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Notations

Let k be a number field with absolute Galois group Gk , and
let C : y2 = f (x) with deg(f ) = 2g + 1 be a hyperelliptic
curve of genus g defined over k and J be its Jacobian.
Let ∆ := {Ti := (ei , 0) ∈ C : 1 ≤ i ≤ 2g + 1} be the set
of points on C corresponding to the roots ei of f , and T0
be the point at ∞.
For a place v of k , denote the completion of k at v by kv .
Ci (G ,A), Zi (G ,A) and Hi (G ,A) denote continuous i-
cochains, cocycles and cohomology classes associate to a
group G and a G -module A.
For n ≥ 2, let X(J) and Sel(n)(J) be the Shafarevich-Tate
and n-Selmer groups associated with J.
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A quick recall

We have

Sel(n)(J) := ker

(
H1(Gk , J[n])→

∏
v

H1(Gkv , J)

)

and

X(J) := ker

(
H1(Gk , J)→

∏
v

H1(Gkv , J)

)
.

For n ≥ 2, we have the n-descent exact sequence:

0→ J(k)/nJ(k)→ Sel(n)(J)→X(J)[n]→ 0.
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Recalling CTP

The Cassels-Tate pairing:

〈·, ·〉CT : X(J)×X(J)→ Q/Z

which satisfies:
Anti-symmetric and non-degenerate (on the quotient
X(J)nd ×X(J)nd).
Defined first by Cassels for elliptic curves and generalized
by Tate to abelian varieties.
Poonen and Stoll gave the Albanese-Albanese definition of
CTP and showed that it is equivalent to the 2-other
definitions (Weil-pairing and homogeneous space based
definitions).
This pairing can be pulled back to the n-Selmer group
using the n-descent sequence.
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Albanese-Albanese definition of CTP

Choose uniformizers tP , for P ∈ C Galois-equivariantly. There
are two evaluation based Galois-equivariant pairings:

〈., .〉1 : Princ(C )×Div0(C )→ Gm.

(div(f ),D) 7→
∏

P∈Supp(D)

(ft
−vP(f )
P (P))vp(D).

〈., .〉2 : Div0(C )× Princ(C )→ Gm.

(D, div(f )) 7→
∏

P∈Supp(D)

(−1)vP(f )vP(D)(ft
−vP(f )
P (P))vp(D).

These pairings agree on the diagonal Princ(C )× Princ(C )
(strong Weil reciprocity), and induce cup products ∪1 and ∪2.
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Global part

Let a, a′ ∈ H1(Gk , J[n]) and let α, α′ ∈ Z1(Gk , J[n]) represent
the classes a, a′.
Lift α, α′ to 1-cochains a, a′ with values in Div0(C ).
Using cohomology on the exact sequence:

0→ Princ(C )→ Div0(C )→ Pic 0(C )→ 0,

we get a 3-cochain:

η := ∂a ∪1 a
′ − a ∪2 ∂a

′,

and compatibility of ∪1, ∪2 on the diagonal implies
η ∈ Z3(Gk ,Gm) i.e. a 3-cocycle
Since H3(Gk ,Gm) = 0, i.e. there exists ε ∈ C2(Gk ,Gm) s.t.
∂ε = η.
Global bottleneck: Finding ε (our Nemo!)
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Local part

Let v be a place of k . If a ∈ Sel(n)(J) then there is a
βv ∈ J(kv ) such that αv = ∂βv .
Let bv ∈ Div0(C ) represent β. Then

γv := (av − ∂bv ) ∪1 a
′
v − bv ∪2 ∂a

′
v − εv

is a 2-cocycle.
We have [γv ] ∈ Br (kv ) and the CTP is defined as:

Definition 1

〈a, a′〉CT :=
∑
v

invv ([γv ]).

Local bottleneck: Computing invv ([γv ]) (generically
solvable!).
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Previous works

Previous works have mainly focused on elliptic curves:

Authors Domain
Cassels Sel(2)(E )× Sel(2)(E )

Swinnerton-Dyer Sel(2
m)(E )× Sel(2)(E )

van Beek & Fisher Sel(φ)(E)×Sel(φ)(E)
deg(φ) is odd prime

Fischer & Newton Sel(3)(E )× Sel(3)(E )

For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an
algorithm (assuming some conditions).
We handle the case of 2-Selmer groups of odd-degree
hyperelliptic Jacobians completely!
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Existence of a nice ε

One can compute ε if a splitting field of η is known!
For a cochain x ∈ C1(Gk ,M), let fod(x) be the field of
definition of x , i.e. minimal field extension L s.t. x = inf(y) for
some y ∈ Ci (Gal(L/k),M(L)). Let

loc2(J[n]) : H2(Gk , J[n])→
∏
v

H2(Gk , J[n]).

