Uniform Boundedness for Brauer Groups of K3 Surfaces

Anthony Várilly-Alvarado Rice University

Rational Points 2017 July 7th, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation: torsion on elliptic curves

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

 $\#E(k)_{tors} < c.$

うして ふゆう ふほう ふほう うらつ

Question

Is there a Merel theorem for surfaces?

Elliptic curves: $\omega_E \simeq \mathcal{O}_E$.

Look at nice surfaces X with $\omega_X \simeq \mathcal{O}_X$.

Nice surfaces with $\omega_X \simeq \mathcal{O}_X$

Nice: smooth, projective, geometrically integral.

Two kinds:

• Geometrically abelian surfaces: $h^1(X, \mathcal{O}_X) = 2$.

2.
$$x^4 + y^4 = z^4 + w^4$$
 in \mathbb{P}^3 (degree 4).

Problem: K3 surfaces have no group structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Replacement for $E(k)_{tors}$?

Reinterpreting $E(k)_{tors}$

$$E(k)_{\text{tors}} \simeq (\operatorname{Pic}^{0} E)_{\text{tors}}$$

$$= (\operatorname{Pic} E)_{\text{tors}}$$

$$\simeq \operatorname{H}^{1}(E, \mathcal{O}_{E}^{\times})_{\text{tors}}$$

$$\simeq \operatorname{H}^{1}_{\text{et}}(E, \mathbb{G}_{m})_{\text{tors}}$$

$$\simeq \operatorname{im}\left(\operatorname{H}^{1}_{\text{et}}(E, \mathbb{G}_{m})_{\text{tors}} \to \operatorname{H}^{1}_{\text{et}}(\overline{E}, \mathbb{G}_{m})_{\text{tors}}\right)$$

Note: Hilbert 90 implies

$$\ker \left(\mathsf{H}^{1}_{\mathrm{et}}(E,\mathbb{G}_{m})_{\mathrm{tors}} \to \mathsf{H}^{1}_{\mathrm{et}}(\overline{E},\mathbb{G}_{m})_{\mathrm{tors}}\right) \simeq \mathsf{H}^{1}_{\mathrm{et}}(\operatorname{Spec} k,\mathbb{G}_{m}) = 0.$$

◆□ > < 個 > < E > < E > E の < @</p>

Transcendental Brauer groups

For a K3 surface over a number field k, use

$$\operatorname{im}\left(\underbrace{\operatorname{H}^{2}_{\operatorname{et}}(X,\mathbb{G}_{m})_{\operatorname{tors}}}_{\operatorname{Br}(X)} \to \underbrace{\operatorname{H}^{2}_{\operatorname{et}}(\overline{X},\mathbb{G}_{m})_{\operatorname{tors}}}_{\operatorname{Br}(\overline{X})}\right)$$

First isomorphism theorem:

$$\operatorname{im}\left(\operatorname{Br}(X) \to \operatorname{Br}(\overline{X})\right) \cong \operatorname{Br}(X) / \underbrace{\operatorname{ker}\left(\operatorname{Br}(X) \to \operatorname{Br}(\overline{X})\right)}_{\operatorname{Br}_{1}(X)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $Br(X)/Br_1(X)$ is the transcendental Brauer group of X.

$E(k)_{\text{tors}}$ is finite. Is the K3 analogue $Br(X)/Br_1(X)$ finite?

Theorem (Skorobogatov–Zarhin 2008) Let k/\mathbb{Q} be a finitely generated field; let X/k be a K3 surface. Then Br(X)/Br₁(X) is finite.

ション ふゆ アメリア メリア しょうくの

Uniform boundedness conjectures

For X/\mathbb{C} a K3 surface, always have $H^2(X(\mathbb{C}),\mathbb{Z}) \simeq U^{\oplus 3} \oplus E_8(-1)^{\oplus 2}$.

We call $\Lambda_{K3} := U^{\oplus 3} \oplus E_8(-1)^{\oplus 2}$ the K3 lattice.

NS(X) embeds primitively in $H^2(X(\mathbb{C}),\mathbb{Z})$.

