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The Problem

Let C be a (geometrically integral) curve defined over Q.

(We take Q for simplicity; we could use an arbitrary number field instead.)

Problem.

Determine C(Q), the set of rational points on C !

Since a curve and its smooth projective model

only differ in a computable finite set of points,

we will assume that C is smooth and projective.

The focus of this talk is on the practical aspects,

in the case of genus ≥ 2.



The Structure of the Solution Set

The structure of the set C(Q) is determined by the genus g of C.

(“Geometry determines arithmetic”)

• g = 0 :

Either C(Q) = ∅, or if P0 ∈ C(Q), then C ∼= P1.

The isomorphism parametrizes C(Q).

• g = 1 :

Either C(Q) = ∅, or if P0 ∈ C(Q), then (C,P0) is an elliptic curve.

In particular, C(Q) is a finitely generated abelian group.

C(Q) is described by generators of the group.

• g ≥ 2 :

C(Q) is finite.

C(Q) is given by listing the points.



Genus Zero

A smooth projective curve of genus 0

is (computably) isomorphic to a smooth conic.

Conics C satisfy the Hasse Principle :

If C(Q) = ∅, then C(R) = ∅ or C(Qp) = ∅ for some prime p.

We can effectively check this condition:

we only need to check R and Qp when p divides the discriminant.

For a given p, we only need finite p-adic precision.

(Note: we need to factor the discriminant!)

At the same time, we can find a point in C(Q), if it exists.

Given P0 ∈ C(Q), we can compute an isomorphism P1 → C.



Genus One

The Hasse Principle may fail.

If we can’t find a rational point, but C has points “everywhere locally”,

we can try (n-)coverings.

Coverings can be used to show that C(Q) is empty,

or they can help find a point P0 ∈ C(Q).

In practice, this is feasible only in a few cases:

• y2 = quartic in x and n = 2;

• intersections of two quadrics in P3 and n = 2;

• plane cubics and n = 3 (current PhD project).



Elliptic Curves

Now assume that we have found a rational point P0 on C.

Then (C,P0) is an elliptic curve, which we will denote E.

We know that E(Q) is a finitely generated abelian group;

the task is now to find explicit generators.

The hard part is to determine the rank r = dimQE(Q)⊗Z Q.

Computation of the n-Selmer group of E gives an upper bound on r.

This n-descent is feasible for n = 2,3,4,8; n = 9 is current work.

A search for independent points gives a lower bound on r.

However, generators may be very large. Descent can help find them.

When r = 1, Heegner points can be used.



Higher Genus — Finding Points

Now consider a curve C of genus g ≥ 2.

The first task is to decide whether C has any rational points.

If there is a rational point, we can find it by search.

Unlike the genus 1 case, we expect points to be small:

Conjecture (A consequence of Vojta’s Conjecure: Su-Ion Ih).

If C → B is a family of higher-genus curves, then there is κ such that

HC(P)� HB(b)κ for all P ∈ Cb(Q)

if the the fiber Cb is smooth.



Examples

Consider a curve

C : y2 = f6x
6 + · · ·+ f1x+ f0

of genus 2, with fj ∈ Z.

Then the conjecture says that there are γ and κ such that

the x-coordinate p/q of any point P ∈ C(Q) satisfies

|p|, |q| ≤ γmax{|f0|, |f1|, . . . , |f6|}κ .

Example (Bruin-St).

Consider curves of genus 2 as above such that fj ∈ {−3,−2, . . . ,3}.
If C has rational points,

then there is one whose x-coordinate is p/q with |p|, |q| ≤ 1519.

We will call these curves small genus 2 curves.



Local Points

If we do not find a rational point on C,

we can check for local points (over R and Qp).

We have to consider primes p that are small or sufficiently bad.

Example (Poonen-St).

About 84–85 % of all curves of genus 2 have points everywhere locally.

Conjecture.

0 % of all curves of genus 2 have rational points.

So in many cases, checking for local points will not suffice

to prove that C(Q) = ∅.

Example (Bruin-St).

Among the 196 171 isomorphism classes of small genus 2 curves,

there are 29 278 that are counterexamples to the Hasse Principle.



Coverings

To resolve these cases, we can use coverings.

