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Abstract. This is the first in a series of papers in which we study
the n-Selmer group of an elliptic curve, with the aim of representing
its elements as genus one normal curves of degree n. The methods
we describe are practical in the case n = 3 for elliptic curves over
the rationals, and have been implemented in MAGMA .

Introduction

Descent on an elliptic curve E, defined over a number field K, is a
method for obtaining information about both the Mordell-Weil group
E(K) and the Tate-Shafarevich group X(E/K). Indeed for each in-
teger n ≥ 2 there is an exact sequence

0 → E(K)/nE(K) → Sel(n)(E/K) → X(E/K)[n] → 0

where Sel(n)(E/K) is the n-Selmer group.
This is the first in a series of papers in which we study the n-Selmer

group with the aim of representing its elements as genus one normal
curves C ⊂ Pn−1 (when n ≥ 3). Having this representation allows
searching for rational points on C (which in turn gives points in E(K),
since C may be seen as an n-covering of E) and is a first step towards
doing higher descents. A further application is to the study of explicit
counter-examples to the Hasse Principle.

In this introduction we discuss our approach to the problem and set
out the goals of our work. Following some historical remarks, we will
outline the contents of this first paper, and then briefly that of the
remaining papers in the series.

The method of descent, for explicitly determining the solutions of
Diophantine Equations, has a long and distinguished history going back
(at least) to Fermat. As a tool for the determination of the Mordell-
Weil groups of elliptic curves over number fields, descent has been used
since the very first applications of computing to number theory. Until
the 1990s, the only methods which had been implemented for general
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elliptic curves were based on 2-descent and could be applied only to
elliptic curves defined over Q, though of course individual examples
had been worked out over other fields. The advent of higher-level
computer algebra software and the development of efficient algorithms
for handling the arithmetic of more general number fields has meant
that 2-descent can now be carried out over general number fields (of
moderate degree and discriminant, for practical reasons). We may cite
both Simon’s gp program ell.gp (see [17]), and the MAGMA package
written primarily by Bruin, as examples of this which are widely used.

The situation regarding so-called higher descents, meaning n-descent
for n > 2, has until now been much more fragmentary and less satisfac-
tory. Some 3-descents (for twists of Fermat curves) and certain other
descents via isogeny have been studied systematically, but these ap-
ply only to special families and not to general elliptic curves (at least,
not without an extension of the ground field, which introduces further
complexities and complicates implementation significantly). Higher 2-
power descents (also known as second and third 2-descents) have been
studied and implemented by Siksek [9] and Womack [19] for 4-descent,
and by Stamminger [18] for 8-descent.

In the case of 2-descent, the map C → P1 is a double cover rather
than an embedding, and the elements of Sel(2)(E/K) are represented
as curves of the form Y 2 = g(X) where g is a quartic. Our goal is to be
equally explicit for all n > 2. The methods we present are fully worked
out for all odd prime n, and have been implemented in MAGMA [8] in
the case n = 3 for elliptic curves over Q. This implementation will be
included in MAGMA version 2.13, to be released later this year.

To avoid making assumptions about the Galois module structure of
E[n], we work with the étale algebra R of E[n]. This is a K-algebra
of dimension n2, explicitly realised as a product of number fields. The
starting point for our work is the paper of Schaefer and Stoll [14], which
improves on earlier methods in [5]. They show that if n is prime then
a certain group homomorphism

w1 : H1(K,E[n]) → R×/(R×)n

is injective, and determine its image. This is the basis of an algorithm
for computing Sel(n)(E/K) as a subgroup of R×/(R×)n. (In fact they
assume that n is odd, since the case n = 2 was already well known.)
The algorithm requires knowledge of the class group and unit group of
each constituent field of R.

In §3 we replace w1 by a group homomorphism

w2 : H1(K,E[n]) → (R⊗R)×/∂R×
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where ∂ : R× → (R ⊗ R)× is a certain map. We show that w2 is
injective for all n ≥ 2 and determine its image. If n is prime then it is
possible to convert the subgroup of R×/(R×)n computed by Schaefer
and Stoll to a subgroup of (R ⊗ R)×/∂R×. Since R ⊗ R is the étale
algebra of E[n] × E[n], it is again a product of number fields. In
principle one could compute the n-Selmer group directly as a subgroup
of (R⊗R)×/∂R×, but this would require knowledge of the class group
and unit group of each constituent field of R⊗R, and in general these
fields have larger degree than those appearing in R.

Our goal is now the following. We must convert elements of Sel(n)(E/K)

represented algebraically by ρ ∈ (R⊗R)×, to elements of Sel(n)(E/K)
represented geometrically by (equations for) genus one normal curves
C ⊂ Pn−1. We present three algorithms for performing this conversion,
the second and third of which apply for arbitrary n ≥ 2. In particular
we have no need to assume that n is prime. In the case n = 2 our third
algorithm reduces to the classical number field method for 2-descent.
Nevertheless we assume for ease of exposition that n ≥ 3.

We give a brief description of each algorithm.

The Hesse pencil method. We determine n × n matrices (with
entries in an extension of K) that represent the action of E[n] on
C ⊂ Pn−1. At least in the case n = 3 it is then practical to recover an
equation for C.

The flex algebra method. We embed E ⊂ Pn−1 via the complete
linear system |n.0| where 0 is the identity on E. We then determine
a change of co-ordinates (defined over an extension of K) that takes
E ⊂ Pn−1 to C ⊂ Pn−1. We use this change of co-ordinates to compute
equations for C.

The Segre embedding method. We determine equations for C as a
curve of degree n2 in the rank 1 locus of P(Matn). Thus C lies in the
image of the Segre embedding

Pn−1 × (Pn−1)∨ → P(Matn).

We pull back to Pn−1 × (Pn−1)∨ and then project onto the first factor
to get C ⊂ Pn−1.

It is important to realise that not every element of H1(K,E[n]) can
be represented by a genus one normal curve C ⊂ Pn−1. Those elements
of H1(K,E[n]) that can be represented in this way form the “kernel”
of the obstruction map

Ob : H1(K,E[n]) → Br(K)
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where Br(K) is the Brauer group of K. The reader is warned that
in general the obstruction map is not a group homomorphism, and its
kernel is not a group.

In fact each of our algorithms works over an arbitrary field K (as-
sumed perfect and with char(K) - n) provided we make the following
hypotheses:

• We start with an element ρ ∈ (R ⊗ R)× that represents an
element of H1(K,E[n]) with trivial obstruction.

• We have access to a “Black Box” that, given structure constants
for a K-algebra known to be isomorphic to Matn(K), finds such
an isomorphism explicitly.

Returning to the case K a number field, it follows by the commuta-
tivity of the diagram

H1(K,E[n])
Ob //

��

Br(K)

��∏
vH

1(Kv, E[n])
Q

v Obv //
∏

v Br(Kv)

and the injectivity of the right hand map, that an element ofH1(K,E[n])
has trivial obstruction if and only if it has trivial obstruction every-
where locally. We deduce that Sel(n)(E/K) is contained in the kernel
of the obstruction map. In our algorithms it then becomes necessary
to use an explicit version of the local-to-global principle for the Brauer
group. This role is played by the Black Box. An essentially equivalent
problem is that of finding a rational point on a Brauer-Severi variety
of dimension n − 1. In the case n = 2 this means finding a rational
point on a conic, a task which we recognise as one of the steps in the
classical number field method for 2-descent, cf. [2], §15.

We present our work in a series of papers, of which this is the first.
We briefly summarise the contents of each.

Paper I: Algebra. We work over a perfect field K with char(K) -
n. We give a list of interpretations of the Galois cohomology group
H1(K,E[n]), and explore the relationships between them. Then we go
through several different descriptions of the obstruction map and check
that they are all equivalent. In §3 we introduce the étale algebra R of
E[n] and define the maps w1 and w2. In §4 we explain how the element
ρ ∈ (R ⊗ R)× may be used to construct certain K-algebras. We end
by outlining each of our three algorithms, assuming in each case the
existence of a suitable Black Box.
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Paper II: Geometry. We give further details of the Segre embedding
method. We represent elements of H1(K,E[n]) by Brauer-Severi dia-
grams [C → S]. The obstruction in Br(K) is represented both by the
Brauer-Severi variety S (of dimension n−1) and by the obstruction al-
gebra A (a central simple algebra over K of dimension n2). We specify
certain embeddings

C → S × S∨ → P(A)

where S∨ is the dual of S. Then starting from ρ ∈ (R ⊗ R)× we ex-
plain how to write down both structure constants for A, and equations
for C as a curve in P(A). If the obstruction is trivial then there are
isomorphisms S ∼= Pn−1 and A ∼= Matn(K). We recover C ⊂ Pn−1 by
pulling back the image of C in P(Matn) to Pn−1 × (Pn−1)∨ and then
projecting onto the first factor.

Paper III: Algorithms. We work over a number field K and assume
that n is prime. We briefly recall how to compute Sel(n)(E/K) first as
a subgroup of R×/(R×)n and then as a subgroup of (R ⊗ R)×/∂R×.
Then we give further practical details of our algorithms for converting
ρ ∈ (R ⊗ R)× to C ⊂ Pn−1, concentrating on the Segre embedding
method in the case n = 3. We also describe the methods we use for
the Black Box, including one that is practical in the case K = Q and
n = 3. We illustrate our work with numerical examples.

1. Interpretations of H1(K,E[n])

Let E be an elliptic curve defined over a perfect field K. We write
GK = Gal(K/K), where K is the algebraic closure of K, and H i(K,−)
for the Galois cohomology group (or set) H i(GK ,−). Let n ≥ 2 be
an integer with char(K) - n. Taking Galois cohomology of the exact
sequence

0 −→ E[n] −→ E
n−→ E −→ 0

we obtain the Kummer exact sequence

. . .→ E(K) → H1(K,E[n]) → H1(K,E) → . . . .

We discuss how to represent elements of these groups. For the group
on the left this is straight forward: we fix a Weierstrass equation for E
and specify points in E(K) by writing down their co-ordinates.

