
SMALLEST REPRESENTATIVES OF SL(2,Z)-ORBITS
OF BINARY FORMS AND ENDOMORPHISMS OF P1

BENJAMIN HUTZ AND MICHAEL STOLL

ABSTRACT. We develop an algorithm that determines, for a given squarefree binary form F
with real coefficients, a smallest representative of its orbit under SL(2,Z), either with respect
to the Euclidean norm or with respect to the maximum norm of the coefficient vector. This
is based on earlier work of Cremona and Stoll [SC03]. We then generalize our approach so
that it also applies to the problem of finding an integral representative of smallest height in
the PGL(2,Q) conjugacy class of an endomorphism of the projective line. Having a small
model of such an endomorphism is useful for various computations.

1 Introduction

Let F = a0xn + a1xn−1y + . . . + any
n be a binary form with real coefficients. We define its

size to be
‖F‖ = a20 + a21 + . . .+ a2n

(this is the squared Euclidean norm of the coefficient vector) and its height to be the
maximum norm

H∞(F) = max{|a0|, |a1|, . . . , |an|} .
If F has coefficients in Z with gcd(a0, . . . , an) = 1, then H∞(F) = H(F) is the (multi-
plicative) global height of F in the sense that it is the global height of the coefficient
vector of F, considered as a point in projective space Pn. If F has coefficients in Q, then
H(F) = H0(F)H∞(F) with

H0(F) =
∏
p prime

max{|a0|p, |a1|p, . . . , |an|p} .

Since H0(F) does not change under the action of SL(2,Z), we can use H∞(F) as a proxy for
the global height H(F) for our purposes.

Our goal in this note will be to find, for a given F (without multiple factors, say), a smallest
representative F0 in its SL(2,Z)-orbit, in the sense that ‖F0‖ is minimal among all forms in
the orbit of F, or in the sense that H∞(F0) (or equivalently, H(F0) when F0 has coefficients
in Q) is minimal within the orbit.

More generally, we may want to consider some kind of geometric object Φ related to the
projective line (over Q, say), given by some polynomials with respect to some chosen
coordinates on P1. Then we usually can associate to Φ (in a natural, i.e., coordinate-
independent way) a finite set of points on P1, or equivalently, a binary form F = F(Φ).
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“Natural” means that this association is compatible with the action of PGL(2) = Aut(P1) on
both sides. In this way, we can set up a “reduction theory” for the objects Φ by selecting
a suitable “reduced” representative F · γ in the SL(2,Z)-orbit of F and declaring Φ · γ
to be the reduced representative in the SL(2,Z)-orbit of Φ. This is the approach taken
in [Sto11] in the setting of Pn for general n. This works reasonably well when we just
want to have a way of selecting a canonical representative of moderate size. If we want
to find a representative of smallest height, then more work is required: we have to relate
the height of Φ to the size of F(Φ) and determine a bound on the distance we can move
from the canonical representative without increasing the height. The application we have
in mind is to endomorphisms of P1; this is discussed in some detail in Section 2 below.

The plan of this paper is as follows. After the discussion of endomorphisms of P1 in Sec-
tion 2, we recall the reduction theory for binary forms as developed in [SC03] in Section 3.
This provides us with the canonical representative of an SL(2,Z)-orbit of (real) binary
forms, as follows. We associate to a binary form F a point z(F) in the upper half-plane;
this association is SL(2,R)-equivariant. Then F is the canonical representative if z(F) is
in the standard fundamental domain for the action of SL(2,Z) on the upper half-plane.
Section 4 is the heart of the paper. Here we relate the size ‖F‖ of a binary form F to its
“Julia invariant” θ(F) and the hyperbolic distance of z(F) to the point i (note that we will
denote this point mostly by j instead). This allows us to solve the problem of minimizing
the size with respect to the Euclidean norm within an SL(2,Z)-orbit of binary forms. Since
this size and the height are fairly closely related, we also obtain a way of minimizing the
height. Section 5 spells out the resulting algorithm in some detail and gives an example.
Section 6 finally applies this method to the problem of finding a model of minimal height
of a given endomorphism of P1; this is demonstrated with another example. Finally, in
Section 7, we answer some questions concerning the number of distinct GL(2,Z)-orbits of
integral models with the same (minimal) resultant, posed by Bruin and Molnar [BM12].

2 Endomorphisms of the projective line

Let Homd be the space of degree d endomorphisms of P1. There is a natural action
of PGL(2) by conjugation on Homd. We define the quotient space for this action as
Md = Homd /PGL(2). Levy [Lev11] proved thatMd exists as a geometric quotient, which
we call the moduli space of dynamical systems of degree d morphisms of P1. For f ∈ Homd,
we denote the corresponding element of the moduli space as [f] ∈ Md. After choosing
coordinates, we can write f as a pair of degree d homogeneous polynomials, which we call
a model for [f]. Given α ∈ PGL(2), we denote the conjugate as fα = α−1 ◦ f ◦ α. When
working over an infinite field, there are infinitely many models for any conjugacy class.
The choice of a “good” model can affect a variety of properties and algorithms. For ex-
ample, the field of definition of a model f is the smallest field containing the coefficients
of f. Different models of [f] ∈ Md may have different fields of definition. The fields of
definition are studied in [HM14, Sil95]. Here we are considering models defined over Q.
In this context, an integral model of [f] is a model of f consisting of a pair of polynomials
with coefficients in Z. Any model over Q can be scaled to give an integral model with the
property that the coefficients of the two polynomials are coprime.
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Given an integral model f, we define the resultant Res(f) to be the resultant of its two defin-
ing polynomials considered both as having degree d. When working over a global field,
reducing modulo primes can yield information on the arithmetic dynamics of f. In partic-
ular, this local-global transfer of information is a key piece of an algorithm to determine
all rational preperiodic points for a given map [Hut15]. However, not all primes can be
used. A prime of good reduction is a prime p such that reduction modulo p commutes with
iteration. For f ∈ Homd, the primes of good reduction are the primes that do not divide the
resultant. Consequently, the problem of finding an integral model of [f] ∈ Md with small-
est (norm of the) resultant is important. Such a model is called a minimal model for [f], and
an algorithm to determine a minimal model is given by Bruin and Molnar [BM12]. This
algorithm is implemented in the computer algebra system Sage [SJ05]. It is important to
note that minimal models are, in general, not unique. For example, conjugating by an el-
ement of SL(2,Z) leaves the resultant unchanged. Consequently, there are infinitely many
minimal models for a given [f]. Furthermore, we prove in Proposition 7.4 that there are
maps with arbitrarily many distinct SL(2,Z)-orbits of minimal models. Choosing a “best”
minimal model depends on the application in mind. For example, when working with poly-
nomials, it is conventional to move the totally ramified fixed point to the point at infinity.
Similarly, there are models that are convenient for working with critical points [Ing12] or
multipliers [Mil93]. The focus of this article is a minimal model of minimal height. For a
model f = [F : G] ∈ Homd with homogeneous polynomials F and G, we define the height
of f as

H(f) = H(F,G) ,

i.e., the height of the concatenated coefficient vectors. Note that this height does not
change if we replace [F : G] by [λF : λG].

There are a number of properties and algorithms where bounds are dependent onH(f). For
example, in the algorithm to determine all rational preperiodic points [Hut15] an upper
bound on the height of a rational preperiodic point is determined that depends on H(f).
Furthermore, the minimal height over the models with minimal resultant defines a height
on the moduli spaceMd.

