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m For a place v of k, denote the completion of k at v by k,.

m C(G,A), Z/(G,A) and H'(G, A) denote continuous i-
cochains, cocycles and cohomology classes associate to a
group G and a G-module A.

m For n > 2, let I1I(J) and Sel(")(J) be the Shafarevich-Tate
and n-Selmer groups associated with J.
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A quick recall

m We have

Sel(J) := ker (Hl(Gk, Jinl) — [ H" (G, J))
and

II(J) := ker <H1(Gk, J) = [[H" (G, J)) .

m For n > 2, we have the n-descent exact sequence:

0 — J(k)/nJ(k) — Sel((J) — III(J)[n] — O.
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which satisfies:

Notati m Anti-symmetric and non-degenerate (on the quotient

otations

;::Iiminaries IH(J)nd X IH(J)nd)

m Defined first by Cassels for elliptic curves and generalized
by Tate to abelian varieties.

m Poonen and Stoll gave the Albanese-Albanese definition of
CTP and showed that it is equivalent to the 2-other
definitions (Weil-pairing and homogeneous space based
definitions).

m This pairing can be pulled back to the n-Selmer group
using the n-descent sequence.
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Albanese-Albanese definition of CTP

Computing ) ) ) ) )
the Choose uniformizers tp, for P € C Galois-equivariantly. There

C::isrei:f;::e are two evaluation based Galois-equivariant pairings:

odd-degree

iy e m (.,.)1 : Princ(C) x Div?(C) — G

H. Shukla

(div(f), D)= ] (" (P))=P).
PeSupp(D)
Cassels-Tate
bl m (,,.)2 : DivP(C) x Princ(C) — Gp.
(Ddiv(f) = [ (1O, =0 )y ®).
PeSupp(D)

These pairings agree on the diagonal Princ(C) x Prine(C)
(strong Weil reciprocity), and induce cup products Uy and Ua.
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Global part

SURLN  Let 2,3’ € HY(Gy, J[n]) and let o, o’ € Z*( Gy, J[n]) represent
GRS the classes a, 2.

5{{1{%{{1 Lifjc a, o to 1-cochains a, o’ with values in Div?(C).

Jacobians Using cohomology on the exact sequence:

H. Shukla 0— Princ(c) — DlVO(C) — PICO(C) - 07

we get a 3-cochain:

n:=0aU;d —alU, dd,

Cassels-Tate
(cTe) and compatibility of Uy, Uy on the diagonal implies

n € Z3(Gx,Gpy) ie. a 3-cocycle

Since H3(Gy, Gp) = 0, i.e. there exists € € C?(Gk, Gpp) s.t.
Oe = .

Global bottleneck: Finding € (our Nemol)

otz
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is a 2-cocycle.
We have [v,] € Br(k,) and the CTP is defined as:

Cassels-Tate
pairing
(CTP)

Definition 1

(@, d)or = Y invy (1)),

v

Local bottleneck: Computing inv,([v,]) (generically
solvable!).
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oairing on m Previous works have mainly focused on elliptic curves:

odd-degree

hyperelliptic

Jacobians /—\uthors Domain

H. Shukla Cassels Sel(z)(E) % Sel(2)(E)
Swinnerton-Dyer Sel(zm)(E) X Se1(2)(E)
van Beek & Fisher Sell?) () x Sell)(E)

deg(¢) is odd prime
Fischer & Newton | Sel®(E) x Sel®(E)

Effective

computation

of CTP m For 2-Selmer groups of genus 2 Jacobians, Jiali Yan has an
algorithm (assuming some conditions).

m We handle the case of 2-Selmer groups of odd-degree
hyperelliptic Jacobians completely!
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How to
determine / — AN
the splitting m Foro,7,7" € Gy, €(0,7) = €(o,7') if T

field of 7 K = fod(o/).

o where

=T

w e(o,7)=1ifT|,, =id.
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H. Shukla 0 > J[n] J[nz] i > Jin] 0
| | I -
0 > J[n] N 0.

to show: if a € Sel(™(J), then d(a) = 0, where

§ : HY(Gy, J[n]) — H2( Gy, J[n]).
How to [ Expressing.the Weil pairing in terms. of (-,-)1 and (,)2
i e plus some identities of cup-product imply the proposition.