To interpret the other two groups we call upon the general principle
that the twists of an object X (defined over K) are parametrised by
H1(K,Aut(X)) where Aut(X) is the automorphism group of X. More
precisely if Y is another object defined over K, and φ : Y → X is an
isomorphism defined over K, then associating to Y the cocycle ξσ =
σ(φ)φ−1, determines an injective map from the K-isomorphism classes



6 J.E. CREMONA, T.A. FISHER, C. O’NEIL, D. SIMON, AND M. STOLL

of twists to H1(K,Aut(X)). We claim that in each of our applications
this map is also surjective. Indeed if X is a quasi-projective K-variety,
then the surjectivity follows by Galois descent: see [15], Chap. V,
Cor. 2 to Prop. 12. In general X will be a quasi-projective K-variety
X0 equipped with certain “additional structure”. Thus Aut(X) ⊂
Aut(X0). To construct the twist of X by ξ ∈ H1(K,Aut(X)) we first
take the twist Y0 of X0 by ξ and then use the isomorphism φ : Y0 → X0

with σ(φ)φ−1 = ξσ to transfer the additional structure on X0 to Y0. A
routine calculation shows that the additional structure on Y0 is Galois
invariant, and so defined over K. We recall that if Aut(X) is abelian
then H1(K,Aut(X)) is an abelian group; otherwise, it is a pointed set
with the class of X as its distinguished element.

The prototype example is that of a torsor or principal homogeneous
space under E. In §1.4 we will also consider torsors under E[n].

Definition 1.1. (i) A torsor under E is a pair (C, µ) where C is a
smooth projective curve of genus one (defined over K) and µ : E×C →
C is a morphism (defined over K) that induces a simple transitive
action on K-points.
(ii) An isomorphism of torsors (C1, µ1) ∼= (C2, µ2) is an isomorphism of
curves C1

∼= C2 that respects the action of E.

The trivial torsor is (E,+) where + : E × E → E is the group law.

Lemma 1.2. Every torsor under E is a twist of (E,+).

Proof: More generally we note that if (C, µ) is a torsor under E and
P0 ∈ C(K) then (E,+) ∼= (C, µ) ; P 7→ µ(P, P0) is an isomorphism of
torsors defined over K(P0). 2

Lemma 1.3. Aut(E,+) ∼= E.

Proof: The automorphisms of E, as a torsor under itself, are the au-
tomorphisms of E, as a curve, that commute with all translation maps.
The only such automorphisms are the translation maps themselves. 2

By the twisting principle we obtain

Proposition 1.4. The torsors under E, viewed as twists of (E,+),
are parametrised up to isomorphism by H1(K,E).

With this geometric interpretation, the group H1(K,E) is called the
Weil-Châtelet group WC(E/K).

Remark 1.5. By a standard abuse of notation we refer to a torsor
as C rather than (C, µ). The only ambiguity in the choice of µ comes
from the automorphisms of E as an elliptic curve. If j(E) 6= 0, 1728



EXPLICIT n-DESCENT ON ELLIPTIC CURVES 7

these are just {±1}, so C will have at most two possible structures of
torsor under E. The two structures coincide when either one has order
dividing 2 in H1(K,E).

We have prepared the following list of interpretations of the group
H1(K,E[n]). Some are already well known, but others less so. The
elliptic curve E/K and integer n ≥ 2 remain fixed throughout.

base object twisted object
1. Torsor divisor class pairs (E, [n.0]) (C, [D])
2. n-coverings (E, [n]) (C, π)
3. Brauer-Severi diagrams [E → Pn−1] [C → S]
4. E[n]-torsors (E[n],+) (Φ, µ)
5. Comm. extns. of E[n] by Gm Gm × E[n] Λ
6. Theta groups ΘE Θ.

Each of these interpretations appears frequently in our work (except
for the fourth, which is required only for the flex algebra method). The
first three interpretations depend on the elliptic curve E in an essential
way: indeed E may be recovered as the Jacobian of C. The fourth and
fifth interpretations depend only on E[n] as a Galois module equipped
with the Weil paring. If n is odd then, by Lemma 3.11, the same is
true of the sixth interpretation. We now go through each of the six
interpretations in turn.

1.1. First interpretation: Torsor divisor class pairs.

Definition 1.6. (i) A torsor divisor class pair (C, [D]) is a torsor C
under E together with a K-rational divisor class [D] on C of degree n.
The rationality means that D is linearly equivalent, but not necessarily
equal, to all its Galois conjugates.
(ii) An isomorphism of torsor divisor class pairs (C1, [D1]) ∼= (C2, [D2])
is an isomorphism of torsors φ : C1

∼= C2 with φ∗D2 ∼ D1.

The trivial (or base) torsor divisor class pair is (E, [n.0]) where 0 is
the identity on E. We recall that two divisors on an elliptic curve are
linearly equivalent if and only if they have the same degree and the
same sum.

Lemma 1.7. Every torsor divisor class pair is a twist of (E, [n.0]).

Proof: Let (C, [D]) be a torsor divisor class pair. We choose an
isomorphism of torsors φ : C ∼= E defined over K. We then compose
with a translation so that φ∗(n.0) ∼ D. 2

Lemma 1.8. Aut(E, [n.0]) ∼= E[n].
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Proof: The automorphisms of E as a torsor under itself are the trans-
lation maps τP for P ∈ E. It suffices to note that τ ∗P (n.0) ∼ n.0 if and
only if P ∈ E[n]. 2

By the twisting principle we obtain

Proposition 1.9. The torsor divisor class pairs, viewed as twists of
(E, [n.0]), are parametrised up to isomorphism by H1(K,E[n]).

Remark 1.10. The maps in the Kummer exact sequence

E(K)
δ−→ H1(K,E[n])

ι−→ H1(K,E)

are given by δ(P ) = (E, [(n− 1).0 + P ]) and ι(C, [D]) = C.

1.2. Second Interpretation: n-coverings.

Definition 1.11. (i) A covering of E is a pair (C, π) where C is a
smooth projective curve and π : C → E is a non-constant morphism.
(ii) An isomorphism of coverings (C1, π1) ∼= (C2, π2) is an isomorphism
of curves φ : C1

∼= C2 with π1 = π2 ◦ φ.

We write [n] for the multiplication-by-n map on E. The trivial (or
base) n-covering of E is (E, [n]).

Definition 1.12. An n-covering (C, π) is a twist of (E, [n]).

Lemma 1.13. Aut(E, [n]) ∼= E[n].

Proof: Let φ : E → E be an automorphism of (E, [n]). Then we
have [n] = [n] ◦ φ and so [n] ◦ (φ − 1) = 0. We deduce that φ − 1 is
not surjective, and therefore constant. It follows that φ is translation
by an n-torsion point. 2

By the twisting principle we obtain

Proposition 1.14. The n-coverings of E are parametrised up to iso-
morphism by H1(K,E[n]).

Remark 1.15. Given (C, [D]) a torsor divisor class pair, the corre-
sponding n-covering is (C, π) where π : C → Pic0(C) ∼= E is the map
P 7→ [n.P −D]. Conversely, given an n-covering (C, π) there exists an
isomorphism φ : C → E defined over K making the diagram

C
π

��@
@@

@@
@@

φ

��
E

[n]
// E
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commute. We give C the structure of torsor under E via

(P,Q) 7→ φ−1(P + φ(Q)).

This definition is independent of the choice of φ. The corresponding
torsor divisor class pair is (C, [φ∗(n.0)]). The maps in the Kummer
exact sequence

E(K)
δ−→ H1(K,E[n])

ι−→ H1(K,E)

are given by δ(P ) = (E, τP ◦ [n]) and ι(C, π) = C.

1.3. Third interpretation: Brauer-Severi diagrams.

Definition 1.16. (i) A diagram [C → S] is a morphism from a torsor
C under E to a variety S.
(ii) An isomorphism of diagrams [C1 → S1] ∼= [C2 → S2] is an isomor-
phism of torsors φ : C1

∼= C2 together with an isomorphism of varieties
ψ : S1

∼= S2 making the diagram

C1
//

φ

��

S1

ψ

��
C2

// S2

commute.

The trivial (or base) diagram [E → Pn−1] is that determined by the
complete linear system |n.0|. We recall that a twist of projective space
is called a Brauer-Severi variety.

Definition 1.17. A Brauer-Severi diagram [C → S] is a twist of [E →
Pn−1]. In particular S is a Brauer-Severi variety.

Lemma 1.18. Aut[E → Pn−1] ∼= E[n].

Proof: An automorphism φ of E extends to an automorphism of Pn−1

if and only if φ∗(n.0) ∼ n.0. We are done by Lemma 1.8. 2

By the twisting principle we obtain

Proposition 1.19. The Brauer-Severi diagrams are parametrised up
to isomorphism by H1(K,E[n]).

Remark 1.20. Given a torsor divisor class pair (C, [D]) the complete
linear system |D| may be identified with the dual of a Brauer-Severi
variety S. There is then a natural morphism C → S. Conversely, given
a Brauer-Severi diagram [C → S] we have S ∼= Pn−1 over K. We pull
back the hyperplane section on Pn−1 to give a K-rational divisor class
[D] on C.
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If n ≥ 3 then the morphism C → Pn−1 determined by a complete
linear system of degree n is an embedding. The image is called a
genus one normal curve of degree n. In the case n = 3 we get a
smooth plane cubic. The homogeneous ideal of a genus one normal
curve of degree n ≥ 4 is generated by a vector space of quadrics of
dimension n(n− 3)/2. The term “elliptic normal curve” is standard in
the geometric literature, the word “normal” referring to the fact that
the homogeneous co-ordinate ring is integrally closed. We say “genus
one normal curve” since we do not wish to imply that our curves have
rational points.

1.4. Fourth interpretation: E[n]-torsors.

Definition 1.21. (i) An E[n]-torsor is a pair (Φ, µ) where Φ is a zero-
dimensional variety and µ : E[n]× Φ → Φ is a morphism that induces
a simple transitive action on K-points.
(ii) An isomorphism of E[n]-torsors (Φ1, µ1) ∼= (Φ2, µ2) is an isomor-
phism of varieties Φ1

∼= Φ2 that respects the action of E[n].