See [Sil07, Conjecture 4.98] for a dynamical version of Lang’s height conjecture related to
heights onMd.

Definition 2.1. Given [f] ∈ Md, we call g a reduced model of [f] if g is a minimal model
for [f] with smallest height H(g).

We will use the ideas of [SC03] together with the new bounds from Section 4 to devise an
algorithm that finds a model of smallest height in the SL(2,Z)-orbit of a given model. To-
gether with an extension of the algorithm from [BM12] that finds a representative in each
GL(2,Z)-orbit of minimal models of a given [f], this results in a procedure that produces a
reduced model of any given [f] ∈ Md. Note that the minimal height in the GL(2,Z)-orbit
of a given model is the same as the minimal height in its SL(2,Z)-orbit, so it is sufficient to
apply our reduction algorithm to a representative of each GL(2,Z)-orbit of minimal models
of [f].
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3 Reduction of binary forms

We recall the reduction theory of binary forms, as described in [SC03] (following earlier
work of Hermite [Her48] and Julia [Jul17]). In the following, the degree n of the form
is always assumed to be at least 3. The space of binary forms of degree n over a ring R is
denoted R[x, y]n.

We take a more general approach than in the introduction and consider a binary form with
complex (instead of real) coefficients

F = a0x
n + a1x

n−1y+ . . .+ any
n ∈ C[x, y]n .

In this context, the size ‖F‖ of F is defined as

‖F‖ = |a0|
2 + |a1|

2 + . . .+ |an|
2 =

∫ 1
0

∣∣F(e2πiφ, 1)∣∣2 dφ .
The groups GL(2,C) and SL(2,C) act on the space C[x, y]n of binary forms of degree n via
linear substitution of the variables; this is an action on the right. Concretely,

F(x, y) ·
(
a b
c d

)
= F(ax+ by, cx+ dy) .

We write H3 = C × R>0 for three-dimensional hyperbolic space in the upper half-space
model; we write t + uj for the point (t, u) ∈ C × R>0 = H3. We identify the hyperbolic
upper half-planeH with the subset R×R>0 ofH3. There is a standard left action of SL(2,C)
on H3 that restricts to the standard action of SL(2,R) on H via Möbius transformations.
The standard fundamental domain of the action of SL(2,Z) on H is

F = {t+ uj ∈ H : |t| ≤ 1
2
, t2 + u2 ≥ 1} .

The main idea followed in [SC03] is to set up a map

z : C[x, y] ′n −→ H3
(where C[x, y] ′n is a suitable subset of C[x, y]n that contains the squarefree forms) that is
covariant with respect to the SL(2,C)-actions on both sides, in the sense that

z(F · γ) = γ−1 · z(F) for all F ∈ C[x, y] ′n and all γ ∈ SL(2,C).

We also require z to be compatible with complex conjugation in the sense that if z(F) =
t + uj, then z(F̄) = t̄ + uj. This ensures that z(F) ∈ H when F has real coefficients. For
such F we then say that F is reduced when z(F) ∈ F . Since F is a fundamental domain
for the SL(2,Z)-action, there will be a reduced representative F0 in each SL(2,Z)-orbit.
If z(F0) is in the interior of F , then F0 is uniquely determined (up to sign when n is odd,
since −I2 ∈ SL(2,Z) acts trivially onH). When z(F0) is on the boundary of F , there is some
ambiguity, which can be resolved by removing part of the boundary. However, for practical
purposes, this ambiguity is usually not a problem. We also note that it is impossible to find
out whether a numerically computed point is exactly on the boundary.

There are many choices for this map z when n ≥ 5 (for n = 3 or 4 there is only one
choice, which is forced by the symmetries of cubics and quartics; see [SC03, Prop. 3.4]).
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The choice made by Julia and in [SC03] can be described in the following way. We write
F ∈ C[x, y]n as

F(x, y) =

n∏
k=1

(βkx− αky)

with αk, βk ∈ C. Then we define, for t+ uj ∈ H3,

R(F, t+ uj) =

n∏
k=1

|αk − βkt|
2 + |βk|

2u2

u
∈ R≥0 ;

we note that R(F, t + uj) > 0 when F 6= 0. It can be checked that R is invariant under the
SL(2,C)-action: R(F · γ, z) = R(F, γ · z).
Now we take C[x, y] ′n ⊂ C[x, y]n to be the subset of stable forms, where a form F is stable
when no linear factor of F has multiplicity ≥ n/2. It is shown in [SC03, Prop. 5.1] that for
F ∈ C[x, y] ′n, the function H3 → R>0, z 7→ R(F, z), has a unique minimizer z(F); we define
the Julia invariant of F to be the minimal value,

θ(F) = R(F, z(F)) > 0 .

There is a nice geometric interpretation of z(F). Namely, z(F) is the unique point inH3 with
the property that the sum of the unit tangent vectors pointing in the direction of the n roots
of F (in P1(C), considered as the ideal boundary of H3) vanishes; see [SC03, Cor. 5.4].

4 Bounds for the size of a binary form

Our goal in this section is to relate θ(F) and the size ‖F‖ of a form F ∈ C[x, y] ′n. The first
step is a comparison between ‖F‖ and R(F, j). Note that for F =

∏n
k=1(βkx− αky) we have

that

R(F, j) =

n∏
k=1

(|αk|
2 + |βk|

2) .

Proposition 4.1. Let F ∈ C[x, y]n. Then

21−nR(F, j) ≤ ‖F‖ ≤ 2−n
(
2n

n

)
R(F, j) .

If F ∈ C[x, y] ′n with z(F) = j, then ‖F‖ ≤ R(F, j).

Proof. We begin with an observation related to the size of F. Define F̃(x, y) = F̄(y, x); then
clearly ‖F‖ is the coefficient of xnyn in F(x, y)F̃(x, y). Now assume that F = GH. Then

FF̃ = GHG̃H̃ = GH̃ · G̃H̃ ,
which implies that ‖F‖ = ‖GH‖ = ‖GH̃‖. It is clear from the definition that

R(GH, j) = R(G, j) · R(H, j) = R(G, j) · R(H̃, j) = R(GH̃, j) .
Writing F =

∏n
k=1(βkx−αky), this allows us to replace each factor βkx−αkywith |αk| > |βk|

by its reverse conjugate −ᾱkx+ β̄ky. Since scaling F by a constant λ clearly scales both ‖F‖
and R(F, j) by |λ|2, we can in this way assume without loss of generality that

F = (x− α1y) · · · (x− αny) with |α1|, . . . , |αn| ≤ 1.
5



We now show the first inequality. We have that

‖F‖ ≥ 1+
n∏
k=1

|αk|
2 and 21−nR(F, j) = 21−n

n∏
k=1

(1+ |αk|
2) .

Write xk = |αk|
2 ∈ [0, 1] and observe that the difference of 21−n(1 + x1) · · · (1 + xn) and

1 + x1 · · · xn is an affine-linear function in each of the xk. This implies that the extrema of
this difference must occur at some vertices of the unit cube [0, 1]n. But it is easy to see that

1+ x1 · · · xn ≥ 21−n(1+ x1) · · · (1+ xn)
whenever x1, . . . , xn ∈ {0, 1}. This proves the first inequality.