Example.

Consider C : y2 = g(x)h(x) with deg g, degh not both odd.

Then D : u2 = g(x), v2 = h(x)

is an unramified Z/2Z-covering of C.

Its twists are Dd : du2 = g(x), d v2 = h(x), d ∈ Q×/(Q×)2.

Every rational point on C lifts to one of the twists,

and there are only finitely many twists

such that Dd has points everywhere locally.



Example

Consider the genus 2 curve

C : y2 = −(x2 + x− 1)(x4 + x3 + x2 + x+ 2) = f(x) .

C has points everywhere locally

(f(0) = 2, f(1) = −6, f(−2) = −3 · 22, f(18) ∈ (Q×2 )2, f(4) ∈ (Q×3 )2).

The relevant twists of the obvious Z/2Z-covering are among

du2 = −x2 − x+ 1 , d v2 = x4 + x3 + x2 + x+ 2

where d is one of 1,−1,19,−19. (The resultant is 19.)

If d < 0, the second equation has no solution in R;

if d = 1 or 19, the pair of equations has no solution over F3.

So there are no relevant twists, and C(Q) = ∅.



Descent

More generally, we have the following result.

Descent Theorem (Fermat, Chevalley-Weil, . . . ).

Let D
π→ C be an unramified and geometrically Galois covering.

Its twists Dξ
πξ→ C are parametrized by ξ ∈ H1(Q, G)

(a Galois cohomology set), where G is the Galois group of the covering.

We then have the following:

• C(Q) =
⋃

ξ∈H1(Q,G)

πξ
(
Dξ(Q)

)
.

• Selπ(C) :=
{
ξ ∈ H1(Q, G) : Dξ has points everywhere locally

}
is finite (and computable). This is the Selmer set of C w.r.t. π.

If we find Selπ(C) = ∅, then C(Q) = ∅.



Abelian Coverings

A covering D → C is abelian if its Galois group is abelian.

Let J be the Jacobian variety of C.

Assume for simplicity that there is an embedding ι : C → J.

Then all abelian coverings of C are obtained from n-coverings of J:

D //

π

��

X

��

∼=/Q̄
//______ J

·n
��~~

~~
~~

~~
~~

~~
~~

~~

C ι //J

We call such a covering an n-covering of C;

the set of all n-coverings with points everywhere locally

is denoted Sel(n)(C).



Practice — Descent

It is feasible to compute Sel(2)(C) for hyperelliptic curves C (Bruin-St).

This is a generalization of the y2 = g(x)h(x) example,

where all possible factorizations are considered simultaneously.

Example (Bruin-St).

Among the small genus 2 curves, there are only 1 492 curves C

without rational points and such that Sel(2)(C) 6= ∅.



A Conjecture

Conjecture 1.

If C(Q) = ∅, then Sel(n)(C) = ∅ for some n ≥ 1.

Remarks.

• In principle, Sel(n)(C) is computable for every n.

The conjecture therefore implies that “C(Q) = ∅?” is decidable.

(Search for points by day, compute Sel(n)(C) by night.)

• The conjecture implies that the Brauer-Manin obstruction

is the only obstruction against rational points on curves.

(In fact, it is equivalent to this statement.)



An Improvement

Assume we know generators of the Mordell-Weil group J(Q)

(a finitely generated abelian group again).

Then we can restrict to n-coverings of J that have rational points.

They are of the form J 3 P 7→ nP +Q ∈ J , with Q ∈ J(Q);

the shift Q is only determined modulo nJ(Q).

The set we are interested in is therefore{
Q+ nJ(Q) :

(
Q+ nJ(Q)

)
∩ ι(C) 6= ∅

}
⊂ J(Q)/nJ(Q) .

We approximate the condition by testing it modulo p for a set of primes p.



The Mordell-Weil Sieve

Let S be a finite set of primes of good reduction for C.

Consider the following diagram.

C(Q)

��

ι //J(Q)

��

//J(Q)/nJ(Q)

β
��∏

p∈S
C(Fp) ι //

α
22

∏
p∈S

J(Fp) //

∏
p∈S

J(Fp)/nJ(Fp)

We can compute the maps α and β.