The trivial E[n]-torsor is (E[n],+) where + is the restriction of the
group law on E. In a manner entirely analogous to the proof of Propo-
sition 1.4 we obtain

Proposition 1.22. The E[n]-torsors, viewed as twists of (E[n],+),
are parametrised up to isomorphism by H1(K,E[n]).

Remark 1.23. (i) Given a torsor divisor class pair (C, [D]) the corre-
sponding E[n]-torsor is the set of “flex points”, i.e.

{P ∈ C : n.P ∼ D}.

(ii) An n-covering π : C → E determines an E[n]-torsor π−1(0).
(iii) The connecting map E(K) → H1(K,E[n]) sends P 7→ [n]−1(P ).

Remark 1.24. Generically, the splitting field of Φ has Galois group the
affine general linear group, AGL(2, n), which sits in an exact sequence

0 → (Z/nZ)2 → AGL(2, n) → GL(2, n) → 0.

In the case n = 2 this reduces to the exact sequence 0 → V4 → S4 →
S3 → 0, as studied in [3].

1.5. Fifth Interpretation: Commutative extensions of E[n] by
Gm. The following definition is common to our fifth and sixth inter-
pretations of H1(K,E[n]).
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Definition 1.25. (i) A central extension of E[n] by Gm is an exact
sequence of group varieties

0 −→ Gm
α−→ Λ

β−→ E[n] −→ 0

with Gm contained in the centre of Λ.
(ii) An isomorphism of central extensions Λ1

∼= Λ2 is an isomorphism
of group varieties φ : Λ1

∼= Λ2 making the diagram

0 // Gm
α1 // Λ1

β1 //

φ

��

E[n] // 0

0 // Gm
α2 // Λ2

β2 // E[n] // 0

commute.

We usually refer to Λ as a central extension, the maps α and β being
taken for granted. The trivial extension is Λ0 = Gm × E[n].

Lemma 1.26. Every commutative extension of E[n] by Gm is a twist
of Λ0.

Proof. Since K
×

is a divisible group every commutative extension of
E[n] by Gm splits over K. �

Lemma 1.27. Let Λ be any central extension of E[n] by Gm. Then
Aut(Λ) ∼= Hom(E[n],Gm) ∼= E[n].

Proof. The automorphisms of Λ take the form x 7→ α(π(β(x)))x for
π : E[n] → Gm a homomorphism. This gives the first isomorphism.
The second isomorphism comes from the Weil pairing. �

By the twisting principle we obtain

Proposition 1.28. The commutative extensions of E[n] by Gm, viewed
as twists of Λ0, are parametrised up to isomorphism by H1(K,E[n]).

This result may be interpreted as giving an isomorphism

H1(K,E[n]) ∼= Ext1
K(E[n],Gm)

cf. [10], Example 0.8.

1.6. Sixth Interpretation: Theta groups.

Definition 1.29. (i) A theta group is a central extension of E[n] by
Gm

0 −→ Gm
α−→ Θ

β−→ E[n] −→ 0



12 J.E. CREMONA, T.A. FISHER, C. O’NEIL, D. SIMON, AND M. STOLL

with commutator given by the Weil pairing, i.e.

xyx−1y−1 = α(en(βx, βy))

for all x, y ∈ Θ.
(ii) An isomorphism of theta groups is an isomorphism of central ex-
tensions (see Definition 1.25).

In §1.3 we considered the morphism E → Pn−1 determined by the
complete linear system |n.0|. The action of E[n] on E by translation
extends to an action on Pn−1 and so determines a map χE : E[n] →
PGLn. Writing ΘE for the inverse image of χE(E[n]) in GLn we obtain
a commutative diagram with exact rows:

(1) 0 // Gm
// ΘE

//

��

E[n] //

χE

��

0

0 // Gm
// GLn // PGLn // 0

It is clear that ΘE is a central extension of E[n] by Gm. To show it
is a theta group, we must show that it has commutator given by the
Weil pairing. In fact this may be used as the definition of the Weil
pairing (cf. Lemma 3.13). For the relationship with the definition
in Silverman [16], Chapter III, §8, we refer to Mumford [11], §§20,23.
There are issues of choice of sign here which we will ignore.

Lemma 1.30. Every theta group is a twist of ΘE.

Proof: More generally we show that any two central extensions of
E[n] by Gm, with the same commutator pairing, must necessarily be
isomorphic over K. Let Λ1 and Λ2 be two such extensions, and pick a

basis S, T for E[n]. Since K
×

is a divisible group we may lift S, T to
elements s1, t1 ∈ Λ1 and s2, t2 ∈ Λ2 each of order n. Then there is an
isomorphism Λ1

∼= Λ2, defined over K, uniquely determined by s1 7→ s2

and t1 7→ t2. 2

By Lemmas 1.27, 1.30 and the twisting principle we obtain

Proposition 1.31. The theta groups for E[n], viewed as twists of ΘE,
are parametrised up to isomorphism by H1(K,E[n]).

Let (C, [D]) be a torsor divisor class pair. We assume for simplicity
that D is a K-rational divisor. Then the complete linear system |D|
determines a morphism C → Pn−1. The action of E[n] on C extends
to an action on Pn−1 and so determines a map χC : E[n] → PGLn. We
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obtain a diagram analogous to (1):

(2) 0 // Gm
// Θ //

��

E[n] //

χC

��

0

0 // Gm
// GLn // PGLn // 0

We show that this construction of Θ from (C, [D]) is compatible with
our first and sixth interpretations of H1(K,E[n]). To do this, let
(C, [D]) be the twist of (E, [n.0]) by ξ ∈ H1(K,E[n]). Then there
is an isomorphism of Brauer-Severi diagrams defined over K,

C //

φ

��

Pn−1

ψ

��
E

|n.0|
// Pn−1

with σ(φ)φ−1 = τξσ . We lift ψ to a matrix B ∈ GLn so that conjugation
by B defines an isomorphism Ψ : Θ ∼= ΘE. It is evident that yσ =
σ(B)B−1 is an element of ΘE projecting onto ξσ. Therefore

σ(Ψ)Ψ−1 : ΘE → ΘE ; x 7→ yσxy
−1
σ = en(ξσ, x)x

and Θ is the twist of ΘE by ξ as was to be shown.
In fact there is a more direct way to construct Θ from (C, [D]). We

write τP : C → C ; Q 7→ µ(P,Q) for the action of P ∈ E on C.

Proposition 1.32. Let (C, [D]) be a torsor divisor class pair with D
a K-rational divisor. Then the corresponding theta group is

Θ = { (f, T ) ∈ K(C)× × E[n] | div(f) = τ ∗TD −D }

with group law

(3) (f1, T1) ∗ (f2, T2) = (τ ∗T2
(f1)f2, T1 + T2)

and structure maps α : λ 7→ (λ, 0) and β : (f, T ) 7→ T .

Proof: The complete linear system |D| determines a morphism

C → P(L(D)∗) ∼= Pn−1

where L(D) is the Riemann-Roch space

L(D) = {f ∈ K(C)× | div(f) +D ≥ 0} ∪ {0}.

Let ι : Θ → End(L(D)∗) be given by

ι(f, T )(x) = (h 7→ x(fτ ∗Th))
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for all x ∈ L(D)∗ and h ∈ L(D). It may be verified that the diagram

C //

τT

��

P(L(D)∗)

ι(f,T )
��

C // P(L(D)∗)

commutes. The group law on Θ is then that required to make ι a group
homomorphism. 2

2. The obstruction map

We continue to take E an elliptic curve over K and n ≥ 2 an integer.
We recall from §1.1 that H1(K,E[n]) parametrises the torsor divisor
class pairs (C, [D]). Here [D] is a K-rational divisor class on C.

For any smooth projective variety X over K there is an exact se-
quence of Galois modules

0 → K
× → K(X)× → Div(X) → Pic(X) → 0.

Splitting into short exact sequences and taking Galois cohomology we
obtain an exact sequence (see [7] for details)

(4) 0 → K× → K(X)× → Div(X)GK → Pic(X)GK
δX→ Br(K).

We define the obstruction map

Ob : H1(K,E[n]) → Br(K) ; (C, [D]) 7→ δC([D]).

From (4) we obtain the fundamental property of the obstruction map,
namely that D is linearly equivalent to a K-rational divisor if and only
if Ob(C, [D]) = 0. We also have

Lemma 2.1. Let (C, [D]) be a torsor divisor class pair. If C(K) 6= ∅
(equivalently C ∼= E over K) then Ob(C, [D]) = 0.

Proof. Let P ∈ C(K). By Riemann-Roch D − (n − 1)P is linearly
equivalent to a unique point Q ∈ C. The uniqueness statement proves
that Q is K-rational. So D ∼ (n−1)P+Q and the latter is K-rational.
It follows that Ob(C, [D]) = 0. Alternatively the lemma follows from
Remark 1.10. �

We give an alternative description of the obstruction map. The base
theta group ΘE was defined in §1.6.

Proposition 2.2. The obstruction map

Ob : H1(K,E[n]) → H2(K,Gm)
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is obtained as the connecting map of (non-abelian) Galois cohomology
for the exact sequence

0 → Gm → ΘE → E[n] → 0.

Proof. The proof is by means of a cocycle calculation. We start with
a torsor divisor class pair (C, [D]). Since [D] is a K-rational divisor
class, there exist rational functions hσ ∈ K(C)× with div(hσ) = σD−D
for all σ ∈ GK . By definition of the obstruction map, Ob(C, [D]) is
represented by the cocycle

(5) (σ, τ) 7→ σ(hτ )hσ
hστ

.