We now turn to the second inequality. We write e(φ) = e2πiφ for φ ∈ R. Fix α ∈ C and set
β = 2α/(1+ |α|2). Then

|e(φ) − α|2 =
1+ |α|2

2

(
2− βe(−φ) − β̄e(φ)

)
.

So with F as above (note, though, that we do not need to assume that all roots have
absolute value ≤ 1), we have that

‖F‖ =
∫ 1
0

|F(e(φ), 1)|2 dφ

=

n∏
k=1

1+ |αk|
2

2

∫ 1
0

n∏
k=1

(
2− βke(−φ) − β̄ke(φ)

)
dφ

= 2−nR(F, j)

∫ 1
0

n∏
k=1

(
2− βke(−φ) − β̄ke(φ)

)
dφ

with βk = 2αk/(1+ |αk|
2). Note that each factor in the product is a real number in [0, 4]:

2− βke(−φ) − β̄ke(φ) = 2− 2Re(βke(−φ))

and |βk| ≤ 1. So we can apply the AGM inequality to the product. This gives

‖F‖ ≤ 2−nR(F, j)
∫ 1
0

(
2− βe(−φ) − β̄e(φ)

)n
dφ ,

where β =
∑n

k=1 βk/n is the arithmetic mean of the βk. Now one can check that βk is the
vertical projection to the unit disk of αk, viewed as a point on the Riemann sphere, which
forms the ideal boundary of the Poincaré ball model of H3. When z(F) = j, then the sum
of the points on the Riemann sphere corresponding to the αk vanishes by the geometric
characterization of z(F), so in this case, we have that β = 0, which implies ‖F‖ ≤ R(F, j).
In the general case, expanding the product and integrating gives∫ 1

0

(
2− βe(−φ) − β̄e(φ)

)n
dφ =

∞∑
`=0

2n−2`
(
n

2`

)(
2`

`

)
|β|2` ,

which shows that the maximum is attained when |β| is maximal, so for |β| = 1. It is clear
that the integral does not depend on the argument of β, so we can take β = −1. Then the
integrand simplifies to (

2+ e(φ) + e(−φ)
)n

=
(
e( 1
2
φ) + e(− 1

2
φ)
)2n
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and so the value of the integral is the constant term of (X + X−1)2n, which is
(
2n
n

)
. This

proves the second inequality in the general case. �

We note that both inequalities are sharp in the general case: the lower bound is attained
for F = xn − yn (which has z(F) = j), and the upper bound is attained for F = (x − y)n.
The upper bound in the case z(F) = j is sharp for n even, in the sense that

sup
F : z(F)=j

‖F‖
R(F, j)

= 1 ;

this is attained as F gets close to (xy)n/2. For odd n, we cannot balance the roots in this
way while they tend to zero or infinity, so the bound will not be sharp, but it will not be
too far off when n is large.

From now on, we assume that F is stable, i.e., F ∈ C[x, y] ′n; then z(F) and θ(F) are defined.

We want to relate ‖F‖ and θ(F). Proposition 4.1 tells us that

21−n ≤ ‖F‖
θ(F)

≤ 1

when z(F) = j, since then θ(F) = R(F, z(F)) = R(F, j). This leads us to expect that ‖F‖ can
be bounded in terms of θ(F) and the (hyperbolic) distance between z(F) and j: we have
that

‖F‖
θ(F)

=
‖F‖

R(F, z(F))
=
‖F‖
R(F, j)

· R(F, j)

R(F, z(F))
;

the first factor is bounded above and below by Proposition 4.1, and since R(F, z) attains its
minimum when z = z(F), the second factor should grow when z(F) moves away from j.

Let γ ∈ SL(2,C) be such that F0 = F · γ−1 satisfies z(F0) = j = γ · z(F). By the invariance
of R, we then have that

R(F, j)

R(F, z(F))
=

R(F0 · γ, j)
R(F0 · γ, z(F))

=
R(F0, γ · j)
R(F0, γ · z(F))

=
R(F0, γ · j)
R(F0, j)

.

If dist(z, z ′) denotes hyperbolic distance in H3, then, since distance is invariant under the
SL(2,C)-action, dist(z(F), j) = dist(γ · j, j). So it is enough to bound R(F0, z)/R(F0, j) in
terms of dist(z, j) when z(F0) = j.

Now for z = t+ uj, the distance to j is given by

(4.1) cosh dist(z, j) =
|t|2 + u2 + 1

2u
.

In particular, dist(eδj, j) = |δ|. We can assume that F0 =
∏n

k=1(x − αky). Let φk ∈ S2 be
the point on the Riemann sphere that corresponds to αk under stereographic projection
(in coordinates in R3 = C×R, φk =

(
2αk

|αk|2+1
, |αk|

2−1
|αk|2+1

)
; the first component is βk in the proof

of Proposition 4.1). The condition z(F0) = j then is equivalent to
∑

kφk = 0. We derive a
formula for the quotient R(F0, z)/R(F0, j).
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Lemma 4.2. Let 0 6= F0 ∈ C[x, y]n and z ∈ H3. We set δ = dist(z, j) and denote the unit
tangent vector at j in the direction of z by φ ∈ S2 (φ is arbitrary when z = j). Let φk ∈ S2 be
as in the preceding paragraph. Then

R(F0, z)

R(F0, j)
=

n∏
k=1

(cosh δ+ 〈φ,φk〉 sinh δ) ,

where 〈·, ·〉 denotes the standard inner product on R3 (recall that φ,φk ∈ S2 ⊂ R3).

Proof. Both sides do not change when we replace F0 and z by F0 ·γ and γ−1 · z, respectively,
for some γ ∈ SU(2). This allows us to assume that φ points upward; then z = eδj and
〈φ,φk〉 = (|αk|

2 − 1)/(|αk|
2 + 1). By definition of R and with z = eδj, we obtain that

R(F0, z)

R(F0, j)
=

n∏
k=1

|αk|
2e−δ + eδ

|αk|2 + 1

=

n∏
k=1

(
eδ + e−δ

2
+

|αk|
2 − 1

|αk|2 + 1
· e

δ − e−δ

2

)

=

n∏
k=1

(cosh δ+ 〈φ,φk〉 sinh δ) . �

We can use this to deduce bounds for the R-quotient. We will derive an upper bound assum-
ing that z(F0) = j. Regarding a lower bound, note that the factor (cosh δ + 〈φ,φk〉 sinh δ)
in the product above can be as small as e−δ when φk = −φ. So if lots of roots are in the di-
rection opposite to z, then the product can get quite small. To get a reasonable bound, we
assume that F0 is squarefree. Then the directions φk cannot get too close to one another,
and so at most one factor can get really small. This approach leads to the lower bound
below.

Proposition 4.3. Let F0 ∈ C[x, y] ′n be squarefree and such that z(F0) = j. There is a constant
ε(F0) > 0 such that for all z ∈ H3, we have that

ε(F0)(cosh δ)n−2 ≤ R(F0, z)
R(F0, j)

≤ (cosh δ)n ,

where δ = dist(z, j).

Proof. By Lemma 4.2,

R(F0, z)

R(F0, j)
=

n∏
k=1

(cosh δ+ 〈φ,φk〉 sinh δ) .

Since z(F0) = j, we have that
∑n

k=1φk = 0. Therefore, by the AGM inequality,
n∏
k=1

(cosh δ+ 〈φ,φk〉 sinh δ) ≤
(
cosh δ+

〈
φ,
1

n

n∑
k=1

φk
〉

sinh δ
)n

= (cosh δ)n .
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By assumption, the φk are pairwise distinct, which implies that

η = 1− max
k 6=k ′

√
〈φk, φk ′〉+ 1

2
> 0 .

