
FINITE COVERINGS AND RATIONAL POINTS

MICHAEL STOLL

1. Introduction

Basic Question.

Given a (smooth projective) curve C over a number field k, can we determine
explicitly the set C(k) of rational points?

This problem splits naturally into several parts.

Problem 1.

Decide if C(k) is empty or not!

Problem 2.

Knowing that C(k) is nonempty, find a point P ∈ C(k)!

Problem 3.

Knowing a point P ∈ C(k), describe C(k)!

Problem 2 is easily solved in principle: we just have to do a systematic search
until we hit a point.

Problem 3 is easy for a genus 0 curve. For a genus 1 curve, which we can turn
into an elliptic curve by declaring P to be the origin, it comes down to the deter-
mination of the Mordell-Weil rank (and then we have to find explicit generators,
but this is again just a matter of search). For curves of higher genus, the set C(k)
is finite, and the main difficulty is to know when we have found all the points.

Let us first consider Problem 1.

There are some obvious approaches we can take.

• Look for a small rational point. If found, we have solved Problems 1 and 2.
• Check for local solubility. If C(kv) is empty for some place v of k, C(k) is

empty as well. Note that this is a finite computation.
• Use descent.
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Example.

Consider the genus 2 curve (over Q)

y2 = −(x2 + x− 1)(x4 + x3 + x2 + x + 2) = f(x) .

We don’t find a rational point on it, and it has points everywhere locally (note
that f(0) = 2, f(1) = −6, f(−2) = −3 · 22, f(18) is a 2-adic square, and f(4) is
a 3-adic square). Now, by a standard procedure, for any rational point (x, y), we
must have

−x2 − x + 1 = d u2 , x4 + x3 + x2 + x + 2 = d v2

(and y = d uv), where d is a squarefree integer dividing the resultant of the two
factors, which is 19. So d is one of 1,−1, 19,−19. If d < 0, the second equation
has no solution, and if d = 1 or 19, the pair of equations has no solution over F3.
(The first implies that x mod 3 is one of 0 or −1, whereas the second implies that
x mod 3 is one of 1 or ∞.)

More generally, given an unramified covering D
π→ C that is geometrically Galois,

by standard theory, there are only finitely many twists Dj
πj→ C of this covering

(up to isomorphism over k) such that Dj has points everywhere locally, and

C(k) =
∐

j

πj(Dj(k)) .

Moreover, the set of these twists is computable (at least in principle).

In particular, if it turns out that there are no such twists, then this proves that
C(k) is empty (like in the example above).

2. The Conjecture

Let me now state a conjecture that essentially says that this should always work.
Actually, there will be two versions, a weaker and a stronger one, and they will be
a little bit more general. Namely, we want them to also apply when C(k) is not
necessarily empty.

Let us define a residue class on C to be a subset of the adelic points

C(Ak) =
∏

v

C(kv)

given by specifying conditions “modulo powers of v” at finitely many finite places
and perhaps conditions to lie on certain connected components at some of the
(real) infinite places. (I.e., a clopen subset.)

Main Conjecture (weak version).

If X ⊂ C(Ak) is a residue class such that X ∩ C(k) = ∅, then there exists an

unramified covering D
π→ C such that for all twists Dj

πj→ C, we have

πj(Dj(Ak)) ∩X = ∅ .
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In other words, we can actually prove that X ∩ C(k) = ∅ using some unramified
covering.

Main Conjecture (strong version).

Same as before, but we require the unramified covering D → C to be abelian.

Here are some consequences.

• The weak version implies that we can solve Problem 1: we search for a point
by day and run through the coverings by night (they can be enumerated),
until one of the two attacks is successful.

• When C(k) is empty, the strong version is equivalent to saying that the
Brauer-Manin obstruction is the only obstruction against rational points
on C.

It is also very likely that the strong version implies that we can solve Problems
2 and 3 when the “Chabauty condition” holds for C, i.e., the Mordell-Weil rank
of the Jacobian is less than the genus. If it is true that the Chabauty condition
holds eventually for abelian coverings, then we can solve Problem 3 for all curves
of genus at least 2.

3. Evidence

Now I want to give some evidence for these conjectures.

First a few general facts.

• The strong conjecture is true for curves of genus zero. (Use Hasse Principle
and weak approximation.)

• Let C be a curve of genus 1, with Jacobian E. If C represents an element
of X(k, E) that is not divisible, then the strong conjecture is true for C.
It is true for E if and only if the divisible subgroup ofX(k,E) is trivial.