Let ξ ∈ H1(K,E[n]) describe (C, [D]) as a twist of (E, [n.0]). This
means there is an isomorphism of torsors φ : C ∼= E, defined over K,
with φ∗(n.0) = D and σ(φ)φ−1 = τξσ . We recall that ΘE is the theta
group determined by (E, [n.0]). By Proposition 1.32 we identify

ΘE = { (f, T ) ∈ K(E)× × E[n] | div(f) = τ ∗T (n.0)− n.0 }.

We lift ξσ ∈ E[n] to a pair (fσ, ξσ) ∈ ΘE. Then

div(φ∗fσ) = φ∗τ ∗ξσ(n.0)− φ∗(n.0)
= (σφ)∗(n.0)− φ∗(n.0)
= σD −D.

Taking hσ = φ∗fσ in (5) we obtain

Ob(ξ)(σ, τ) = σ(φ∗fτ ) φ
∗fσ (φ∗fστ )

−1

= τ ∗ξσ(σfτ ) fσ f
−1
στ

= (τ ∗ξσ(σfτ ) fσ, ξστ ) ∗ (fστ , ξστ )
−1

= σ(fτ , ξτ ) ∗ (fσ, ξσ) ∗ (fστ , ξστ )
−1

where ∗ is the group law (3). We recognise this final expression as the
connecting map of Galois cohomology. �

Remark 2.3. We may identify ker(Ob) = H1(K,ΘE).

It is well known that taking Galois cohomology of the exact sequence

0 → Gm → GLn → PGLn → 0

gives an injection

∆ : H1(K,PGLn) ↪→ Br(K)[n].

This leads to our third interpretation of the obstruction map.
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Lemma 2.4. Let [E → Pn−1] be the base Brauer-Severi diagram and
let χE : E[n] → PGLn describe the action of E[n] on E. Then the
obstruction map is

χE,∗ : H1(K,E[n]) → H1(K,PGLn).

Proof: (Taken from [13].) Taking Galois cohomology in (1) we obtain
a commutative diagram

H1(K,E[n]) //

χE,∗
��

H2(K,Gm)

H1(K,PGLn)
∆ // H2(K,Gm)

The lemma follows from the description of the obstruction map given
in Proposition 2.2. 2

Finally we interpret the obstruction map as a forgetful map.

Corollary 2.5. The obstruction map Ob : H1(K,E[n]) → Br(K)
sends [C → S] to S.

Proof: Let [C → S] be the twist of [E → Pn−1] by ξ ∈ H1(K,E[n]).
Then there is an isomorphism of Brauer-Severi diagrams defined overK

C //

φ

��

S

ψ
��

E // Pn−1

with σ(φ)φ−1 = τξσ . It follows that σ(ψ)ψ−1 = χE(ξσ) and so S is the
twist of Pn−1 by Ob(ξ) = χE,∗(ξ) ∈ H1(K,PGLn). 2

If [C → S] is a Brauer-Severi diagram with C(K) 6= ∅ then clearly
S(K) 6= ∅. So Corollary 2.5 gives an alternative proof of Lemma 2.1.

Remark 2.6. In general the obstruction map is not a group homo-
morphism. But, as shown in [13], it is quadratic in the sense that

(i) Ob(aξ) = a2 Ob(ξ) for a an integer, and
(ii) (ξ, η) 7→ Ob(ξ + η)−Ob(ξ)−Ob(η) is bilinear.

3. The étale algebra

Let R be the affine co-ordinate algebra of E[n]. It consists of all
Galois equivariant maps from E[n] to K. In symbols

R = MapK(E[n], K).
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For example, any rational function on E defined over K and not having
poles in E[n] will give an element of R. Since E[n] is an étale K-
scheme, R is an étale algebra: it is isomorphic to a product of (finite)
field extensions of K, one for each GK-orbit in E[n]. If T is a point
in one such orbit, then the corresponding field extension is K(T ). If
n is prime then typically we have R = K × L where L/K is a field
extension of degree n2 − 1.

We also work with the algebra

R = R⊗K K = Map(E[n], K).

Note that the action of σ ∈ GK is α 7→ (σ(α) : T 7→ σ(α(σ−1T ))). As
a K-vector space R has basis the δT for T ∈ E[n] where

δS(T ) =

{
1 if S = T,
0 otherwise.

In general, if RA and RB are the coordinate rings of two affine K-
schemes A and B, then RA ⊗K RB is the coordinate ring of A × B.
So R⊗K R is the algebra of Galois equivariant maps from E[n]×E[n]
into K, and R⊗K R = (R⊗K R)⊗KK is the algebra of all such maps.

The Weil pairing en : E[n]× E[n] → µn determines an injection

w : E[n] ↪→ R
×

= Map(E[n], K
×
)

via w(S)(T ) = en(S, T ). We observe that the w(T ), for T ∈ E[n], are

not only maps, but also homomorphisms E[n] → K
×
. By the non-

degeneracy of the Weil pairing, all such homomorphisms arise in this

way. So if we define ∂ : R
× → (R⊗K R)× via

(6) (∂α)(T1, T2) =
α(T1)α(T2)

α(T1 + T2)
,

then there is an exact sequence

(7) 0 −→ E[n]
w−→ R

× ∂−→ (R⊗R)×.

By a generalised version of Hilbert’s theorem 90 (which reduces by
Shapiro’s lemma to the usual version of Hilbert’s theorem 90 applied
to each constituent field of R) we have

H1(K,R
×
) = 0.

We use these observations to define group homomorphisms

w1 : H1(K,E[n]) → R×/(R×)n

and

w2 : H1(K,E[n]) → (R⊗R)×/∂R×.
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It is convenient to give both definitions at once. We start with ξ ∈
H1(K,E[n]) and use Hilbert’s theorem 90 to write w(ξσ) = σ(γ)/γ for

some γ ∈ R
×
. Then α = γn and ρ = ∂γ are Galois invariant and so

belong to R× and (R ⊗ R)× respectively. We define w1(ξ) = α(R×)n

and w2(ξ) = ρ ∂R×. If we change ξ by a coboundary, say σ(T ) − T ,
then γ is multiplied by w(T ). Since w(T )n = 1 and ∂(w(T )) = 1 this
leaves the values of α and ρ unchanged. The only remaining freedom is
to multiply γ by an element of R×. This has the effect of multiplying
α and ρ by elements of (R×)n and ∂R× respectively. It follows that w1

and w2 are well defined.
The map w1 is in fact the composite

H1(K,E[n])
w∗−→ H1(K,µn(R))

k−→ R×/(R×)n

where w∗ is induced by w, and k is the Kummer isomorphism.

Lemma 3.1. If n is prime then w1 is injective.

Proof: See [5], Proposition 7, or [14], Corollary 5.1. 2

In general w1 is not injective. For example, taking n = 4 and E/Q
the elliptic curve y2 = x3 + x + 2/13, it may be shown that w1 has
kernel of order 2.

Lemma 3.2. The map w2 is injective.

Proof: Let ξ belong to the kernel of w2. Then w(ξσ) = σ(γ)/γ for

some γ ∈ R
×
. Multiplying γ by an element of R× we may suppose

that ∂γ = 1. Then (7) gives γ = w(T ) for some T ∈ E[n]. Since w is
injective it follows that ξσ = σ(T )− T . Hence ξ is a coboundary. 2

In §1.5 we showed that H1(K,E[n]) parametrises the commutative
extensions of E[n] by Gm. This point of view will help us determine
the image of w2. By Hilbert’s theorem 90 every central extension

0 → Gm → Λ → E[n] → 0

has a Galois equivariant section φ : E[n] → Λ. In general φ is not a
group homomorphism. The possible choices of φ differ by elements of

MapK(E[n], K
×
) = R×.

We define the first and second invariants of Λ. The first invariant is
inv1(Λ) = α(R×)n where α ∈ R× satisfies

(8) φ(T )n = α(T )

for all T ∈ E[n]. The second invariant is inv2(Λ) = ρ ∂R× where
ρ ∈ (R⊗R)× satisfies

(9) φ(T1)φ(T2) = ρ(T1, T2)φ(T1 + T2).
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for all T1, T2 ∈ E[n]. Notice that inv1(Λ) and inv2(Λ) depend only on
Λ and not on the choice of section φ.

Lemma 3.3. Let Λ be the twist of Λ0 by ξ ∈ H1(K,E[n]). Then
inv1(Λ) = w1(ξ) and inv2(Λ) = w2(ξ).

Proof: By hypothesis there is a commutative diagram

0 // Gm
// Λ //

ψ

��

E[n] // 0

0 // Gm
// Λ0

// E[n] // 0

with σ(ψ)ψ−1 : x 7→ en(ξσ, x)x. We use Hilbert’s theorem 90 to write

w(ξσ) = σ(γ)/γ for some γ ∈ R
×
. Let φ0 : E[n] → Λ0 be the natural

section for Λ0. A calculation reveals that

φ : E[n] → Λ ; T 7→ γ(T )ψ−1(φ0(T ))

is a Galois equivariant section for Λ. So by (8) and (9) we have α = γn

and ρ = ∂γ as required. 2

Remark 3.4. It is clear that a central extension of E[n] by Gm is
uniquely determined up to isomorphism by its second invariant. Thus
Lemma 3.3 gives an alternative proof of Lemma 3.2.

We extend (7) to a complex

0 −→ E[n]
w−→ R

× ∂−→ (R⊗R)×
∂−→ (R⊗R⊗R)×

where the second ∂ is given by

(∂ρ)(T1, T2, T3) =
ρ(T1, T2)ρ(T1 + T2, T3)

ρ(T1, T2 + T3)ρ(T2, T3)
.

For each ρ ∈ (R⊗R)× we write ρop for the element obtained by switch-
ing the operands, i.e. ρop(T1, T2) = ρ(T2, T1).

Lemma 3.5. The image of w2 is

H = { ρ ∈ (R⊗R)× | ρ = ρop and ∂ρ = 1}/∂R×.

Proof: The conditions ρ = ρop and ∂ρ = 1 express the fact that Λ is
commutative and associative. Conversely, if ρ ∂R× ∈ H then we define
a new multiplication on Gm × E[n] via

(λ1, T1) ∗ (λ2, T2) = (λ1λ2ρ(T1, T2), T1 + T2).