How to
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pairing on

wesrbell [ et K = fod(a), K’ := fod(a’) and assume that o/ takes

hyperelliptic

Jacobians values defined over k. Ifloc®(J[n]) is injective, and one of the
H. Shukla . . . I
following is satisfied:
s KNK = k.
m [K':k]=2.

Then n splits in KK’, i.e. its field of definition.

Remark 4
How to The proof of the above lemma constructs € explicitly.

determine
the splitting

field of Since k(J[n]) € KN K’, lemma 3 cannot be applied (at least
directly) to determine a splitting field of 1 even for n = 2.



Making lemma 3 useful when n = 2 (survival

instinct!)

Computing
the
Cassels-Tate
pairing on We haVe:
odd-degree
hyperelliptic

Jocobians HY (G, J[2]) ~ ker (N : L™ /(LX)? — k*/(k*)?),

H. Shukla

where L := k[x]/(f(x)). and N : L* — k* is the norm map.

How to
determine
the splitting
field of n



Making lemma 3 useful when n = 2 (survival

instinct!)

Computing
the
Cassels-Tate
pairing on We haVe:
odd-degree
hyperelliptic

Jocobians HY (G, J[2]) ~ ker (N : L™ /(LX)? — k*/(k*)?),

H. Shukla

where L := k[x]/(f(x)). and N : L* — k* is the norm map.
m Let T; be the representative of i*" orbit of A.

How to
determine
the splitting
field of n



Making lemma 3 useful when n = 2 (survival

instinct!)

Computing
the
Cassels-Tate
pairing on We haVe:
odd-degree
hyperelliptic

Jocobians HY (G, J[2]) ~ ker (N : L™ /(LX)? — k*/(k*)?),

H. Shukla

where L := k[x]/(f(x)). and N : L* — k* is the norm map.
m Let T; be the representative of i*" orbit of A.
m For 1 <j <2g+ 1 choose dj’ € k(Tj)* such that
(di,d,...,dyg 1) represents o'.

How to
determine
the splitting
field of n



Making lemma 3 useful when n = 2 (survival
instinct!)

Computing
the
Cassels-Tate
pairing on We haVe:
odd-degree
hyperelliptic

Jocobians HY (G, J[2]) ~ ker (N : L™ /(LX)? — k*/(k*)?),

H. Shukla

where L := k[x]/(f(x)). and N : L* — k* is the norm map.
m Let T; be the representative of i*" orbit of A.
m For 1 <j <2g+ 1 choose dj’ € k(Tj)* such that
(di,d,...,dyg 1) represents o'.
[ djfs satisfy the condition: for 1 < n,m <2g +1,
d}, and d/ are conjugates if T, and T, are.

How to

determine
the splitting
field of n



Making lemma 3 useful when n = 2 (survival
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where L := k[x]/(f(x)). and N : L* — k* is the norm map.
m Let T; be the representative of i*" orbit of A.
m For 1 <j <2g+ 1 choose dj’ € k(Tj)* such that
(di,d,...,dyg 1) represents o'.
[ djfs satisfy the condition: for 1 < n,m <2g +1,
d}, and d/ are conjugates if T, and T, are.

How to

determine First, note that loc?(J[2]) is injective (consequence of

the splitting

ek i Poitou-Tate duality).
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m The identity x U cor(y) = cor(res(x) U y) implies that it is
enough to trivialize 3-cocycles

ni := Ores(a) Uy t; — res(a) Uz 0 € Z3(Gy(1,), Gm).
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m We choose (we can) a' to be Y corg:(T)tf-, where
orbits i

t e Cl(Gk(Ti), ((T;) = (To))) is given by:

(a):z{ ’ o) =V
(1)~ (To) o(V/d) = /.

m The identity x U cor(y) = cor(res(x) U y) implies that it is
enough to trivialize 3-cocycles
ni := Ores(a) Uy t; — res(a) Uz 0 € Z3(Gy(1,), Gm).