Then for any φ ∈ S2, it follows that 〈φ,φk〉 > 1 − η for at most one k, say k0 (1 − η is the
cosine of half the angle between the closest two φk). Applying this to −φ, we see that for
all k 6= k0,

cosh δ+ 〈φ,φk〉 sinh δ ≥ cosh δ+ (η− 1) sinh δ = e−δ + η sinh δ ≥ η cosh δ .

For k0 we have that

cosh(δ) − 〈φ,φk0〉 sinh(δ) ≥ e−δ ≥ 1

2 cosh(δ)
.

This gives that
R(F0, z)

R(F0, j)
≥ η

n−1

2
(cosh δ)n−2 .

So the lower bound holds with ε(F0) = ηn−1/2. �

It is fairly clear that the value given for ε(F0) in the proof is unlikely to be optimal. Writing
ρ = tanh δ, the optimal value we can take is

(4.2) ε(F0) = inf
φ∈S2,0≤ρ<1

∏n
k=1(1+ 〈φ,φk〉ρ)

1− ρ2
.

When n = 3, the only way for φ1 + φ2 + φ3 to vanish is that the φk are the vertices of an
equilateral triangle. Without loss of generality, we can take them to be 1,ω,ω2 ∈ S1 =
S2∩ (C× {0}), whereω = e(1/3). If the projection of φ to the complex plane is λe(ϕ), with
0 ≤ λ ≤ 1, then the expression under the infimum works out as

1− 3
4
λ2ρ2 + 1

4
cos(6πϕ)λ3ρ3

1− ρ2
.

It is clear that, for fixed ρ, the expression will be minimal when cos(6πϕ) = −1 and λ = 1.
The expression then simplifies to

(1+ 1
2
ρ)2

1+ ρ
= 1+

ρ2

4(1+ ρ)
,

which is minimal for ρ = 0. This gives the following.

Lemma 4.4. If F0 ∈ C[x, y] ′3 satisfies z(F0) = j, then we can take ε(F0) = 1.

If we would use the value η2/2 from the proof of Proposition 4.3, then we would obtain
ε(F0) =

1
8

instead. In general, we can at least in principle compute (an approximation to)
the optimal ε(F0) by solving the optimization problem in (4.2). We remark here that when
working over R instead of C, we can restrict φ to run over the circle S2 ∩ (R × R) (inside
R3 = C × R). This simplifies the computation and can also result in a better bound. A
further improvement (which can also be used to extend the applicability of the resulting
algorithm from squarefree forms to stable forms) is based on the following result.
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Lemma 4.5. Let F0 ∈ C[x, y] ′n be stable with z(F0) = j. Then

εF0 : R≥0 −→ R≥1 , δ 7−→ min
z : dist(z,j)=δ

R(F0, z)

R(F0, j)

is a strictly monotonically increasing bijection.

Proof. We know that the unique minimum of R(F0, z) is attained when z = z(F0) = j. We
now fix φ in Lemma 4.2 and consider R(F0, z)/R(F0, j) as a function of δ. Note that

cosh δ+ 〈φ,φk〉 sinh δ =
1+ 〈φ,φk〉

2
eδ +

1− 〈φ,φk〉
2

e−δ

is a nonnegative linear combination of eδ and e−δ. This implies that R(F0, z)/R(F0, j), which
is the product of these expressions over all 1 ≤ k ≤ n, is a nonnegative linear combination
of terms emδ (with −n ≤ m ≤ n), which are all convex from below. For m 6= 0, they are
even strictly convex. The only possibility that results in a constant product is that half of
the φk equal φ and the other half equal −φ, but this would imply that F0 is not stable.
So the quotient, considered as a function of δ for fixed φ, is strictly convex from below
with minimum value 1 at δ = 0. In particular, δ 7→ R(F0, z)/R(F0, j) is strictly increasing as
δ grows from 0 to ∞. It follows that εF0 is strictly increasing as well; also εF0(0) = 1. It
remains to show that εF0(δ) tends to infinity with δ. Note that

cosh δ+ 〈φ,φk〉 sinh δ ≥ max
{1+ 〈φ,φk〉

2
eδ, e−δ

}
.

Since F0 is stable by assumption, the maximal multiplicity m of a root of F0 is strictly less
than n/2. Defining η similarly as in the proof of Proposition 4.3, but restricting to pairs
k, k ′ with φk 6= φk ′, we deduce that

R(F0, z)

R(F0, j)
≥ ηn−me(n−2m)δ ≥ ηn−meδ ,

which finishes the proof. �

Definition 4.6. Let F ∈ C[x, y]n be stable. Let F0 be a form in the SL(2,C)-orbit of F
satisfying z(F0) = j. Then we define εF(δ) = εF0(δ) with εF0 as in Lemma 4.5. If F is
squarefree, then we define ε(F) = ε(F0) with ε(F0) as in (4.2).

We remark that ε(F0 ·γ) = ε(F0) for γ ∈ SU(2) (such γ induce rotations of S2 and so do not
change the geometry of the situation), which implies that εF (or ε(F)) does not depend on
the choice of F0. When working over R, we take F0 in the SL(2,R)-orbit of F; the previous
remark then applies with SO(2) in place of SU(2).

We now combine the results obtained so far.

Theorem 4.7. Let F ∈ C[x, y]n be stable; we write δ = dist(z(F), j). Then

21−nεF(δ) ≤
‖F‖
θ(F)

≤ 2−n
(
2n

n

)
(cosh δ)n .

For γ ∈ SL(2,C) write γ−1 · z(F) = t+ uj. If

|t|2 + u2 + 1

2u
> cosh ε−1F

(
2n−1

‖F‖
θ(F)

)
,
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then ‖F · γ‖ > ‖F‖.

If F is squarefree, then we can replace the condition on γ by

|t|2 + u2 + 1

2u
> 2

(
2‖F‖

ε(F)θ(F)

)1/(n−2)
.

Proof. Recall that θ(F) = R(F, z(F)). Choose γ0 ∈ SL(2,C) such that γ0 · z(F) = j; then
F0 = F · γ−1

0 satisfies z(F0) = j and ε(F) = ε(F0). By the invariance of R,

‖F‖
θ(F)

=
‖F‖
R(F, j)

· R(F, j)

R(F, z(F))
=
‖F‖
R(F, j)

· R(F0, γ0 · j)
R(F0, j)

.

Combining the definition of εF with the bounds from Propositions 4.1 and 4.3 and using
that dist(γ0 · j, j) = δ, we get the bounds on ‖F‖/θ(F). For the second statement, we apply
the lower bound for F · γ in place of F. Since θ(F · γ) = θ(F) and εF·γ = εF, this results in

‖F · γ‖ ≥ 21−nεF
(
dist(γ−1 · z(F), j)

)
θ(F) .

By (4.1), cosh dist(γ−1 · z(F), j) = (|t|2 + u2 + 1)/(2u), so the stated condition is equivalent
to the right hand side being > ‖F‖.

For squarefree F, we use the estimate

εF(δ) ≥ ε(F)(cosh δ)n−2 ,

which implies that any γ satisfying the last condition also satisfies the previous one. �

The last part of the proof shows that using εF will in general result in better bounds than
using ε(F). On the other hand, inverting εF may be algorithmically more involved.