If their images do not intersect, then C(Q) = ∅.
(Scharaschkin, Flynn, Bruin-St)

Poonen Heuristic/Conjecture:

If C(Q) = ∅, then this will be the case when n and S are sufficiently large.



Practice — Mordell-Weil Sieve

A carefully optimized version of the Mordell-Weil sieve

works well when r = rankJ(Q) is not too large.

Example (Bruin-St).

For all the 1 492 remaining small genus 2 curves C,

a Mordell-Weil sieve computation proves that C(Q) = ∅.
(For 42 curves,

we need to assume the Birch and Swinnerton-Dyer Conjecture for J.)

Note: It suffices to have generators of a subgroup of J(Q)

of finite index prime to n.

This is easier to obtain than a full generating set,

which is currently possible only for genus 2.



A Refinement

Taking n as a multiple of N ,

the Mordell-Weil sieve gives us a way of proving

that a given coset of NJ(Q) does not meet ι(C).

Conjecture 2.

If
(
Q+NJ(Q)

)
∩ ι(C) = ∅, then there are n ∈ NZ and S such that

the Mordell-Weil sieve with these parameters proves this fact.

So if we can find an N that separates the rational points on C,

i.e., such that the composition C(Q)
ι→ J(Q)→ J(Q)/NJ(Q) is injective,

then we can effectively determine C(Q) if Conjecture 2 holds for C:

For each coset of NJ(Q), we either find a point on C mapping into it,

or we prove that there is no such point.



Chabauty’s Method

Chabauty’s method allows us to compute a separating N

when the rank r of J(Q) is less than the genus g of C.

Let p be a prime of good reduction for C. There is a pairing

Ω1
J(Qp)× J(Qp) −→ Qp , (ω,R) 7−→

∫ R

0
ω = 〈ω, logR〉 .

Since rankJ(Q) = r < g = dimQp
Ω1
J(Qp), there is a differential

0 6= ωp ∈ ΩC(Qp) ∼= Ω1
J(Qp) that kills J(Q) ⊂ J(Qp).

Theorem.

If the reduction ω̄p does not vanish on C(Fp) and p > 2,

then each residue class mod p contains at most one rational point.

This implies that N = #J(Fp) is separating.



Practice — Chabauty + MW Sieve

When g = 2 and r = 1, we can easily compute ω̄p.

Heuristically (at least if J is simple),

we expect to find many p satisfying the condition.

In practice, such p are easily found;

the Mordell-Weil sieve computation then determines C(Q) very quickly.

Example (Bruin-St).

For the 46 436 small genus 2 curves with rational points and r = 1,

we determined C(Q). The computation takes about 8–9 hours.



Larger Rank

When r ≥ g, we can still use the Mordell-Weil Sieve

to show that we know all rational points up to very large height.

For smaller height bounds, we can also use lattice point enumeration.

Example (Bruin-St).

Unless there are points of height > 10100,

the largest point on a small genus 2 curve has height 209 040.

Note.

For these applications,

we need to know generators of the full Mordell-Weil group.

Therefore, this is currently restricted to genus 2.



Integral Points

If C is hyperelliptic, we can compute bounds for integral points

using Baker’s method.

These bounds are of a flavor like |x| < 1010600
.

If we know generators of J(Q), we can use the Mordell-Weil Sieve

to prove that there are no unknown rational points below that bound.

This allows us to determine the set of integral points on C.

Example (Bugeaud-Mignotte-Siksek-St-Tengely).

The integral solutions to (
y

2

)
=

(
x

5

)
have x ∈ {0,1,2,3,4,5,6,7,15,19}.



Genus Larger Than 2

The main practical obstacle is the determination of J(Q):

• Descent is only possible in special cases.

• There is no explicit theory of heights.

Example (Poonen-Schaefer-St).

In the course of solving x2 + y3 = z7, one has to determine

the set of rational points on certain twists of the Klein Quartic.

Descent on J is possible here; Chabauty+MWS is successful.

Example (St).

The curve Xdyn
0 (6) classifying 6-cycles under x 7→ x2 + c has genus 4.

Assuming BSD for its Jacobian, we can show that r = 3;

Chabauty’s method then allows to determine Xdyn
0 (6)(Q).