This gives the required commutative extension of E[n] by Gm. 2

Corollary 3.6. If ρ ∂R× ∈ H then ρ = ∂γ for some γ ∈ R×
.
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Proof: This is the case K = K of the last lemma. 2

Remark 3.7. Lemma 3.5 may equally be deduced from Corollary 3.6
by taking Galois cohomology of the short exact sequence

0 −→ E[n]
w−→ R

× ∂−→ ker(∂| Sym2(R)×) −→ 0

where Sym2(R) = {ρ ∈ R⊗R | ρ = ρop}.

In applications we takeK a number field and n a prime. As explained
in the introduction, we compute Sel(n)(E/K) first as a subgroup of
R×/(R×)n and then convert it to a subgroup of H ⊂ (R ⊗ R)×/∂R×.
To make this conversion, we let κ be the map making the diagram

H1(K,E[n])

w2

��

w1

''OOOOOOOOOOOO

H
κ // R×/(R×)n

commute. If ρ∂R× ∈ H then by Corollary 3.6 we have ρ = ∂γ for

some γ ∈ R×
. Tracing through the definitions we find that κ(ρ∂R×) =

α(R×)n where α = γn ∈ R×.

Lemma 3.8. Let α(R×)n belong to the image of w1. Then there exists
ρ ∈ Sym2(R)× with (i) ∂α = ρn, (ii) α(T ) =

∏n−1
i=0 ρ(T, iT ) for all

T ∈ E[n], and (iii) ∂ρ = 1. Moreover if ρ ∈ Sym2(R)× satisfies (ii)
and (iii) then κ(ρ ∂R×) = α(R×)n.

Proof: Since w1 = κ ◦ w2 there exists ρ ∂R× ∈ H with κ(ρ ∂R×) =

α(R×)n. Corollary 3.6 gives ρ = ∂γ for some γ ∈ R
×
. Multiplying γ

by a suitable element of R× we may suppose that γn = α. Conditions
(i), (ii) and (iii) follow at once.

Conversely if ρ ∈ Sym2(R)× satisfies (ii) and (iii) then ρ ∂R× ∈ H

and so ρ = ∂γ for some γ ∈ R×
. By (ii) we deduce α = γn. 2

Remark 3.9. If Sym2(R) contains no non-trivial nth roots of unity,
then we construct ρ from α by taking the unique nth root of ∂α. There
is no need to check conditions (ii) and (iii).

We have identifiedH1(K,E[n]) with a subgroupH ⊂ (R⊗R)×/∂R×.
We did this using commutative extensions of E[n] by Gm. But we may
equally work with theta groups (cf. §1.6).

Lemma 3.10. Let Θ be the twist of ΘE by ξ ∈ H1(K,E[n]). Then
inv1(Θ) = w1(ξ) inv1(ΘE) and inv2(Θ) = w2(ξ) inv2(ΘE).
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Proof: The proof is similar to that of Lemma 3.3. 2

Let ε ∈ (R ⊗ R)× with inv2(ΘE) = ε ∂R×. Then the theta groups
for E[n], or rather their second invariants, make up the coset

εH = {ρ ∈ (R⊗R)× | ρ(ρop)−1 = e and ∂ρ = 1}/∂R×

where e ∈ µn(R ⊗ R) is the Weil pairing. We discuss several ways of
computing ε. Our first method uses the definition of ΘE as a subgroup
of GLn. Recall that we mapped E → Pn−1 via |n.0|. Let M be a
matrix in

GLn(R) = MapK(E[n],GLn(K))

that describes the action of E[n] on Pn−1. Then ΘE has Galois equi-
variant section T 7→MT and so ε ∈ (R⊗R)× is determined by

MT1MT2 = ε(T1, T2)MT1+T2 .

Our second method uses the description of ΘE obtained by taking
(C, [D]) = (E, [n.0]) in Proposition 1.32. Let F be a rational function
in

R(E)× = MapK(E[n], K(E)×)

with div(FT ) = n.T − n.0. Then ΘE has Galois-equivariant section
T 7→ (FT ,−T )−1. Using the group law (3) we obtain

ε(T1, T2) =
FT1+T2(P )

FT1(P )FT2(P − T1)

where the righthand side is constant as a function of P ∈ E.

If n is odd then we are spared the above calculations.

Lemma 3.11. If n is odd, say n = 2m − 1, then inv1(ΘE) is trivial
and inv2(ΘE) = em∂R×. In particular ΘE depends on E[n] and the
Weil pairing, but not on E.

Proof: As before we map E → Pn−1 via |n.0|. The action of E[n] on
E determines χE : E[n] → PGLn. Likewise the negation map [−1] on
E determines an element ι ∈ PGLn. We claim that for each torsion
point T ∈ E[n] there is a unique lift MT of χ(T ) to GLn such that (i)
ιMT ι

−1 = M−1
T and (ii) Mn

T = I. Indeed the first condition determines
MT up to sign, and implies Mn

T = ±I. Then, since n is odd, the second
condition determines a unique choice of this sign.

The uniqueness statement tells us that the map φ : T 7→MT is Galois
equivariant. A short calculation (using (i), (ii) and the commutator
condition) reveals that MSMT = en(S, T )mMS+T for all S, T ∈ E[n].
Substituting in (8) and (9) we get α = 1 and ρ = em as required. 2
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If n is odd then the restriction of w1 to the kernel of the obstruction
map has the following alternative interpretation.

Corollary 3.12. Assume n is odd. Let [C → Pn−1] be the Brauer-
Severi diagram determined by ξ ∈ H1(K,E[n]) and let M ∈ GLn(R)
describe the action of E[n] on C. Then w1(ξ) = (detM)(R×)n.

Proof: Let Θ be the theta group determined by [C → Pn−1]. Then
Θ is the twist of ΘE by ξ ∈ H1(K,E[n]). By Lemmas 3.10 and 3.11
we have inv1(Θ) = w1(ξ). Therefore w1(ξ) = α(R×)n where α ∈ R× is
determined by Mn = αIn. The next lemma shows that if T ∈ E[n] has
order r then MT has characteristic polynomial of the form (Xr− c)n/r.
We deduce that det(M) = α as required. 2

In the following lemma we assume that K is algebraically closed, and
fix ζn ∈ K a primitive nth root of unity.

Lemma 3.13. Let C ⊂ Pn−1 be a genus one normal curve with Jaco-
bian E. Let T1, T2 be a basis for E[n] with en(T1, T2) = ζn. Then we
can choose co-ordinates on Pn−1 so that T1, T2 act on C via

M1 =


1 0 0 · · · 0
0 ζn 0 · · · 0
0 0 ζ2

n · · · 0
...

...
...

...
0 0 0 · · · ζn−1

n

 , M2 =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 .

Proof: This is quite standard. See for example [12]. 2

4. From extensions to enveloping algebras

4.1. Enveloping algebras. We consider K-algebras A that are finite
dimensional over K. The unit group of A = A ⊗K K may be viewed
as (the K-rational points of) a K-group variety. For instance, if A is
the matrix algebra Matn(K) then this construction yields GLn.

Definition 4.1. Let Λ be a central extension of E[n] by Gm. Let A be
a K-algebra with [A : K] = n2. An embedding of Λ in A is a morphism

of K-group varieties ι : Λ → A
×

such that

(i) ι preserves scalars, i.e. ι(λ) = λ for all λ ∈ K×
,

(ii) the image of ι spans A as a K-vector space.

Lemma 4.2. Every central extension of E[n] by Gm embeds in a K-
algebra.
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Proof: Let φ : E[n] → Λ be a Galois equivariant section for Λ. As
in §3 we write R for the étale algebra of E[n] and recall that R is a
K-vector space with basis the δT for T ∈ E[n]. We define a Galois
equivariant inclusion of Λ in R via

λφ(T ) 7→ λδT

for all λ ∈ K
×

and T ∈ E[n]. The group law on Λ extends uniquely
to a new K-algebra multiplication on R, which in turn descends to a
K-algebra multiplication

∗ : R×R→ R.

Thus Λ embeds in the K-algebra A = (R,+, ∗). 2

Lemma 4.3. Let Λ1 and Λ2 be central extensions of E[n] by Gm em-
bedding in K-algebras A1 and A2. Then every isomorphism of central
extensions ψ : Λ1

∼= Λ2 extends uniquely to an isomorphism of K-
algebras Ψ : A1

∼= A2.

Proof: We construct Ψ from ψ by extending linearly to an isomor-
phism of K-algebras, and then restricting to K-algebras. Condition
(ii) of Definition 4.1 ensures that Ψ is unique. 2

Definition 4.4. Let Λ be a central extension of E[n] by Gm. If Λ
embeds in a K-algebra A then A is the enveloping algebra of Λ.

We have shown that enveloping algebras exist and are unique up to
isomorphism. Next we outline a method for computing them. The
addition law

E[n]× E[n] → E[n]

gives rise to the comultiplication

∆ : R→ R⊗R

with ∆(α)(T1, T2) = α(T1 +T2). Viewing R⊗R as an R-algebra via ∆
there is a trace map

Tr : R⊗R→ R.

In terms of functions it is given by

(10) Tr(ρ)(T ) =
∑

T1+T2=T

ρ(T1, T2).

It may also be built out of the trace maps for the constituent fields of
R⊗R and R.
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Lemma 4.5. Let Λ be a central extension of E[n] by Gm. If inv2(Λ) =
ρ ∂R× then Λ has enveloping algebra (R,+, ∗ρ) where

z1 ∗ρ z2 = Tr(ρ.z1 ⊗ z2).

Proof: By hypothesis there exists T 7→ φ(T ) a Galois equivariant
section for Λ → E[n] with

φ(T1)φ(T2) = ρ(T1, T2)φ(T1 + T2).

Following the proof of Lemma 4.2 we obtain

δS ∗ρ δT = ρ(S, T )δS+T .