Note that for the second statement, we only need the lower bound, based on the lower
bound in Proposition 4.1, which is sharp for some F.

Now consider a squarefree (or stable) F ∈ R[x, y]n. Then Theorem 4.7 gives us a finite
subset of the SL(2,Z)-orbit of F that is guaranteed to contain the representative of minimal
size. We will turn this into an algorithm in the next section.

Remark 4.8. If we want to replace Q by a number field K with ring of integers OK, then
we would have to work with the (diagonal) action of SL(2,OK) on a product of upper half
planes and spaces (one upper half plane for each real embedding of K and one upper half
space for each pair of complex embeddings). For each embedding, we get a covariant point
of F ∈ K[x, y] ′n in the corresponding half plane or space. By taking products, we can extend
the definitions of ‖F‖ and θ(F) to this situation, and we should be able to prove a version
of Theorem 4.7 that applies to it. The major problem, however, will be the enumeration
of the points in the SL(2,OK)-orbit of z(F) (which is now the tuple of covariant points
associated to F) that have bounded distance from (j, j, . . . , j). To our knowledge, there are
no good general algorithms for this so far. In some special cases (like imaginary quadratic
fields of class number 1), an approach similar to that described in Section 5 should be
workable, however.
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Remark 4.9. With applications beyond binary forms in mind, we note that we can gener-
alize Theorem 4.7 to the following situation. Assume we consider some kind of objects Φ
associated to P1 and that we have a PGL(2)-equivariant way of associating to Φ a binary
form F (up to scaling). The object Φ will be given in terms of coordinates of points or
coefficients of binary forms, so there is actually an action of GL(2); we assume that the
map Φ 7→ F is in fact GL(2)-equivariant. Let s(Φ) denote some measure of the “size” or
“height” of Φ; we need the further assumption that there are constants C, k > 0 such that
‖F‖ ≤ Cs(Φ)k. Since the coefficients of F will usually be given as homogeneous polyno-
mials in the coordinates or coefficients describing our “model” of Φ, such a bound will be
easily established. Then, for Φ defined over C, we can deduce in the same way as in the
proof of Theorem 4.7 that when γ−1 · z(F) = t+ uj and

|t|2 + u2 + 1

2u
> cosh ε−1F

(
2n−1

Cs(Φ)k

θ(F)

)
,

we have that s(Φ · γ) > s(Φ). We will apply this to endomorphisms of P1 in Section 6.

Another application is when we want to use the maximum norm H∞(F) instead of ‖F‖ to
measure how large F is. We have that ‖F‖ ≤ (n+ 1)H∞(F)2, which leads to the condition

|t|2 + u2 + 1

2u
> cosh ε−1F

(
2n−1

(n+ 1)H∞(F)2

θ(F)

)
that guarantees that H∞(F · γ) > H∞(F).

5 The algorithm

The basic outline of an algorithm implementing Theorem 4.7 is clear. We assume that
F(x, y) ∈ R[x, y]n is stable (so in particular, n ≥ 3). In practice, we may have to assume
that F is squarefree, since some implementations require this to be able to compute z(F)
and θ(F).

Algorithm 5.1.

1. Compute z(F) and θ(F).
2. Determine γ0 ∈ SL(2,Z) such that γ−1

0 · z(F) ∈ F .
Replace z(F) by γ−1

0 · z(F) and F by F · γ0.
3. Compute an upper bound c for cosh ε−1F (2n−1‖F‖/θ(F)).
4. Let Γ be the set of all γ ∈ SL(2,Z) such that cosh dist(γ−1 · z(F), j) ≤ c.
5. Determine γ ∈ Γ with ‖F · γ‖ minimal and return γ0γ and F · γ.

It is explained in [SC03] how one can compute z(F) and θ(F); implementations are avail-
able in Magma [BCP97] and Sage [SJ05]. Let z(F) = t0+u0j (with t0 ∈ R, since F has real
coefficients). To compute c, we construct a suitable F0, for example, by first replacing F by
F1(x, y) = F(x+ t0y, y) and then setting F0(x, y) = F1(u

1/2
0 x, u

−1/2
0 y) (or F1(x, y/u0); scaling

does not affect εF0). From the roots of F0 we can deduce the collection of φk ∈ S2. Then
we can use Lemma 4.2 to evaluate εF0(δ) for a collection of values δ; the monotonicity
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of cosh ◦εF0 then gives us a suitable c. Alternatively, when F is squarefree, we can use (4.2)
to find a lower bound ε for ε(F) = ε(F0) and set

c = 2
( 2‖F‖
εθ(F)

)1/(n−2)
.

(If n = 3, we can simply set c = 4‖F‖/θ(F); see Lemma 4.4.) As already mentioned, using
εF will give better bounds and therefore lead to a smaller search space than using ε(F), but
inverting εF may require some additional work.

The least straight-forward step is step 4 above, which comes down to enumerating all
points in the SL(2,Z)-orbit of z(F) whose hyperbolic distance from j does not exceed
arcosh c. One possibility to deal with this is to think backwards: given a point z in the
orbit of z(F), where we assume that z(F) ∈ F , we get from z to z(F) by the usual “shift-
and-invert” procedure (add m ∈ Z to z so that |Re(z +m)| ≤ 1

2
; if |z +m| < 1, replace by

−1/(z +m) and repeat), where the shifts decrease the distance from j and the inversions
do not change it. So we get all points in the orbit with bounded distance from j by con-
structing a rooted tree with nodes labeled by z ∈ H and edges labeled by S (inversion), T
(shift by +1) or T−1 (shift by −1), as follows.

1. The root is z(F). It has three children: −1/z(F) (edge labeled S), z(F) + 1 (edge la-
beled T) and z(F) − 1 (edge labeled T−1).

2. Let z = t+ uj be a non-root node. Let ` be the label of the edge connecting the node to
its parent. If (t2 + u2 + 1)/(2u) > c, then remove this node. Otherwise:
a. If ` 6= S and (|t|− 1)2 + u2 ≥ 1, add a child −1/z (edge labeled S).
b. If ` 6= T , add a child z− 1 (edge labeled T−1).
c. If ` 6= T−1, add a child z+ 1 (edge labeled T).

The condition (|t| − 1)2 + u2 ≥ 1 is equivalent to |Re(−1/z)| ≤ 1
2
; this means that z can

have resulted from an inversion step in the shift-and-invert procedure. If z(F) is close to
± 1
2
+
√
3
2
j, then using the condition as stated can lead to cycling in the algorithm. To avoid

this, we can use any representative point r in the translate of F under γ, for example the
points in the orbit of 2j, to test the condition. We then store −1/r, r−1 or r+1 in addition
to −1/z, z− 1 or z+ 1 in the child node.

Since we can update the bound cwhen we have found a new temporary minimum of ‖F·γ‖,
the most efficient way to perform the tree search is to order the nodes by their distance
from j and always expand the node closest to j that has not yet been dealt with.

Of course, we also keep track of F·γ: a shift by±1 in z corresponds to substituting (x∓y, y)
for (x, y), and an inversion corresponds to substituting (y,−x) for (x, y).

