RATIONAL POINTS ON SURFACES

YURI TSCHINKEL

Let X C P be a surface over Q. Let H: P"(Q) — R.( be defined by H(x) = [[, Hy(2)
where H,(x) := max; |z;|,. Let N(X,B) = #{zr € X(Q) : H(zx) < B} as B — 0.

Step 1: Classification over C. Rational surfaces (e.g., del Pezzo surfaces), K3 surfaces etc.,
general type.

Step 2: Geometric invariants. One of the invariants would be the degree. Consider

2,2 2,2 2,2
T1TH + THx5 + T3X7 = TT1X2T3.

This has N (X, B) ~ B%? instead of B¢ as one might guess from the degree. The explanation
is that this is a singular surface, and the singularities change the behavior. Therefore we
reduce to smooth models: it will be helpful to consider all ample line bundles at once,
and corresponding height functions. Let U be an open subset such that X — U consists
of accumulating curves containing many rational points. We may assume that the inverse
image of X — U in the resolution of singularities is a normal crossings divisor.

In our examples, we will have Pic X ~ Z", and the effective cone A.f f(X) will be finitely
generated. We also have the anticanonical class —Kx and the ample line bundle L. Let
a(L) :=inf{a : aL + Kx € Aeg(X)}. Let b(L) be the codimension of the face of Aeg(X)
containing a(L)L + Kx. The constant ¢(L£) is defined by Peyre for a metrized line bundle.

Universal torsors: A% — {0} — P? reduces counting rational points on P? to counting
(primitive) integral points in A3 —{0}. The lattice point count is approximated by a volume
of some domain on a torsor.

Examples: de la Breteche did Gr(2,5) over a dP5, de la Bretéche and Browning did
Tory — x5 = x5 — 1174 + 23 = 0 (a singular dP4 with a Dy singularity) and zor, — 23 =
Tory — 1179 + 3 = 0 (a singular dP4 with a Dj singularity).

Today: Harmonic analysis approach to these questions.

Setup: Let G be a linear algebraic group of dimension 2. E.g., G = G2 or G = G2, (or
non-split tori), or G = G, X G, or G = G, X G,,. Let X be an equivariant compactification
of G. Choose a faithful representation p: G — PGL, 1, to get an action on P”. Let X be

the closure of p(G). Reduce to X smooth with X — G =, Da.

Example 0.1. Let G = G2. Then the group of boundary divisors Div’(X) = @_Z - D, is
isomorphic to Pic X. We have —Kx = > koD, with £, > 2. Also Aeg(X) = ®a20 R>0D,.

Example 0.2. Let G = G%,. We have
0— X*(G) — DivP X — PicX — 0
where X'*(G) is the group of characters. We have —Kx = > koD, with , = 1.
The other cases are the same, except that the character group X*(G) changes.
Example 0.3. Take G2, C P2. Blow up the three fixed points to get a dP6.
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Example 0.4. Take G> C P2. There is a pointwise-fixed line, so blowing up any set of
points on this line gives an equivariant compactification.

Height pairing: H: G(Ar)xDiv®(X)c — C. Define H = [[,, Hp, where Hp, = [, Hp, »,
where Hp, ,(gy) is the v-adic distance from g, to the boundary D,.

Properties: invariance under the action of K, C G(k,) with K,, = G(0O,) for almost all v
follows from equivariance of the compactification.

If g € G(Ay), then
Z(s,g) = Y_ H(ygs)™" € L*(G(F)\G(Ar))
YEG(F)

For G = G2 the quotient on the right is compact; for G = G2, it is not compact.

Poisson: R
Z H(vy,s)™' = > H(,s).
YEG(F ve(GING(A)"
where 1) ranges over unitary characters and

H v(Go; S)_l%(gu) dgy

G(Fv

Pointwise convergence follows from continuity. For G = G2, we have (G(F)\G(Aj))" = F?,
but K,-invariance of H implies that we need only sum over 1), with a € O? instead of a € F?.

We have
Zs9)= [ HGs) g Y A(s)
G(Ay) ac02—{0}
The first term is the main term, and the second term is the error term. The first term is a
Denef/Loeser /Igusa-type integral. The outcome is

#D 1 | (g—1)
H H < Z 75 qKa+1 1 + Z 2 (Kot _ql)(an/—Ka,-i-l _ 1))

veS v S acA aFa’
for a finite set, where Dg =Dy — U, Da N Dy. Get

/G(A (g9 s = T Crlou— Kt 1) Q09

acA

where Q(s) is holomorphic
1/’«17 H (F Ka + 1) X Qa(3>‘

acAp(a)
For all N we have |Q,(s)| < 1/|la|".

For G = G2,
L(s, g) /HX,

where x ranges over characters KG(F)\G(Ar) — S C C*. This equals

/ Hy(s,9) " gl"™ dg dxm.
X=XmEM=X*(G)g=R" " JG(Fy)
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0 — M — Div® X — Pic X.
H(xm,s) = HCF(sa — ko +1+1imy) X Q(s +im).

' 1 dm
xals) =50 / [1(50 — ka + ima)’
Let G = Gy, x G,. Let H = L*(G(F)\G(A)). We have H = @ H, with ¢ €
(Ga(F)\Gal(AR))™.

Hy, =/ Hxdg
X’VTL