Proposition 2

If loc2(J[n]) is injective, then there is a 2-cochain ε s.t. ∂ε = η
satisfying:

For σ, τ, τ ′ ∈ Gk , ε(σ, τ) = ε(σ, τ ′) if τ
∣∣
K ′ = τ ′

∣∣
K ′ , where

K ′ := fod(α′).
ε(σ, τ) = 1 if τ

∣∣
K ′ = id .
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Sketch of proof of proposition 2

Use cohomology on commutative diagram:

0 J[n] J[n2] J[n] 0

0 J[n] J J 0.

[n]

[n]

(4.1)

to show: if a ∈ Sel(n)(J), then δ(a) = 0, where
δ : H1(Gk , J[n])→ H2(Gk , J[n]).
Expressing the Weil pairing in terms of 〈·, ·〉1 and 〈·, ·〉2,
plus some identities of cup-product imply the proposition.
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Splitting field of η

Lemma 3

Let K := fod(α), K ′ := fod(α′) and assume that α′ takes
values defined over k . If loc2(J[n]) is injective, and one of the
following is satisfied:

K ∩ K ′ = k .
[K ′ : k] = 2.

Then η splits in KK ′, i.e. its field of definition.

Remark 4

The proof of the above lemma constructs ε explicitly.

Since k(J[n]) ⊂ K ∩ K ′, lemma 3 cannot be applied (at least
directly) to determine a splitting field of η even for n = 2.
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Making lemma 3 useful when n = 2 (survival
instinct!)

We have:

H1(Gk , J[2]) ' ker
(
N : L×/(L×)2 → k×/(k×)2) ,

where L := k[x ]/(f (x)). and N : L× → k× is the norm map.
Let Ti be the representative of i th orbit of ∆.
For 1 ≤ j ≤ 2g + 1 choose d ′j ∈ k(Tj)

× such that
(d ′1, d

′
2, . . . , d

′
2g+1) represents α′.

d ′j s satisfy the condition: for 1 ≤ n,m ≤ 2g + 1,
d ′m and d ′n are conjugates if Tn and Tm are.

First, note that loc2(J[2]) is injective (consequence of
Poitou-Tate duality).
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We choose (we can) a′ to be
∑

orbits
corGk

Gk(Ti )
t′i , where

t′i ∈ C1(Gk(Ti ), 〈(Ti )− (T0)〉) is given by:

t′i (σ) :=

{
0 σ(

√
d ′i ) =

√
d ′i

(Ti )− (T0) σ(
√

d ′i ) = −
√
d ′i ,

The identity x ∪ cor(y) = cor(res(x) ∪ y) implies that it is
enough to trivialize 3-cocycles

ηi := ∂res(a) ∪1 t
′
i − res(a) ∪2 ∂t

′
i ∈ Z3(Gk(Ti ),Gm).

Now [k(Ti )(
√
d ′i ) : k(Ti )] = 2 and values of t′i are defined over

k(Ti ). Use lemma 3 to find εi s s.t. ∂εi = ηi !
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Form of the CTP

A similar trick for the local part gives

Theorem 5

Cassels-Tate pairing on 2-Selmer groups of odd-degree
hyperelliptic Jacobians takes the following form:

(−1)2〈a,a′〉CT =
∏
v

∏
Gkv -orbits

(δv ,i , d
′
i )kv (Ti ),

where δv ,i ∈ kv (Ti )
× and (·, ·)kv (Ti ) is the Hilbert’s symbol.

Remark 6

Obtaining δv ,i once we have the trivializers εi of ηi reduces to
Finding the local point witnessing local triviality of α.
Solving a Hilbert 90 problem.
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Some remarks!

Constructing ε in the proof of lemma 3 requires:
Trivializing some explicitly given 2-cocycles that represent
trivial class in Br (k) (hard part).
Solving some Hilbert 90 problems explicitly (easy part).
Gluing the above information carefully.

If C is an elliptic curve then the formula obtained by
Cassels has exactly the same form as in theorem 5.
If f splits over k and g = 2, then the above form reduces
to the form of the formula obtained by Jiali Yan in her
PhD thesis.
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Good curves

Definition 7

Recall ei s are the roots of f .
An α = (d1, . . . , d2g+1) ∈ Sel(2)(J) with di ∈ k(ei )

× is
said to be good if for each j , the conics
Cij : diu

2 − djv
2 + ei − ej = 0 has a solution over k(ei , ej).

A curve C is good if the subgroup generated by good
elements is at most of index 2.

If α is good, then we can explicitly write εi such that ∂εi = ηi .

For a fixed i , the values of εi are combinations of pijs where
pij :=

√
diu
∗ +

√
djv
∗, and u∗, v∗ satisfies Cij .

Trivializing quaternion algebras corresponding to Cij is probably
simpler!
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Some statistics on good curves

Hope: Most of the curves are good.
rkF2Sel(2)(J) ≥ 2, ran(J) = 0: 1207 curves on LMFDB, all
good.
rkF2Sel(2)(J) ≥ 2, ran(J) = 1: 538 curves on LMFDB, all
good.
rkF2Sel(2)(J) ≥ 4, ran(J) ≥ 2: 4 curves on LMFDB, all
good.
x5 + A, 0 < A < 1000, and A is prime: 168 curves, all
good.
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Questions?
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Thank You!
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