We write this multiplication in a form that descends to K:

z1 ∗ρ z2 = (
∑

T z1(T )δT ) ∗ρ (
∑

T z2(T )δT )
=

∑
T (

∑
T1+T2=T ρ(T1, T2)z1(T1)z2(T2))δT

= Tr(ρ.z1 ⊗ z2).

2

Lemma 4.3 tells us that if Λ1 and Λ2 are isomorphic (as central
extensions) then A1 and A2 are isomorphic (as K-algebras). More
concretely we have

Lemma 4.6. Let A1 = (R,+, ∗ρ1) and A2 = (R,+, ∗ρ2) be the envelop-
ing algebras determined by ρ1, ρ2 ∈ (R ⊗ R)× with ∂ρ1 = ∂ρ2 = 1. If
ρ1 = ρ2∂γ for some γ ∈ R× then there is an isomorphism of K-algebras

A1
∼= A2 ; z 7→ γ.z

where the multiplication is that in R.

Proof: We compute

γ.(z1 ∗ρ1 z2) = (T 7→ γ(T )
∑

T1+T2=T ρ1(T1, T2)z1(T1)z2(T2))
= (T 7→

∑
T1+T2=T ρ2(T1, T2)γ(T1)z1(T1)γ(T2)z2(T2))

= (γ.z1) ∗ρ2 (γ.z2)

2

4.2. The flex algebra. Let Φ be an E[n]-torsor and let F be the étale
algebra of Φ, i.e.

F = MapK(Φ, K).

Since E[n] acts on Φ it also acts on F
×

= Map(Φ, K
×
). The “eigen-

vectors” for this action form a group

Λ =

z ∈ F×
∣∣∣∣∣ there exists T ∈ E[n] such that

z(S + P ) = en(S, T )z(P )
for all S ∈ E[n] and P ∈ Φ

 .
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Thus we obtain a commutative extension

0 −→ Gm
α−→ Λ

β−→ E[n] −→ 0

where in the above notation β(z) = T . We show that this construction
of Λ from F is compatible with our fourth and fifth interpretations of
H1(K,E[n]). To do this let Φ be the twist of E[n] by ξ ∈ H1(K,E[n]).
This means there is an isomorphism of E[n]-torsors ψ : Φ → E[n],
defined over K, with σ(ψ)ψ−1 = τξσ . We define

ψ∗ : F = Map(Φ, K) → Map(E[n], K) = R

via ψ∗(z)(P ) = z(ψ−1(P )). Then ψ∗ restricts to an isomorphism of
central extensions γ : Λ ∼= Λ0 where

Λ0 = Gm × E[n] = {λw(T ) ∈ R× | λ ∈ K×
, T ∈ E[n] }.

We find

σ(γ)γ−1 : Λ0 → Λ0 ; x 7→ en(ξσ, x)x.

So Λ is the twist of Λ0 by ξ as was to be shown. We summarise the
above discussion in

Proposition 4.7. The enveloping algebra of a commutative extension
of E[n] by Gm is the étale algebra of the corresponding E[n]-torsor.

If ξ ∈ H1(K,E[n]) with w2(ξ) = ρ∂R× then by Lemmas 3.3 and 4.5
the flex algebra is (R,+, ∗ρ). Taking ρ = 1 should give the étale algebra
of E[n]. We recognise (R,+, ∗1) as the group algebra of E[n]. It is
isomorphic to R via the Fourier transform α 7→ α̂ where

α̂(S) =
1

n2

∑
T

en(S, T )α(T ).

4.3. The obstruction algebra.

Lemma 4.8. The base theta group ΘE embeds in Matn(K). In partic-
ular ΘE spans Matn(K) as a K-vector space.

Proof: We recall that ΘE was defined in §1.6 as a subgroup of GLn.
Let T 7→MT be a section for ΘE → E[n]. By Definition 1.29 we have

MSMTM
−1
S M−1

T = en(S, T )

for all S, T ∈ E[n]. From the non-degeneracy of the Weil pairing it fol-
lows that the MT are linearly independent over K. A dimension count
shows that they span Matn(K). This proves the second statement of
the lemma. The first now follows by Definition 4.1. 2
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Lemma 4.9. If Θ is a theta group for E[n] with enveloping algebra A
then A is a central simple K-algebra with [A : K] = n2. In particular
Θ spans A as a K-vector space.

Proof: We saw in Lemma 1.30 that Θ is a twist of ΘE. It follows by
Lemma 4.3 that A is a twist of Matn(K). 2

We use Definition 4.1 and Lemma 4.9 to build a commutative dia-
gram with exact rows

(11) 0 // Gm
// Θ //

��

E[n] //

��

0

0 // Gm
//
A
× // Aut(A) // 0.

The second row is exact by the Noether-Skolem theorem. The right-
hand vertical arrow is the composite of E[n] = Aut(Θ), cf. Lemma 1.27,
and Aut(Θ) → Aut(A), cf. Lemma 4.3. We recognise (1) and (2) as
special cases of this new diagram.

Proposition 4.10. If Θ is a theta group for E[n] with enveloping
algebra A then the obstruction map sends the class of Θ in H1(K,E[n])
to the class of A in Br(K).

Proof. Let ΘE be the base theta group, i.e. the theta group associated
to (E, [n.0]). Let χE : E[n] → PGLn be the right-hand vertical arrow
in (1). According to Proposition 2.4 the obstruction map is

χE,∗ : H1(K,E[n]) → H1(K,PGLn).

Now let Θ be the twist of ΘE by ξ ∈ H1(K,E[n]). This means there
is an isomorphism of theta groups γ : Θ ∼= ΘE, defined over K, with

σ(γ)γ−1 : x 7→ en(ξσ, x)x

for all x ∈ ΘE. It follows from the commutator condition that σ(γ)γ−1

is conjugation by any lift of ξσ to ΘE. Then Lemma 4.3 tells us that
γ extends to an isomorphism Γ : A ∼= Mat(n,K). So σ(Γ)Γ−1 is
conjugation by any lift of χE(ξσ) to GLn(K). It follows that χE,∗(ξ)
represents the class of A in H1(K,PGLn). �

The following variant on the above terminology is often helpful.

Definition 4.11. Let Θ be a theta group for E[n]. As a special case
of Definition 4.1 we define a representation of Θ to be an embedding
of Θ in the matrix algebra Matn(K). In other words, a representation
is a morphism of group varieties Θ → GLn that preserves scalars. We
recognise diagrams (1) and (2) as representations of theta groups.
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5. Recovering explicit equations

Given ρ ∈ (R⊗R)× representing an element ρ ∂R× ∈ H ∼= H1(K,E[n])
with trivial obstruction, we aim to find equations for the corresponding
Brauer-Severi diagram [C → Pn−1]. We present three algorithms for
performing this conversion, assuming in each case the existence of a
“Black Box” to trivialise the obstruction algebra. We assume for ease
of exposition that n ≥ 3.

We fix a basis r1, . . . , rn2 for R as a K-vector space. Let r∗1, . . . , r
∗
n2

be the dual basis with respect to the trace form

(r, s) 7→ trR/K(rs) =
∑

T∈E[n] r(T )s(T ).

A useful technique, used in several proofs, is reduction to the “geomet-
ric case”. By this we mean taking K = K and ri = r∗i = δTi

where
E[n] = {T1, . . . , Tn2}. The following lemma is typical.

Lemma 5.1. Let δ =
∑n2

i=1 r
∗
i ⊗ ri ∈ R⊗R. Then

δ(S, T ) =

{
1 if S = T,
0 otherwise.

Proof: We first note that δ does not depend on the choice of basis
r1, . . . , rn2 . The lemma follows by reduction to the geometric case. 2

5.1. The Hesse pencil method. We start with the Hesse pencil
method, since it is the simplest of our three methods both to explain
and to implement.

Proposition 5.2. Let Θ be the twist of ΘE by ξ ∈ H1(K,E[n]).
(i) The theta group Θ has a representation

(12) 0 // Gm
// Θ //

��

E[n] //

χ

��

0

0 // Gm
// GLn // PGLn // 0

if and only if Ob(ξ) = 0.
(ii) If Θ has a representation (12) then there is a unique genus one
normal curve C ⊂ Pn−1 with Jacobian E for which the action of each
T ∈ E[n] on C is given by χ(T ). Moreover [C → Pn−1] is the Brauer-
Severi diagram determined by ξ.

Proof: (i) This is a special case of Proposition 4.10.
(ii) Let [C → Pn−1] be the Brauer-Severi diagram determined by ξ. We
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recall from §1.6 that Θ has a representation

(13) 0 // Gm
// Θ //

��

E[n] //

χC

��

0

0 // Gm
// GLn // PGLn // 0

According to Lemma 4.3, the representations (12) and (13) differ only
by an automorphism of Matn(K). By the Noether-Skolem theorem this
automorphism is conjugation by an element of GLn(K). So making a
change of co-ordinates on Pn−1 we may arrange that χ = χC .

The proof of Lemma 1.7 shows that if C,C ′ ⊂ Pn−1 are genus one nor-
mal curves with the same j-invariant, then there exists α ∈ PGLn(K)
with α(C) = C ′. Moreover, using Lemma 3.13, one can show that the
image of χC is its own centraliser in PGLn. The uniqueness statement
follows. 2

We describe the Hesse pencil method in greater detail.

Proposition 5.3. Let ξ ∈ H1(K,E[n]) and ρ ∈ (R⊗R)× with w2(ξ) =
ρ ∂R×. Let Aρ = (R,+, ∗ερ) where inv2(ΘE) = ε ∂R×. Then
(i) Ob(ξ) = 0 if and only if Aρ ∼= Matn(K).
(ii) If τ : Aρ ∼= Matn(K) is an isomorphism of K-algebras and

M =
∑n2

i=1 r
∗
i τ(ri) ∈ GLn(R) = MapK(E[n],GLn(K))

then there is a unique genus one normal curve C ⊂ Pn−1 with Jacobian
E for which the action of each T ∈ E[n] on C is given by MT . Moreover
[C → Pn−1] is the Brauer-Severi diagram determined by ξ.

