268), 2 times reduced t
 - 
 $  PSL(2,23) $ %  -group 3 PSL 2 23  PSL_2_23   
 - 
Tran van Trung construction with complementary design for 5-(23,11,6804) (# 9411)  
 - 
design 6-(24,12,6804) (# 9413)  with respect to smaller t
 - 
Tran van Trung construction (left) for 5-(23,12,11664) (# 9418)  : der= 5-(23,11,6804) and res= 5-(23,12,11664) - the given design is the residual.
 - 
supplementary design of 6-(24,12,11760) (# 9422)  with respect to smaller t
 
 # 3228: 5-(24,12,18474) 
 # 3229: 5-(24,12,1848) 
 # 3230: 5-(24,12,18480) 
 # 3231: 5-(24,12,18486) 
 # 3232: 5-(24,12,18492) 
 # 3233: 5-(24,12,18498) 
 # 3234: 5-(24,12,18504) 
 # 3235: 5-(24,12,18510) 
 # 3236: 5-(24,12,18516) 
 # 3237: 5-(24,12,18522) 
 # 3238: 5-(24,12,18528) 
 # 3239: 5-(24,12,18534) 
 # 3240: 5-(24,12,18540) 
 # 3241: 5-(24,12,18546) 
 # 3242: 5-(24,12,18552) 
 # 3243: 5-(24,12,18558) 
 # 3244: 5-(24,12,18564) 
 # 3245: 5-(24,12,18570) 
 # 3246: 5-(24,12,18576) 
 # 3247: 5-(24,12,18582) 
- clan:  7-(24,12,2282), 2 times reduced t
 - 
 $  PSL(2,23) $ %  -group 3 PSL 2 23  PSL_2_23   
 - 
Tran van Trung construction with complementary design for 5-(23,11,6846) (# 9429)  
 - 
design 6-(24,12,6846) (# 9431)  with respect to smaller t
 - 
Tran van Trung construction (left) for 5-(23,12,11736) (# 9436)  : der= 5-(23,11,6846) and res= 5-(23,12,11736) - the given design is the residual.
 - 
supplementary design of 6-(24,12,11718) (# 9440)  with respect to smaller t
 
 # 3248: 5-(24,12,18588) 
 # 3249: 5-(24,12,18594) 
 # 3250: 5-(24,12,18600) 
 # 3251: 5-(24,12,18606) 
 # 3252: 5-(24,12,18612) 
 # 3253: 5-(24,12,18618) 
 # 3254: 5-(24,12,18624) 
 # 3255: 5-(24,12,18630) 
 # 3256: 5-(24,12,18636) 
 # 3257: 5-(24,12,18642) 
 # 3258: 5-(25,12,28680) 
- clan:  11-(30,15,1434), 1 times reduced t, 3 times derived, 2 times residual
 - 
Tran van Trung construction (left) for 5-(24,12,18642) (# 3257)  : der= 5-(24,11,10038) and res= 5-(24,12,18642) - the given design is the residual.
 
 # 3259: 5-(26,13,75285) 
 # 3260: 5-(26,12,43020) 
- clan:  11-(30,15,1434), 2 times reduced t, 3 times derived, 1 times residual
 - 
Tran van Trung construction (left) for 5-(25,12,28680) (# 3258)  : der= 5-(25,11,14340) and res= 5-(25,12,28680) - the given design is the residual.
 
 # 3261: 5-(27,13,118305) 
- clan:  11-(30,15,1434), 3 times reduced t, 2 times derived, 1 times residual
 - 
Tran van Trung construction (left) for 5-(26,13,75285) (# 3259)  : der= 5-(26,12,43020) and res= 5-(26,13,75285) - the given design is the residual.
 - 
Tran van Trung construction (right) for 5-(26,12,43020) (# 3260)  : der= 5-(26,12,43020) and res= 5-(26,13,75285) - the given design is the derived.
 
 # 3262: 5-(28,14,302335) 
 # 3263: 5-(24,12,18648) 
 # 3264: 5-(24,12,18654) 
 # 3265: 5-(24,12,18660) 
 # 3266: 5-(24,12,18666) 
 # 3267: 5-(24,12,18672) 
 # 3268: 5-(24,12,18678) 
 # 3269: 5-(24,12,18684) 
 # 3270: 5-(24,12,18690) 
 # 3271: 5-(24,12,18696) 
 # 3272: 5-(24,12,18702) 
 # 3273: 5-(24,12,18708) 
 # 3274: 5-(24,12,18714) 
 # 3275: 5-(24,12,18720) 
 # 3276: 5-(24,12,18726) 
 # 3277: 5-(24,12,18732) 
 # 3278: 5-(24,12,18738) 
 # 3279: 5-(24,12,18744) 
 # 3280: 5-(24,12,18750) 
 # 3281: 5-(24,12,18756) 
 # 3282: 5-(24,12,18762) 
 # 3283: 5-(24,12,18768) 
 # 3284: 5-(24,12,18774) 
 # 3285: 5-(24,12,1878) 
 # 3286: 5-(24,12,18780) 
 # 3287: 5-(24,12,18786) 
 # 3288: 5-(24,12,18792) 
 # 3289: 5-(24,12,18798) 
 # 3290: 5-(24,12,18804) 
 # 3291: 5-(24,12,18810) 
 # 3292: 5-(24,12,18816) 
 # 3293: 5-(24,12,18822) 
 # 3294: 5-(24,12,18828) 
 # 3295: 5-(24,12,18834) 
 # 3296: 5-(24,12,18840) 
 # 3297: 5-(24,12,18846) 
 # 3298: 5-(24,12,18852) 
 # 3299: 5-(24,12,18858) 
created: Fri Oct 23 11:09:55 CEST 2009