• Similarly, if C is of genus≥ 2 and Pic1
C is a non-divisible element inX(k, J)

(where J is the Jacobian of C), then the strong conjecture holds for C.
(Scharaschkin, in the context of the Brauer-Manin obstruction)

• If C → A is a nonconstant morphism into an abelian variety A such that
A(k) is finite andX(k,A)div = 0, then the strong conjecture is true for C.
(Stoll, partial results by Colliot-Thélène and Siksek)

• Bjorn Poonen has heuristic arguments supporting an even stronger version
of the conjecture in case C(k) is empty.

From this and by other means, we get a number of concrete examples.

• The strong conjecture is true for all modular curves X0(N), X1(N) and
X(N) over Q. (Use Mazur’s results to show that if N is large, X0(N) maps
into a modular abelian variety of analytic rank zero, plus William Stein’s
tables to check the remaining cases.)
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• Computations have shown the strong conjecture to hold for all but 1488
genus 2 curves of the form y2 = f(x), where f has integral coefficients
of absolute value at most 3, such that the curve does not have a rational
point (here k = Q). Under the assumption that X(k, J)div = 0 for the
Jacobian J of such a curve, the strong conjecture holds for 1383 out of
these 1488 curves. Assuming in addition the Birch and Swinnerton-Dyer
conjecture (plus standard conjectures on L-series), the strong conjecture
holds for 42 of the remaining 105 curves. We hope to be able to deal with
the other 63 curves in due course. (Bruin, Stoll)

• Successful Chabauty computations verify the strong conjecture for residue
classes defined in terms of just one place v.

There are also some relative statements that allow us to conclude that some version
of the conjecture holds for one curve, if we know it for one or more other curves.

• If either version of the conjecture holds for C/K, where K/k is a finite
extension, and C(K) is finite, then it holds for C/k. (Stoll)

• If C(k) is finite and D → C is a nonconstant morphism, and either version
of the conjecture holds for C, then it also holds for D. (Stoll, partial result
by Colliot-Thélène)

• If D → C is an unramified covering, C(k) is finite, and the weak version
of the conjecture holds for all twists Dj (such that Dj(Ak) is nonempty),
then it also holds for C. (Stoll)

This allows us to show that one of the two versions holds for a given curve in many
cases.

We can also use these results to prove a statement of a somewhat different flavor.

• If the weak conjecture holds for y2 = x6 + 1 over all number fields k, then
it also holds for all hyperelliptic curves of genus ≥ 2 (and many more,
perhaps all curves with g ≥ 2) over any number field. (Use results of
Bogomolov-Tschinkel on coverings.)

4. More Conjectures

Let me state two more rather plausible conjectures.

“Strong Chabauty” Conjecture.

Assume that C → A is a nonconstant morphism into an abelian variety such that
the image of C is not contained in a proper abelian subvariety. Also assume that
rank A(k) ≤ dim A − 2. Then there is a set of places v of k of density 1 and
a zero-dimensional subscheme Z ⊂ C such that C(kv) intersects the topological
closure of J(k) in J(kv) only in points from Z.

The motivation for this conjecture comes from the fact that in this situation, the
system of equations for the intersection is overdetermined. Hence you do not
expect solutions unless there is a good reason for them.
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I suggest to do some numerical experiments with hyperelliptic genus 3 curves (with
a rational Weierstrass point, say) such that the Mordell-Weil rank of the Jacobian
is 1, in order to test this conjecture.

• If C satisfies assumptions and conclusion of the above conjecture, and
X(k, A)div = 0, then the strong version of the main conjecture is true
for C. (Stoll)

“Eventually Small Rank” Conjecture.

Let C be a curve of genus ≥ 2. Then there is some n ≥ 1 such that for all twists
Dj of the multiplication-by-n covering of C with Dj(Ak) 6= ∅, the Jacobian of Dj

has a factor A such that rank A(k) ≤ dim A− 2.

Since the genus of the Dj grows rapidly with n, this essentially says that one
does not expect Mordell-Weil ranks to be large compared to the dimension. (This
conjecture (even with dim A − 2 replaced by dim A − 1) also implies Mordell’s
Conjecture.)

• Assume
(1) X(k, A)div = 0 for all abelian varieties,
(2) the “Strong Chabauty” conjecture,
(3) the “Eventually Small Rank” conjecture.

Then the weak version of the main conjecture holds for all curves over k,
and Problem 3 can be solved.
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