Proof: (i) Let Θ be the twist of ΘE by ξ. By Lemma 3.10 we have
inv2(Θ) = ερ ∂R×. Then Lemma 4.5 identifies Aρ as the enveloping
algebra of Θ. We are done by Proposition 4.10.
(ii) Since inv2(Θ) = ερ ∂R× there exists a Galois equivariant section
φ : E[n] → Θ with

φ(S)φ(T ) = ε(S, T )ρ(S, T )φ(S + T )

for all S, T ∈ E[n]. We claim that φ(T ) 7→ MT extends to a represen-
tation of Θ. It suffices to check this in the geometric case, whereupon
MT = τ(δT ). The proof of Lemma 4.5 shows that φ(T ) 7→ δT extends
to an embedding of Θ in Aρ. Since τ is an isomorphism of K-algebras,
it follows that Θ embeds in Matn(K) as claimed.

Finally we apply Proposition 5.2(ii) with χ(T ) = [MT ]. 2
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Remark 5.4. We may take any convenient choice for ε. For example
we saw in Lemma 3.11 that if n is odd then a convenient choice is the
square root of the Weil pairing.

It remains to recover equations for C ⊂ Pn−1 from M ∈ GLn(R).

Proposition 5.5. Assume n ≥ 3 and let M ∈ GLn(R) such that
(i) E[n] → PGLn ; T 7→ [MT ] is a group homomorphism, and
(ii) MSMTM

−1
S M−1

T = en(S, T )In for all S, T ∈ E[n].
Then the genus one normal curves C ⊂ Pn−1 for which each matrix MT

acts as translation by some n-torsion point of Jac(C), are parametrised
by (a twist of) the modular curve Y (n). Moreover the number of curves
in this family that are defined over K and have Jacobian E is

νE,n = [AutK(E[n]) : AutK(E)]

where AutK(E[n]) is the group of K-rational automorphisms of E[n]
that respect the Weil pairing.

Proof: The first statement is a geometric one. For its proof we may
fix a basis S, T for E[n] and assume that MS and MT are the stan-
dard matrices M1 and M2 specified in Lemma 3.13. We recall that
Y (n) parametrises the triples (E ′, S ′, T ′) where E ′ is an elliptic curve
and S ′, T ′ are a basis for E ′[n] with en(S

′, T ′) = ζn. Lemma 3.13 fur-
nishes us with a bijection between the triples (E ′, S ′, T ′) and the genus
one normal curves C ⊂ Pn−1 considered here. So the latter are also
parametrised by Y (n).

Proposition 5.2(ii) establishes the existence of a genus one normal
curve C ⊂ Pn−1 with Jacobian E for which the action of each T ∈ E[n]
is given by MT . Let C ′ be another curve in the Y (n) family, defined
over K and with Jac(C ′) ∼= E. Then each T ∈ E[n] acts on C ′ via
Mα(T ) for some α ∈ AutK(E[n]). Changing our choice of isomorphism
Jac(C ′) ∼= E changes α by an element of AutK(E). Here we use our
assumption n ≥ 3 to identify AutK(E) as a subgroup of AutK(E[n]).
It follows by Proposition 5.2(ii) that the curves C ′ considered here are
in bijection with the quotient group AutK(E[n])/AutK(E). 2

In general we have νE,n ≤ # PSL2(Z/nZ). We now specialise to the
case n = 3.

Lemma 5.6. Let M ∈ GL3(R) as in Proposition 5.5. Let (x : y : z)
be co-ordinates on P2 and putx′y′

z′

 = M

xy
z

 ,

x′′y′′
z′′

 = M2

xy
z

 .
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Then the family of curves parametrised by Y (3) is (an open subset of)
the pencil of plane cubics spanned by the Fi(x, y, z) ∈ K[x, y, z] where∣∣∣∣∣∣

x x′ x′′

y y′ y′′

z z′ z′′

∣∣∣∣∣∣ =
9∑
i=1

Fi(x, y, z)ri.

Proof: Let S, T be a basis for E[n]. For the proof we may assume
that MS and MT are the standard matrices M1 and M2 specified in
Lemma 3.13. In this case our construction does indeed give the pencil
of plane cubics spanned by x3 + y3 + z3 and xyz. 2

We use the classical invariants of a ternary cubic (cf. [1]) to pick out
those members of the pencil that are defined over K and have Jacobian
E. In practice this means finding the K-rational roots of a polynomial
of degree 12. According to Proposition 5.5 we are left with a list of
νE,3 candidates for C ⊂ P2. In favourable circumstances (including the
case K = Q) we can show νE,3 = 1.

Lemma 5.7. Assume that either (i) ρE,3 : GK → GL2(Z/3Z) is sur-
jective, or (ii) K is a number field with a real place. Then νE,3 = 1.

Proof: Let G ⊂ GL2(Z/3Z) be the image of ρE,3. Then

(14) AutK(E[3]) = {x ∈ SL2(Z/3Z) | xy = yx for all y ∈ G}.

(i) We find AutK(E[3]) = {±1} and so νE,3 = 1.
(ii) Since ζ3 6∈ K it is clear that G contains an element of determinant
−1. But there are only 3 such conjugacy classes in GL2(Z/3Z). Hence
we may assume that G contains either ±a or b where

a =

(
1 1
−1 1

)
and b =

(
1 0
0 −1

)
.

It follows by (14) that AutK(E[3]) = {±1} or {±1,±a2}. If the latter,
then a further application of (14) shows that G is cyclic of order 8.
By considering the subfields of K(E[3]) we are led to the contradiction
K(

√
−3) ⊂ K(E[3]) ∩ R. Hence AutK(E[3]) = {±1} and νE,3 = 1 as

claimed. 2

In [6] a formula based on Corollary 3.12 is used to recover α ∈
R×/(R×)3 from a ternary cubic. The Hesse pencil method is completed
in the case νE,3 > 1 by applying this formula to each of the (at most
12) candidate ternary cubics, and seeing which gives rise to the correct
element α ∈ R×/(R×)3.
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5.2. The flex algebra method. This method has the advantage over
the Hesse pencil method that it works for all n ≥ 2. For ease of
exposition we continue to assume that n ≥ 3.

We embed E → Pn−1 via the complete linear system |n.0| and com-
pute M ∈ GLn(R) = MapK(E[n],GLn(K)) describing the action of
E[n] on E by translation. We also compute ε ∈ (R ⊗ R)× with
MSMT = ε(S, T )MS+T for all S, T ∈ E[n].

Proposition 5.8. Let ξ ∈ H1(K,E[n]) and ρ ∈ (R⊗R)× with w2(ξ) =
ρ ∂R×. Let A1 = (R,+, ∗ε) and Aρ = (R,+, ∗ερ).
(i) There exists γ ∈ R

×
with ∂γ = ρ, and so an isomorphism of K-

algebras .γ : Aρ → A1.
(ii) The map τ1 : A1 → Matn(K) given by τ1(x)ij = trR/K(xMij) is an
isomorphism of K-algebras.
(iii) If τρ : Aρ ∼= Matn(K) is an isomorphism of K-algebras then there
is a commutative diagram

(15) Aρ
τρ //

.γ

��

Matn(K)

β

��

A1

τ1 // Matn(K)

where β is conjugation by some matrix B ∈ GLn(K). Moreover B
represents a change of co-ordinates on Pn−1 taking the Brauer-Severi
diagram [E → Pn−1] to its twist [C → Pn−1] by ξ.

Proof: (i) The element γ ∈ R
×

exists by Corollary 3.6. The isomor-
phism .γ is that specified in Lemma 4.6.
(ii) We must show that τ1 is a ring homomorphism. Reducing to the
geometric case we have τ1(δT ) = MT . Since δS ∗ε δT = ε(S, T )δS+T and
MSMT = ε(S, T )MS+T the result is clear.
(iii) Let β be the isomorphism of K-algebras making (15) commute.
By the Noether-Skolem theorem it is conjugation by some matrix B ∈
GLn(K).

Let ΘE and Θ be the theta groups for E[n] with second invariants
inv2(ΘE) = ε∂R× and inv2(Θ) = ερ∂R×. By Lemma 4.5 the enveloping
algebras are A1 and Aρ. We interpret the isomorphisms τ1 : A1

∼=
Matn(K) and τρ : Aρ ∼= Matn(K) as representations of ΘE and Θ. So
ΘE and Θ are now subgroups of GLn generated up to scalars by the
τ1(δT ), respectively τρ(δT ), for T ∈ E[n].

Since τ1(δT ) = MT the theta group ΘE ⊂ GLn is that determined by
[E → Pn−1]. On the other hand Proposition 5.2 tells us that Θ ⊂ GLn
is the theta group for some [C → Pn−1]. Moreover, since Θ is the twist
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of ΘE by ξ, the proposition also tells us that [C → Pn−1] is the twist
of [E → Pn−1] by ξ. The commutativity of (15) shows that ΘE ⊂ GLn
and Θ ⊂ GLn are related by conjugation by B. It follows by the
uniqueness statement of Proposition 5.2 that B represents a change of
co-ordinates on Pn−1 taking [C → Pn−1] to [E → Pn−1]. 2

As it stands the method is unsatisfactory, since we have to solve for

γ ∈ R
×

= (R ⊗K)× with ∂γ = ρ. By (7) the n2 choices for γ form a

coset of E[n] inside R
×
. This coset is an E[n]-torsor, which turns out

to be the twist of E[n] by ξ. A glance at Remark 1.23 now suggests
we should solve for γ ∈ (R ⊗ F )× where F is the field of definition
of a flex point on C. This is already clear from the conclusions of
Proposition 5.8, since the K-rational point 0 ∈ E gets mapped to a
flex point on C. These observations motivate the following refinement
of Proposition 5.8.