Conjecture (Weak uniform boundedness) Fix a number field k and a primitive sublattice $\Lambda \subset \Lambda_{K3}$. There is an integer $B = B(k, \Lambda)$ such that: For all K3 surfaces X/k with $\Lambda \simeq NS(\overline{X})$,

 $\#\operatorname{Br}(X)/\operatorname{Br}_1(X) < B.$

Remarks

- Could ask for B([k:Q], Λ) instead of B(k, Λ) (strong uniform boundedness).
- Weak Shafarevich conjecture (1994): for fixed number field k, there are only finitely many possibilities for NS(X).
 ⇒ can dispense with Λ in the conjecture.
- Strong Shafarevich conjecture: for fixed [k: Q], there are only finitely many possibilities for NS(X).
 ⇒ can dispense with Λ in the strong version of the conjecture.

Strongest form of the conjecture

Conjecture (Strong unif. boundedness + strong Shafarevich) Fix $d \in \mathbb{Z}_{>0}$. There is an integer B = B(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all K3 surfaces X/k,

 $\#\operatorname{Br}(X)/\operatorname{Br}_1(X) < B.$

This should be the K3 analogue of Merel's theorem.

l-primary boundedness: an easier conjecture?

Conjecture (ℓ -primary boundedness) Fix a number field k, a prime ℓ , and a primitive sublattice $\Lambda \subset \Lambda_{K3}$. There is an integer $B = B(k, \Lambda, \ell)$ such that for all K3 surfaces X/k with $\Lambda \simeq NS(\overline{X})$,

 $\#(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\ell^{\infty}] < B.$

Strong version: replace $B(k, \Lambda, \ell)$ with $B([k : \mathbb{Q}], \Lambda, \ell)$.

After all, before Merel, there was Manin...

Theorem (Manin 1969)

Fix a number field k and a prime ℓ . There is an integer $c = c(k, \ell)$ such that for all elliptic curves E/k,

 $\#E(k)[\ell^{\infty}] < c.$

Evidence

- I Kodaira dimension estimates for relevant moduli problem. Joint work with Tanimoto; Mckinnie, Sawon, and Tanimoto.
- II Conditional analogues in the case of full-level structures for abelian varieties.

Joint work with Abramovich.

- III Special cases:
 - i. Verification for some lattices Λ of rank 19. Joint work with Viray.
 - ii. The CM case. (Gives Merel-type result for K3s with ρ = 20.) Orr/Skorobogatov
 - iii. ℓ-primary boundedness for 1-dimensional families. Ambrosio/Cadoret/Charles (forthcoming)

I. Geometry: moduli of K3s with level structure

$$\mathcal{K}_{2d}$$
 = coarse moduli space of projective K3 surfaces $/\mathbb{C}$ with polarization of degree 2*d*.

$$\mathscr{Y}_0(2d,p) = \text{coarse moduli space of pairs } (X,\langle \alpha \rangle), \text{ where}$$

 $X/\mathbb{C} = \text{projective K3 surface of degree } 2d, \text{ and}$
 $0 \neq \langle \alpha \rangle \subseteq (\text{Br } X)[p] \text{ is a } p\text{-torsion subgroup}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There is a forgetful map $\mathscr{Y}_0(2d, p) \rightarrow \mathscr{K}_{2d}$

Theorem (Gritsenko, Hulek, Sankaran 2007) \mathcal{K}_{2d} is of general type for d > 61. Joint work with McKinnie, Sawon, and Tanimoto (2017) Let $p \nmid d$ be prime. Very general picture:

I. Geometry: moduli of K3s with level structure

 \mathscr{C}_D := coarse moduli of special cubic fourfolds of discriminant D; Theorem (Hassett 2000)

 \mathscr{C}_D is non-empty if and only if D > 6 and $D \equiv 0,2 \pmod{6}$. When non-empty, it is an irreducible algebraic variety of dimension 19.

Theorem (Tanimoto, V.-A. to appear)

The non-empty \mathscr{C}_D are of general type for all D > 198.

Theorem (Ma, 2017)

Up to isomorphism, there are only finitely many Noether-Lefschetz cycles in \mathcal{K}_{2d} and \mathcal{C}_D of dimension ≥ 9 that are not of general type.

II. Full-level structures on abelian varieties, assuming Lang

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

(not necessarily compatible with the Weil pairing).