Example 5.2. Consider the cubic form

F(x, y) = −2x3 + 2x2y+ 3xy2 + 127y3

with ‖F‖ = 16 146. This form is reduced in the sense of [SC03], since

z(F) ≈ 0.17501+ 3.99543j ∈ F .
13



FIGURE 1. The tree that is traversed during the computation of the represen-
tative of minimal size in Example 5.2, in the Poincaré disk model. The light
blue disk bounds the search region. The larger blue dot represents z(F) and
the larger green dot is where the minimum is attained. The red dots mark
the nodes that are expanded; the gray dots are nodes that are discarded.

We then need to find the γ ∈ SL(2,Z) with γ−1 · z(F) = t+ uj satisfying

t2 + u2 + 1

2u
≤ c = cosh ε−1F

(4‖F‖
θ(F)

)
≈ 28.0049 .

For comparison, if we use ε(F) = 1 instead, the initial bound we obtain is c ≈ 31.5022. We
use the tree search explained above. In the course of the search, the bound gets reduced
to ≈ 14.3415; there are then 88 points (marked red in Figure 1) in the SL(2,Z)-orbit of z(F)
that have to be considered. A representative of smallest size is obtained for γ = ( 1 40 1 ) with

‖F · γ‖ = ‖F(x+ 4y, y)‖ = ‖−2x3 − 22x2y− 77xy2 + 43y3‖ = 8 266 .
If instead we minimize the height, then the bound c is ≈ 111.891, which gets reduced
to ≈ 23.3403 during the search. There are 140 points in the search region, and a smallest
representative is

F(4x− 5y, x− y) = 43x3 − 52x2y− 47xy2 + 58y3 of height 58
14



(compared to H∞(F) = 127). The covariant point of this form is ≈ 1.12502+ 0.13060j; the
cosh of its distance to j is ≈ 8.73973.

6 Application to dynamical systems

A dynamical system on P1 is a non-constant endomorphism f : P1 → P1. As described in
Section 2, f can be specified by a model [F : G], where F and G are binary forms of the same
degree d and without common factors. If f is defined over Q, we can choose F,G ∈ Z[x, y]d
with coprime coefficients. We have a natural right action of SL(2,Z) on endomorphisms of
degree d by conjugation, which is given explicitly for γ = ( a bc d ) ∈ SL(2,Z) by

fγ = [Fγ : Gγ] ,

where

Fγ(x, y) = dF(ax+ by, cx+ dy) − bG(ax+ by, cx+ dy) and

Gγ(x, y) = −cF(ax+ by, cx+ dy) + aG(ax+ by, cx+ dy) .

This action can be extended to Mat(2,Z) ∩ GL(2,Q). Note that this amounts to using the
adjoint ( d −b

−c a ) in place of the inverse compared to the action by conjugation. Since scaling
both forms by a common factor does not change the endomorphism they represent, this
still induces the usual action of PGL(2,Q) on endomorphisms by conjugation.

To apply the reduction algorithm of binary forms to dynamical systems, we follow the
framework of Remark 4.9. We first associate to each dynamical system a binary form in
a covariant way. Let f : P1 → P1 be a dynamical system defined over Q. Choose a model
f = [F : G] with two homogeneous polynomials F and G with coprime integral coefficients.
We write the mth iterate of f as fm = [Fm : Gm]. Define

Φm(f) = yFm − xGm and Φ∗m(f) =
∏
k|m

(yFk − xGk)
µ(m/k) ,

where µ is the Möbius function. The zeros of the form Φm(f) are the points of period m
for f. The form Φ∗m(f) is called the dynatomic polynomial and its zeros, in most cases, are
the points of minimal period m for f. See [Sil07, Section 4.1] for properties of dynatomic
polynomials in dimension 1. It is easy to check that Φm(f

γ) = Φm(f) · γ and similarly
for Φ∗m.

We can bound the size of Φm(f) and Φ∗m(f) in terms of the height of f = [F : G].

Proposition 6.1. Given d ≥ 2 and m ≥ 1, there exist positive constants Cd,m, C∗d,m and
kd,m, k

∗
d,m such that for every morphism f : P1 → P1 of degree d ≥ 2 as above,

‖Φm(f)‖ ≤ Cd,mH(f)kd,m and ‖Φ∗m(f)‖ ≤ C∗d,mH(f)k
∗
d,m .

Proof. The coefficients of Φm(f) and Φ∗m(f) are homogeneous polynomials in the coeffi-
cients of f. Then the sum s(f) of the squares of the coefficients of Φm(f) or Φ∗m(f) is a
homogeneous polynomial of some degree kd,m or k∗d,m in the coefficients of f. The bound
on ‖Φ(∗)

m (f)‖ = s(f) is obtained by bounding the coefficients of f by H(f) and applying the
triangle inequality. �
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For given d and m, we can find suitable constants (at least in principle) by doing the
computation mentioned in the proof for a generic f. This gives

Cd,1 = C
∗
d,1 = 4d+ 2 , kd,1 = k

∗
d,1 = 2 ; C2,2 = 322 , k2,2 = 6 ;

C∗2,2 = 43 , k∗2,2 = 4 ; C∗2,3 = 106 459 , k∗2,3 = 12 ;

C3,2 = 18 044 , k3,2 = 8 ; C∗3,2 = 1604 , k∗3,2 = 6 .

For most endomorphisms, using m = 1 is sufficient to get a squarefree binary form of
degree at least 3, but for some maps we need to consider higher order periodic points.

Applying Remark 4.9 now results in the following.

Corollary 6.2. Let f = [F : G] : P1 → P1 be a morphism of degree d, given by two binary
forms F,G ∈ Z[x, y]d with coprime coefficients. Pick someΦ = Φm(f) orΦ∗m(f) such thatΦ is
stable (in particular, degΦ ≥ 3). Let C = Cd,m or C∗d,m and k = kd,m or k∗d,m be the constants
from Proposition 6.1, depending on the choice of Φ.

Let γ ∈ SL(2,Z) and write γ−1 · z(Φ) = t+ uj. If

t2 + u2 + 1

2u
> cosh ε−1Φ

(
2degΦ−1CH(f)

k

θ(Φ)

)
,

then H(fγ) > H(f).

This easily translates into an algorithm that produces a representative of smallest height in
a given SL(2,Z)-orbit. We just have to use the bound from Corollary 6.2 in place of c in the
algorithm of Section 5 and search for the minimal H(fγ) (reducing the bound whenever
possible). However, the problem remains of finding the representative of smallest height
over all SL(2,Z)-orbits of minimal models. Bruin and Molnar prove that for f defined
over Q, there are only finitely many SL(2,Z)-orbits of minimal models; see [BM12, Propo-
sition 6.5]. So to obtain a reduced model, we only have to apply the algorithm of this
paper to a representative from each SL(2,Z)-orbit of minimal models. We will discuss in
Section 7 how we can obtain such representatives.

The following example shows how to find the smallest height representative for an endo-
morphism of P1.

Example 6.3. Consider the endomorphism

f : P1 −→ P1

(x : y) 7−→ (50x2 + 795xy+ 2120y2 : 265x2 + 106y2) .

Since f has even degree and the given model is minimal, we need only consider its SL(2,Z)-
orbit; see Proposition 7.2.

The binary form defining its fixed points is

Φ1(f) = Φ(x, y) = 265x3 − 50x2y− 689xy2 − 2120y3 .