Proposition 5.9. Let ξ ∈ H1(K,E[n]) and ρ ∈ (R⊗R)× with w2(ξ) =
ρ ∂R×. Let A1 = (R,+, ∗ε), Aρ = (R,+, ∗ερ) and F = (R,+, ∗ρ).
(i) Let Φ be the E[n]-torsor determined by ξ. Then F is the étale
algebra of Φ. In particular F is a product of field extensions of K.
(ii) There is an isomorphism of F -algebras

α : Aρ ⊗K F → A1 ⊗K F

x⊗ 1 7→
∑n2

i=1 r
∗
i x⊗ ri.

(iii) Let τ1 : A1
∼= Matn(K) and τρ : Aρ ∼= Matn(K) be the isomor-

phisms of Proposition 5.8. Then there is a commutative diagram

(16) Aρ ⊗K F

α

��

τρ // Matn(F )

β

��
A1 ⊗K F

τ1 // Matn(F )

where β is conjugation by some matrix B ∈ GLn(F ) = MapK(Φ,GLn(K)).
Moreover for each P ∈ Φ the matrix BP ∈ GLn(K) represents a change
of co-ordinates on Pn−1 taking the Brauer-Severi diagram [E → Pn−1]
to its twist [C → Pn−1] by ξ.

Proof: (i) This is proved in Proposition 4.7.
(ii) We first show that α is a ring homomorphism, i.e.

(17)
∑n2

i=1 r
∗
i (x ∗ερ y)⊗ ri =

∑n2

i,j=1(r
∗
i x ∗ε r∗jy)⊗ (ri ∗ρ rj)

for all x, y ∈ R. Since α does not depend on the choice of basis
r1, . . . , rn2 we may reduce to the geometric case. Putting x = δS and
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y = δT in (17) it becomes

ε(S, T )ρ(S, T )δS+T ⊗ δS+T = ε(S, T )δS+T ⊗ ρ(S, T )δS+T

which is a tautology. Since Aρ and A1 are central simple algebras (of
the same dimension) it follows that α is an isomorphism.
(iii) Let β be the isomorphism of F -algebras making the diagram com-
mute. By the Noether-Skolem theorem (applied to each constituent
field of F ) it is conjugation by some matrix B ∈ GLn(F ).

Let γ = (1 ⊗ ιF )(δ) ∈ R ⊗ F where δ ∈ R ⊗ R was defined in
Lemma 5.1, and ιF : R ∼= F is the isomorphism of underlying K-vector
spaces. Then the isomorphism α : Aρ ⊗ F ∼= A1 ⊗ F is multiplication
by γ in R⊗ F . So for each P ∈ Φ we obtain a diagram

Aρ
τρ //

.γP

��

Matn(K)

βP

��

A1

τ1 // Matn(K)

where .γP is multiplication by γP in R
×

and βP is conjugation by
BP ∈ GLn(K). We are done by Proposition 5.8. 2

We summarise the flex algebra method in the following 7 steps.

Step 1. We embed E → Pn−1 via the complete linear system |n.0|.
The curve E is now defined by homogeneous polynomials f1, . . . , fN in
K[x1, . . . , xn].

Step 2. We compute M ∈ GLn(R) and ε ∈ (R ⊗ R)× as described
at the start of this subsection. If n is odd then, in the notation of
Lemma 3.11, we may choose M with Mn = In and ιMι−1 = M−1.
This enables us to take ε = e1/2.

Step 3. Let A1 = (R,+, ∗ε). We compute the isomorphism of K-
algebras τ1 : A1

∼= Matn(K) specified in Proposition 5.8.

Step 4. Let Aρ = (R,+, ∗ερ). We use the Black Box to find an isomor-
phism of K-algebras τρ : Aρ ∼= Matn(K).

Step 5. Let F = (R,+, ∗ρ). We compute the composite

τ ′ρ : Aρ
α−→ A1 ⊗ F

τ1−→ Matn(K)⊗ F = Matn(F ).

It is given by τ ′ρ(x) =
∑n2

i=1 τ1(r
∗
i x)⊗ ri.

Step 6. We use linear algebra to solve for B ∈ GLn(F ) with τ ′ρ(x) =

B τρ(x)B
−1 for all x ∈ R.



34 J.E. CREMONA, T.A. FISHER, C. O’NEIL, D. SIMON, AND M. STOLL

Step 7. Let w1, . . . , wn2 be a basis for F as a K-vector space. Then C
is defined by the homogeneous polynomials gij ∈ K[x1, . . . , xn] with

fi(
∑n

j=1B1jxj, . . . ,
∑n

j=1Bnjxj) =
∑n2

j=1wjgij(x1, . . . , xn).

Remark 5.10. In Steps 6 and 7 it suffices to work with any constituent
field of F . But in the generic case Galois acts transitively on the flex
points of C. So F is already a field and there is no saving to be made.

5.3. The Segre embedding method. The third of our algorithms
leads more directly to equations for C (and avoids the need to compute
the flex algebra). Here we confine ourselves to a brief description.
Further details, including a proof that the method works, will be given
in the second paper of this series [4].

Let ρ ∂R× ∈ H correspond to a torsor divisor class pair (C, [D]).
Even before we use the Black Box, we can write down equations for C
as a genus one normal curve in Pn2−1 with hyperplane section nD. To
do this we fix a Weierstrass equation for E and write (x(P ), y(P )) for
the co-ordinates of P ∈ E \ {0}. We also write λ(P1, P2) for the slope
of the chord through P1, P2 ∈ E \ {0} with P1 + P2 6= 0, respectively
of the tangent line if P1 = P2. We put z =

∑
rizi where z1, . . . , zn2 are

indeterminates. Since R = MapK(E[n], K) we have

z(T ) =
∑n2

i=1 ri(T )zi ∈ K[z1, . . . , zn2 ].

For T ∈ E[n] \ {0} we consider the polynomial(
x− x(T )

)
z(0)2 − ρ(T,−T )z(T )z(−T )

in K[x, z1, . . . , zn2 ]. We define a quadric of type 1 to be the difference
of any two such polynomials. These quadrics span a K-vector subspace
of K[z1, . . . , zn2 ] of dimension d1 where

d1 =

{
(n2 − 3)/2 if n odd,
n2/2 if n even.

For T, T1, T2 ∈ E[n]\{0} with T1+T2 = T we consider the polynomial(
λT − λ(T1, T2)

)
z(0)z(T )− ρ(T1, T2)z(T1)z(T2)

in K[λT , z1, . . . , zn2 ]. We define a quadric of type 2 to be the difference
of any two such polynomials that share the same choice of T . These
quadrics span a K-vector subspace of K[z1, . . . , zn2 ] of dimension d2

where

d2 =

{
(n2 − 1)(n2 − 3)/2 if n odd,
n2(n2 − 4)/2 if n even.

It is clear that the spaces of quadrics of types 1 and 2 are each Galois
invariant. We thus obtain aK-vector space of quadrics inK[z1, . . . , zn2 ]
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of dimension d1 + d2 = n2(n2 − 3)/2. It is shown in the second paper
of this series [4] that these quadrics generate the homogeneous ideal of

C ⊂ Pn2−1 embedded by |nD|. Notice that our formulae for the dimen-
sion of each vector space of quadrics are easily checked by reduction to
the geometric case.

Remarks 5.11. (i) In practice when computing the quadrics defining
C we work over the constituent fields of R⊗R, rather than over K.
(ii) It is arguably more natural first to give equations for C ⊂ P(R)

and only then to identify P(R) = Pn2−1 by means of our choice of basis
r1, . . . , rn2 for R.
(iii) We recall that ρ ∂R× is an element of H ⊂ (R ⊗ R)×/∂R×. If we
multiply ρ by ∂γ for some γ ∈ R× then the effect on C is that of a
change of co-ordinates on Pn2−1.
(iv) In the case n = 2 we find that C ⊂ P3 is the complete intersection
of two quadrics of type 1. Our method reduces to the classical number
field method for 2-descent.

We now have equations for C ⊂ Pn2−1 embedded by |nD|. It remains
to compute equations for C ⊂ Pn−1 embedded by |D|. This is achieved
in the following 5 steps.

Step 1. We compute F ∈ R(E)× = MapK(E[n], K(E)×) with div(FT ) =
n.T − n.0. We fix a local parameter z in the local ring of E at 0 and
scale each of the rational functions FT to have leading coefficient 1
when expanded as a Laurent power series in z.

Step 2. We compute ε ∈ (R⊗R)× with

ε(T1, T2) =
FT1+T2(P )

FT1(P )FT2(P − T1)

for all T1, T2 ∈ E[n] and P ∈ E \ {0, T1, T1 + T2}. (This formula for ε
was derived near the end of §3.)

Step 3. Let Aρ = (R,+, ∗ερ). We use the Black Box to find an isomor-
phism of K-algebras τ : Aρ ∼= Matn(K).

Step 4. For each quadric f(z1, . . . , zn2) computed above we make a
change of co-ordinates to obtain a quadric g(x11, x12, . . . , xnn) with

g(
∑n2

i=1 τ(ri)11zi, . . . ,
∑n2

i=1 τ(ri)nnzi) = f(z1, . . . , zn2).

The new quadrics define C as a curve in P(Matn).
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Step 5. There is a direct sum decomposition Matn = 〈In〉 ⊕ {Tr = 0}
where {Tr = 0} is the subspace of matrices of trace zero. We project
C to the trace zero subspace. Then C is contained in the rank 1 locus.
In other words C lies in the image of the Segre embedding

Pn−1 × (Pn−1)∨ → P(Matn).

We pull back to a curve in Pn−1 × (Pn−1)∨ and finally project onto the
first factor to obtain C → Pn−1. (In fact, projecting onto the second
factor gives the dual curve.)

Remark 5.12. In both the flex algebra method and the Segre embed-
ding method we have specified particular choices for ε ∈ (R ⊗ R)×.
But for the purposes of computing the obstruction algebra, we can use
any ε ∈ (R ⊗ R)× with inv2(ΘE) = ε ∂R×. Then after trivialising the
obstruction algebra we can use the isomorphism of Lemma 4.6 to com-
pensate for having made a different choice of ε. So the method we use
(Hesse pencil, flex algebra or Segre embedding) has no impact on the
implementation of the Black Box.
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