
EXPLICIT ON GENUS-3 CURVES, II

NILS BRUIN (WITH FLYNN, POONEN, STOLL)

Let C be
∑

xiy
jz4−i−j − y2z2 − 2z4 = 0. This has points

p0 : (−1 : 1 : 1)

p1 : (1 : −1 : 1)

p2 : (1 : 1 : −1)

p3 : (25 : −17 : 31)

p4 : {x2 + 2z2, y + z = 0}
p5 : {3x2 + 2y2 − 3yz − 2z2 = 0

3xy + 2y2 + 3yz + z2 = 0

3xz − 5y2 + 3yz − z2 = 0

5y3 − y2z + 4yz2 + z3 = 0}

Define

g1 := [p2 − p0]

g2 := [p4 − 2p0]

g3 := [p5 − 3p0].

In terms of these, we have

[p1 − p0] := 3g1 + 2g2 − 2g3

[p2 − p0] := g1

[p3 − p0] := 2g2.

Theorem 0.1. Subject to GRH, 〈g1, g2, g3〉 has finite odd index in JC(Q) ' Z3.

Strategy:

almost 2J(Q) // J(Q) //

��

L×

L×2Q×

��

almost 2J(Qp) // J(Qp) //
L×p

L×2
p Q×

p

where Lp := L⊗Qp.
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Here the group L×

L×2Q× is a substitute for H1(Q, J [2]). We may impose the conditions that

cohomology classes are unramified outside a finite set S to replace L×

L×2 by a finite subgroup
L(2, S) essentially generated by S-units:

almost 2J(Q) // J(Q) //

��

L(2, S)

Q×

��

almost 2J(Qp) // J(Qp) //
L×p

L×2
p Q×

p

We compute the image of J(Qp) → L×p
L×2

p Q×p
for each p ∈ S.

In the example, S = {∞, 2, 5, 402613}.

1. Description of L

The genus-3 curve is in P2 with coordinates x, y, z. In the dual projective space P̌2 with
coordinates u, v, w, the set of bitangents corresponds to a reduced 0-dimensional subscheme
of degree 28. Project this to a line, to get Spec L, where L = Q[t]/(g(t)) where g(t) is a
polynomial of degree 28.

The general bitangent is given by

λθ : uθx + vθy + wθz = 0.

The map

J(Q) → L×

L×2Q×∑
nP P 7→

∏
P

(uθx(P ) + vθy(P ) + wθz(P ))nP .

2. Identification of the image of Galois

Identify Gal(g(t)) as a subgroup of Sp6(F2) ⊂ S28 up to conjugacy. GAP or Magma can
list the conjugacy classes of subgroups of Sp6(F2), and the orbit lengths of the elements.

For the example at hand, we find Gal(g(t)) = Sp6(F2); this is as hard as it gets.

3. Cassels kernel

0 // J [2](Q) // R∨
27(Q) // R∨

21(Q) // H1(Q, J [2]) // H1(Q, R∨
27)

J(Q)

2J(Q)
//

OO

L×

L×2Q×

OO
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The construction of R28 = (Z/2Z)S is straightforward. There is a unique R27 in R28, and
a unique R21 in R28. View J [2] as R27/R21. Magma shows that J [2](Q), R∨

27(Q), R∨
21(Q) are

all 0. Therefore
J(Q)

2J(Q)
→ L×

L×2Q×

is injective.
When we projected, we were working over Q, but to get the ring of integers of L, we

should use possibly more than one projection over Z.

4. Computing L(2, S)

This requires Cl(OL), and GRH is required to verify this computation. In our example,
Cl(OL) is trivial (assuming GRH).

5. Local computation

We have
#J(Qp)

2J(Qp)
=

#J [2](Qp)

|2|3p
.

For p = 2, we have

L⊗Q2 = Q2 ⊕Q2 ⊕ (deg 2)⊕ (deg 8)⊕ (deg 16).

One finds

dim J [2](Q2) = 1

dim R∨
27(Q2) = 4

dim R∨
21(Q2) = 3.

Thus there is no Cassels kernel. Also, by the formula above,

dim
J(Q2)

2J(Q2)
= 1− (−3) = 4.

To find enough generators of J(Q2)
2J(Q2)

, we intersect C with random lines ` and hope that C.`

decomposes over Q2.
For p = 5, we find

dim J [2](Q5) = 1

dim R∨
27(Q5) = 5

dim R∨
21(Q5) = 4.

We find

dim
J(Q)

2J(Q)
≤ 3.

This completes the proof that J(Q) has rank 3.
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Remark 5.1. We did not need the information from the prime 402613, which is lucky since

dim J [2](Q402613) = 2

dim R∨
27(Q402613) = 7

dim R∨
21(Q402613) = 6,

leaving the possibility of a nontrivial Cassels kernel.
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