The bound for the cosh of the distance δ to j for finding the representative of smallest
height in the orbit of Φ is ≈ 14.2268. As soon as the optimum is found, this bound is
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reduced to ≈ 9.6546, which cuts down the number of points in the search space to 54. We
find that

Φ(x− y, y) = 265x3 − 845x2y+ 206xy2 − 1746

has both smallest height and smallest size in the SL(2,Z)-orbit of Φ. This corresponds to
the endomorphism

(x : y) 7−→ (−315x2 − 165xy− 1746y2 : −265x2 + 530xy− 371y2) .

of height 1746. However, this is not the representative of smallest height among the
SL(2,Z)-conjugates of f: running the algorithm with the modifications indicated above,
we get an initial bound of ≈ 35.5547 for cosh δ, which gets reduced to ≈ 19.7017. The
algorithm runs through 118 points γ−1 · z(Φ), showing that a representative of smallest
height is obtained for the conjugate

fγ = [480x2 + 1125xy− 1578y2 : −265x2 − 1060xy− 1166y2]

of height 1578 for γ = ( 1 20 1 ).

7 Orbits of minimal models

Questions about the structure of the set of minimal models of a dynamical system, in-
cluding how to calculate a minimal model, have been studied in two different contexts.
Bruin-Molnar [BM12], in addressing questions about integer points in orbits, consider the
problem over number fields. Rumely [Rum15] approaches the problem over a complete
algebraically closed nonarchimedean field and applies Berkovich space methods to solve
the problem. We will use input from both publications to devise an algorithm that finds
representatives of all GL(2,Z)-orbits of minimal models of a given endomorphism. Fur-
thermore, Rumely shows that the valuation of the resultant factors through a map from
the Berkovich projective line P1Berk to R and proves that for even degree maps, the minimal
valuation is achieved at a single point in P1Berk. However, this point does not necessarily
correspond to a model defined over Qp. We will use his results to show that also over Qp,
the minimal valuation of the resultant is obtained for a unique GL(2,Zp)-orbit of models;
see Proposition 7.2 below.

To determine a representative from each orbit, we recall the key points of the algorithm
of Bruin-Molnar and then adapt it to our purposes. Given a model [F : G] of an endomor-
phism f, where F,G ∈ Q[x, y]d, we can scale F and G by some λ ∈ Q×, which results in
the model [λF, λG] of the same f, and we can conjugate it by some element γ of GL(2,Q).
In section 6, we defined an action of γ ∈ GL(2,Q) on f that avoids introducing denomina-
tors. As in Bruin-Molnar, these two operations combine to act on [F : G] by (λ, γ = ( a bc d ))
resulting in

[λFγ : λGγ] =
[
λ
(
dF(ax+ by, cx+ dy) − bG(ax+ by, cx+ dy)

)
: λ
(
−cF(. . .) + aG(. . .)

)]
.

Acting by (λ−d−1, λI2) has no effect (here I2 denotes the 2 × 2 identity matrix), so we
can assume γ to have integral entries. Recall that we are interested in minimal models
of f, which are integral models with minimal absolute value of the resultant. According
to [BM12, Proposition 2.2], we have that

(7.1) Res(λFγ, λGγ) = λ2d det(γ)d
2+d Res(F,G) .
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Each prime can be considered separately, and [BM12, Proposition 6.3] shows that we
need only consider primes that divide the resultant of the given integral model. We can
therefore make the resultant smaller if, for a prime p dividing the resultant, we can find
γ ∈ Mat(2,Z) ∩ GL(2,Q) such that the gcd of the coefficients of Fγ and Gγ is α with
2vp(α) > (d+ 1)vp(det(γ)), where vp(·) is the (normalized) p-adic valuation.

Further, [BM12, Proposition 2.12] shows that it is sufficient to consider affine transforma-
tions. Let p be a prime dividing the resultant and consider the affine transformation and
scaling factor

γ =

(
pe2 β
0 1

)
and λ = p−e1 .

In this form, the condition for the power of p dividing the resultant to decrease then
becomes

(7.2) 2e1 > (d+ 1)e2 ,

where e1 is the minimal p-adic valuation of a coefficient of

Fγ = F(pe2x+ βy, y) − βG(pe2x+ βy, y) or Gγ = pe2G(pe2x+ βy, y) .

We now make use of Rumely’s results from [Rum15]. We write P1Berk for the Berkovich
projective line over Cp, the completion of the algebraic closure of Qp, and we denote
the “Berkovich upper half space” P1Berk \ P1(Cp) by HBerk. Fix an endomorphism f of P1
over Cp. Rumely shows that there is a continuous, piecewise affine with integral slopes
(with respect to the logarithmic distance on HBerk) and convex map ordResf : HBerk → R≥0
such that vp(Res(fγ)) = ordResf(γ · ζG) for all γ ∈ GL(2,Cp), where ζG ∈ P1Berk is the Gauss
point. Here, Res(fγ) denotes the resultant of a representative [F : G] of fγ that is scaled so
that F and G have p-adically integral coefficients with one of them a unit (i.e., we take the
maximal e1 in the notation above). The orbit of ζG under GL(2,Qp) consists of the set V of
vertices of a subtree T of HBerk whose edges have length 1 in the logarithmic metric; the
vertices have degree p+ 1.

The GL(2,Zp)-orbits of minimal models of f then correspond to the points in V in which
ordResf |V takes its minimal value. Note that it is possible that ordResf will take on a
smaller value at a point of T which is not a vertex, corresponding to a model defined over
an extension of Qp, see Example 7.3. The restriction of ordResf to T is still piecewise affine
and convex. This implies that a point in V is a minimizer of ordResf |V if (and only if) it
is a local minimum, in the sense that ordResf does not take a strictly smaller value in a
neighboring vertex. It also implies that at each vertex, there is at most one edge leading
to a vertex with strictly smaller value, and following these edges leads to a minimum. As
noted by Rumely, this can be used to simplify the Bruin-Molnar algorithm. We obtain the
following procedure for finding a p-adically minimal model.

We assume that a normalized model f = [F : G] is given, i.e., such that F,G ∈ Zp[x, y]d,
where at least one coefficient is a p-adic unit.

Algorithm 7.1.

1. Let T =
{(

1 0
0 p

)}
∪
{(

p a
0 1

)
: a ∈ Z, 0 ≤ a < p

}
. Set γ0 = ( 1 00 1 ).
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2. For γ ∈ T , compute fγ = [λFγ : λGγ], where λ is chosen so that the resulting model is
normalized.
If we come from step 3, then we leave out the one γ that would bring us back to the
GL(2,Zp)-orbit of the previously considered model.

3. If vp(Res(fγ)) < vp(Res(f)) for some γ, then replace f with fγ and γ0 with γ0γ.
If vp(Res(fγ)) ≥ d for d even or ≥ 2d for d odd, then go to step 2.

4. Otherwise, return f and γ0.

The set T contains representatives γ that map ζG to each of its p+ 1 neighbors in T . If we
have used γ = ( p a0 1 ) to reduce the valuation of the resultant, then we exclude

(
1 0
0 p

)
when

we carry out step 2 the next time; if we have used γ =
(
1 0
0 p

)
, then we exclude

(
p 0
0 1

)
. Note

that from (7.1), we can deduce that the difference of the values of ordResf in neighboring
vertices of T is divisible by d when d is even and by 2d when d is odd. So if the value for
the model we are considering is smaller than d or 2d, respectively, then the model must be
minimal.