Theorem (Abramovich, V.-A. 2016) Assume Lang's conjecture. Fix $g \in \mathbb{Z}_{>0}$, a prime ℓ and a number field k. There is an integer $r = r(k, g, \ell)$ such that no (pp) abelian variety A/k of dimension g has full-level ℓ^r structure. II. Full-level structures on abelian varieties, assuming Vojta

Theorem (Abramovich, V.-A. 2017) Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any $m > m_0$ there is no (pp) abelian variety A/k of dimension g with full-level m structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Orr, Skorobogatov 2017)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all CM K3 surfaces X/k,

 $\#\operatorname{Br}(X)/\operatorname{Br}_1(X) < c.$

うして ふゆう ふほう ふほう うらつ

CM K3 surface: End(NS(\overline{X})^{\perp}) $\otimes \mathbb{Q}$ is a CM field.

III. Special cases

Fix a number field k, as well as non-CM elliptic curves E, E' with a cyclic isogeny of minimal degree d between them.

Let
$$X = \operatorname{Kum}(E \times E') = (\widetilde{E \times E'})/\iota$$
, where $\iota : x \mapsto -x$.

Let $\Lambda_d = NS(\overline{X})$.

 Λ_d has rank 19, discriminant 2d, + indep. of E, E' and isogeny.

Theorem (V.-A., Viray 2016)

Fix a positive integer r, and a prime ℓ . There is a positive integer $B = B(r, d, \ell)$ such that for all K3 surfaces X/k with $[k:\mathbb{Q}] = r$ and $NS(\overline{X}) \simeq \Lambda_d$,

 $\#(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\ell^{\infty}] < B.$

End of Part I

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

End of Talk

(ロ)、(型)、(E)、(E)、 E のQで

II. Full-level structures on abelian varieties

Theorem (Abramovich, V.-A. 2016)

Assume Lang's conjecture.

Fix $g \in \mathbb{Z}_{>0}$, a prime ℓ and a number field k. There is an integer $r = r(k, g, \ell)$ such that no (pp) abelian variety A/k of dimension g has full-level ℓ^r structure.

Engine behind proof:

Let
$$\pi_m \colon \mathscr{A}_g^{[m]} \to \mathscr{A}_g$$
 be the (finite) 'forget' map.

Theorem (Abramovich, V.-A. 2016; Brunebarbe 2016) Let $X \subset \mathcal{A}_g$ be a closed subvariety. There is an integer m_X such that, for all $m > m_X$, every irreducible component of $\pi_m^{-1}(X) \subset \mathcal{A}_g^{[m]}$ is of general type. II. Full-level structures on abelian varieties, assuming Vojta

Conjecture (Vojta c. 1984)

X a smooth projective variety over a number field K.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_{X}^{(1)}(D,x) + d_{K}(K(x)) \ge h_{K_{X}+D}(x) - \delta h_{H}(x) - O(1)$$

for all $x \in X(\overline{K}) \setminus Z(\overline{K})$ with $[K(x):K] \le r$.

うして ふゆう ふほう ふほう うらつ

What about $Br_1(X)/Br_0(X)$?

Lemma

Let X be a variety over a field k of characteristic 0. Assume that $\operatorname{Pic}(\overline{X}) \simeq \mathbb{Z}^r$. Then there is an integer M = M(r), independent of X, such that $\#\operatorname{Br}_1(X)/\operatorname{Br}_0(X) < M$.

Idea of the proof.

Pass to a finite Galois extension K/k such that Pic(X_K) ≅ Z^r.
 Hochschild-Serre ⇒ Br₁(X)/Br₀(X) ≃ H¹(Gal(K/k), Z^r).
 (¬rr (k G))6

$$\mathsf{H}^{1}(G,\mathbb{Z}^{r}) \simeq \frac{(\mathbb{Z}^{r}/|G|)^{G}}{(\mathbb{Z}^{r})^{G}/(|G|)} \text{ where } G = \mathsf{Gal}(K/k).$$

 \implies #H¹(G, \mathbb{Z}^r) divides $|G|^r$, regardless of action.

4. G acts through a finite subgroup of $GL_r(\mathbb{Z})$ (only finitely many possibilities).

What about $Br_1(X)/Br_0(X)$?

Lemma

Let X be a variety over a field k of characteristic 0. Assume that $\operatorname{Pic}(\overline{X}) \simeq \mathbb{Z}^r$. Then there is an integer M = M(r), independent of X such that $\#\operatorname{Br}_1(X)/\operatorname{Br}_0(X) < M$.

Corollary

There is an absolute constant M such that, for all K3 surfaces X over a field of characteristic 0, we have

 $\#\operatorname{Br}_1(X)/\operatorname{Br}_0(X) < M.$

うして ふゆう ふほう ふほう うらつ