Now [k(T:)(1/d!) : k(T;)] = 2 and values of t; are defined over
k(T;). Use lemma 3 to find ¢;s s.t. de; = 7;!
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Rkl Cassels- Tate pairing on 2-Selmer groups of odd-degree

Jacobians

hyperelliptic Jacobians takes the following form:

(_1)2< e = H H (6vn kV (T7)>
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Form of the CTP

Computing A similar trick for the local part gives
odd-degree
Jacobians
hyperelliptic Jacobians takes the following form:
( (@ CT_H H (5vn kv (Ti)»

Cassels-Tate
Rkl Cassels- Tate pairing on 2-Selmer groups of odd-degree
v Gy, -orbits

H. Shukla

where 4, i € ky(T;)* and (-, )i,(T;) is the Hilbert's symbol.

Remark 6
determine Obtaining d,,; once we have the trivializers €; of ; reduces to

the splitting

field of m Finding the local point witnessing local triviality of a.

m Solving a Hilbert 90 problem.

How to
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Some remarks!

Computing
the
Cassels-Tate
pairing on

ood degree m Constructing € in the proof of lemma 3 requires:
yperelliptic

Jesebias m Trivializing some explicitly given 2-cocycles that represent
Al Sl trivial class in Br (k) (hard part).

m Solving some Hilbert 90 problems explicitly (easy part).

m Gluing the above information carefully.

m If Cis an elliptic curve then the formula obtained by
Cassels has exactly the same form as in theorem 5.

m If f splits over k and g = 2, then the above form reduces
to the form of the formula obtained by Jiali Yan in her
cetermine PhD thesis.

the splitting
field of n

How to
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e mAn o = (di, ..., dog1) € Sel®(J) with d; € k(er)* is
B said to be good if for each j, the conics
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m A curve C is good if the subgroup generated by good
elements is at most of index 2.
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Definition 7
Recall e;s are the roots of f.
m Ana = (d,...,dyr1) € SelP(J) with d; € k(e)* is
said to be good if for each j, the conics
Cjj: diu® — djv® + e; — ¢; = 0 has a solution over k(e;, ;).

H. Shukla

m A curve C is good if the subgroup generated by good
elements is at most of index 2.

If o is good, then we can explicitly write €; such that de¢; = 7);.

For a fixed i, the values of ¢; are combinations of pj;s where
pjj :=Vdiu* + /djv*, and u*, v* satisfies Cj;.
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Definition 7
Recall e;s are the roots of f.
m Ana = (d,...,dyr1) € SelP(J) with d; € k(e)* is
said to be good if for each j, the conics
Cjj: diu® — djv® + e; — ¢; = 0 has a solution over k(e;, ;).

H. Shukla

m A curve C is good if the subgroup generated by good
elements is at most of index 2.

If o is good, then we can explicitly write €; such that de¢; = 7);.

For a fixed i, the values of ¢; are combinations of pj;s where

pjj :=Vdiu* + /djv*, and u*, v* satisfies Cj;.

Trivializing quaternion algebras corresponding to Cj; is probably
simpler!

Extra "nice"
curves



Some statistics on good curves

Computing
the
Cassels-Tate
pairing on
odd-degree
hyperelliptic
Jacobians

Extra "nice"
curves




Some statistics on good curves

Computing
the
Cassels-Tate
pairing on
odd-degree
hyperelliptic m Hope: Most of the curves are good.

Jacobians

Extra "nice"
curves



Some statistics on good curves

Computing
the
Cassels-Tate
pairing on
odd-degree
hyperelliptic Hope: Most of the curves are good.

Jacobians

m rky,Sel®(J) > 2, r,n(J) = 0: 1207 curves on LMFDB, all
good.

E rkFZSel(z)(J) > 2, rap(J) = 1: 538 curves on LMFDB, all
good.

E rk]FZSel(z)(J) >4, rap(J) > 2: 4 curves on LMFDB, all
good.

m x>+ A 0< A< 1000, and A is prime: 168 curves, all
good.
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