This algorithm is essentially an enumerative approach similar to both the algorithm in
Rumely [Rum15] and Bruin-Molnar [BM12]. In the case of Rumely, there is additional
logic to limit the number of directions to consider and to compute how far to move in
each direction. In the case of Bruin-Molnar, a set of inequalities is solved to determine the
a to use in step 2. For reasonably small primes, this enumerative approach is sufficient.
For larger primes, a version of the Bruin-Molnar inequality solver can be used to speed up
steps 2 and 3.

If the degree d of f is even, then (7.1) shows that the change of ordResf along each edge
is a linear combination of d2 + d and 2d and so is ≡ d mod 2d, hence, is never zero.
Consequently, if we have found a minimizing vertex, then ordResf will strictly increase
along all edges emanating from it, which implies that this vertex is the unique minimizer.
Since this holds for each prime p, we obtain a proof of the following statement, which
answers Question 6.2 in [BM12] in the affirmative in the strongest possible sense. (The
argument is already in [Rum15, p. 280], if somewhat implicit.)

Proposition 7.2. Let f : P1 → P1 be defined over Q. If the degree of f is even, then f has a
single GL(2,Z)-orbit of minimal models.

It is possible that the minimal value of ordResf on HBerk is not attained on T ; see Exam-
ple 6.2 in [Rum15]. The following example shows that it is also possible that the minimum
is attained on T , but not on V.

Example 7.3. Looking more closely at Example 6.1 from Rumely [Rum15], we consider
the endomorphism

f : P1 −→ P1

(x : y) 7−→ [x2 − py2 : xy] ,

where p is a prime. In this case, the minimum value of ordResf over the algebraic closure
occurs between two vertices of T . Specifically, Res(f) = −p is minimal over GL(2,Qp),
but going to the ramified quadratic extension Qp(

√
p), for γ =

(√
p 0

0 1

)
we have, after

normalizing, Res(fγ) = −1. The next vertex of T that lies in this direction corresponds
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to conjugating by α =
(
p 0
0 1

)
and has Res(fα) = −p3. In particular, the function ordResf

has slope −d = −2 for half of the edge containing the minimum fα and 3d = 6 for the
remaining half, giving a net increase of d = 2 along the edge.

Rumely shows that when the degree d is odd, ordResf achieves its minimum value at a
unique point or along an interval in HBerk. If this set meets V, then the intersection is the
set of minimizers of ordResf |V , and this set is either one point or consists of the vertices in
a path in T . If the minimizing set meets T , but not V, then the intersection with T must be
contained in the interior of an edge of T . Otherwise, Proposition 3.5 of [Rum15] implies
that ordResf |T has a unique minimum, which is attained at an interior point of an edge.
In both of these last two cases, the set of minimizers of ordResf |V consists either of one or
both of the endpoints of this edge. (We can indeed have two minimizing vertices in this
case; this is what happens in Example 6.4 in [Rum15].) So in all cases, the subset of V
corresponding to GL(2,Zp)-orbits of p-minimal models of f is either one point or consists
of the vertices in a path. This path can have any length. This is demonstrated by the
following example, which extends Example 6.1 of [BM12].

Proposition 7.4. Let 0 6= c ∈ Z and n a positive integer. Define

f : P1 −→ P1

(x : y) 7−→ [x2n+1 − cn+1y2n+1 : xnyn+1].

Let c = ±
∏s

i=1 p
ei
i be the prime factorization of c. Then f has exactly

∏s
i=1(ei + 1) distinct

GL(2,Z)-orbits of minimal models, one for each positive divisor of c.

Proof. Write c = rs with r, s ∈ Z. Acting on the given model by (λ, γ) =
(
r−n−1, ( r 00 1 )

)
,

we obtain the minimal model [rnx2n+1 − sn+1y2n+1 : xnyn+1]. The models associated to
the factorizations c = rs and c = r ′s ′ are in the same GL(2,Z)-orbit if and only if the
corresponding matrices differ multiplicatively by a scalar multiple of a matrix in GL(2,Z),
which is the case if and only if r ′ = ±r. So we obtain a distinct GL(2,Z)-orbit of minimal
models for each positive divisor r of c.

To see that these models cover all GL(2,Z)-orbits, we consider an affine transformation
γ =

(
α β
0 δ

)
with α,β, δ ∈ Z coprime and α, δ > 0. Since we are interested in orbits un-

der GL(2,Z), we can assume that |β| < α. Denoting the polynomials in the given model by
F and G, we have that

Fγ = δ(αx+ βy)2n+1 − δ2n+2cn+1y2n+1 − β(αx+ βy)nδn+1yn+1

and
Gγ = α(αx+ βy)nδn+1yn+1 .

If this is to lead to a minimal model, det(γ)n+1 = αn+1δn+1 must divide all coefficients of
Fγ and Gγ. Considering the y2n+1 term in Gγ, we see that α must divide β, so that β = 0.
Then α and δ are coprime, and

Fγ = α2n+1δx2n+1 − δ2n+2cn+1y2n+1 ,

so δ divides α and α divides c. Since α and δ are coprime, this means that δ = 1 and α = r
with c = rs a factorization as above with r > 0. �
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Remark 7.5. Note that c = ±1 results in a map with a single orbit, so it is possible for odd
degree maps to have a single orbit of minimal models.

To get representatives of all GL(2,Zp)-orbits of minimal models of a given dynamical sys-
tem f = [F : G], we modify the algorithm in the following way. Traverse the vertices of
T until the minimal value of ordResf is attained. Then, find all vertices of T that attain
that minimum; these will all lie on a path in T , so can be determined one edge at a time.
Note that the first minimal model we find could correspond to a vertex in the interior of
this path, so we may have to search in two directions to find all vertices in the path. The
algorithm below returns a set of pairs (fγ, γ) with γ ∈ GL(2,Qp) such that the fγ represent
all GL(2,Zp)-conjugacy classes of minimal models of f.

Algorithm 7.6.

1. Let T =
{(

1 0
0 p

)}
∪
{(

p a
0 1

)
: a ∈ Z, 0 ≤ a < p

}
.

2. Use Algorithm 7.1 to find a minimal model f0 = fγ0 of f.
Set M← {(f0, γ0)} and f← f0.

3. Determine S = {γ ∈ T : vp(Res(fγ)) = vp(Res(f))}.
4. For each element γ ∈ S (there are at most two), call search(fγ, γ0γ, γ).
5. Return M.

search(f, γ0, γ):
a. Set M←M ∪ {(f, γ0)}.
b. Determine S = {γ ′ ∈ T : γγ ′ /∈ GL(2,Zp), vp(Res(fγ ′)) = vp(Res(f))}.
c. If S = {γ ′}, then set (f, γ0, γ)← (fγ

′
, γ0γ

′, γ ′); go to step a.
d. Otherwise, S = ∅. Return.

In the call to search, the last argument γ specifies the direction we come from. See the
discussion after Algorithm 7.1 for what the condition γγ ′ /∈ GL(2,Zp) amounts to in terms
of directions in Berkovich space.

To get representatives of all GL(2Z)-orbits of minimal models, we run the above algorithm
for each prime dividing the resultant of the given model, applying the returned γ0 to each
of the models obtained so far.

We finally note that any GL(2,Z)-orbit splits into at most two SL(2,Z)-orbits and that the
action of (1,

(
−1 0
0 1

)
) preserves the height of the model. It is therefore sufficient to look

at the SL(2,Z)-orbits of the representatives of the GL(2,Z)-orbits when we want to find a
reduced model.
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