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Abstract. In this note, we consider an `-isogeny descent on a pair of elliptic
curves over Q. We assume that ` > 3 is a prime. The main result expresses
the relevant Selmer groups as kernels of simple explicit maps between finite-
dimensional F`-vector spaces defined in terms of the splitting fields of the kernels
of the two isogenies. We give examples of proving the `-part of the Birch and
Swinnerton-Dyer conjectural formula for certain curves of small conductor.

1. Introduction

Let E/Q be an elliptic curve. Then it is known [24] that the group E(Q) of rational
points on E is a finitely generated abelian group. Its finite torsion subgroup
is easily determined, but so far there is no method known that can provably
determine the rank r of E(Q) for an arbitrary given curve E. There is another
abelian group associated to E/Q, the Shafarevich-Tate group X(Q, E). It is
conjectured to be finite for all elliptic curves; however, this is only known for
curves of analytic rank 0 or 1.

The analytic rank is the order of vanishing of the L-series L(E, s) associated to E
at the point s = 1. The conjecture of Birch and Swinnerton-Dyer states that the
analytic rank equals the rank, and moreover gives a relation between the leading
term of the Taylor expansion of L(E, s) at s = 1 and various local and global data
associated to E, including the order of X(Q, E). Kolyvagin [20] has shown that
the first part of the conjecture holds when the analytic rank is at most 1, that in
this case X(Q, E) is finite, and the second part of the conjecture holds up to a
rational factor involving only primes in a certain finite set (depending on E).

The two groups E(Q) and X(Q, E) are related by objects that can (in principle)

be computed: for each ` ≥ 1, there is a finite computable group Sel(`)(Q, E), the
`-Selmer group of E, and an exact sequence of abelian groups

0 −→ E(Q)/`E(Q) −→ Sel(`)(Q, E) −→ X(Q, E)[`] −→ 0 .

If ` is a prime number, then all groups involved are F`-vector spaces, and we obtain
the relation

dimF`
Sel(`)(Q, E) = r + dimF`

E(Q)[`] + dimF`
X(Q, E)[`] .
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This can be used to obtain upper bounds for r on the one hand, but also leads to
information on X(Q, E) when r is known (for example when the analytic rank is
at most 1). In particular, if

dimF`
Sel(`)(Q, E) = r + dimF`

E(Q)[`] ,

then it follows that the `-primary part of X(Q, E) is trivial. The computation of
the `-Selmer group is referred to as an `-descent on E. How this can be done is
discussed in some detail in [31]. The computation involves obtaining information
on class groups and unit groups in number fields of degree up to `2−1, so this often
will be infeasible when ` ≥ 5. Even when there is a rational `-isogeny φ : E → E ′,
one usually has to deal with a field of degree `2 − `. In this case, an alternative
approach is to compute Selmer groups associated to φ and the dual isogeny φ′. The
information obtained still provides upper bounds for the rank r and the `-torsion
of X(Q, E) (and X(Q, E ′)), but the latter may fail to be sharp.

There is already a considerable amount of work in the literature in specific cases. In
the following, we try to give an overview, which we do not claim to be exhaustive.
Cremona uses 2-isogeny descents in [5] for a large number of curves, to determine
the ranks of the Mordell-Weil groups E(Q). In addition, online notes [7] describe
how to extend these descents to full 2-descents, in cases where the information
gained is inconclusive. Frey [18] uses 2-isogeny descent for curves of the form
y2 = x3 ± p3 for primes p > 3 to determine their ranks in terms of congruence
conditions on p. The general theory of 2-isogeny descents is presented in detail in
[34, Chapter X].

Selmer [32, 33] and later Cassels [3] studied cubic twists of the cubic Fermat curve
and considered among other things 3-isogenies and the multiplication by

√
−3

map for these curves. Satgé [28] considers the 3-isogeny from the curve given
by y2 = x3 + A to its twist y2 = x3 − 27A, for arbitrary A. He determines the
Selmer group of this isogeny over Q by identifying it with a certain subgroup of
Hom(GQ(

√
A), Z/3Z). Jeechul Woo in his Ph.D. thesis [38] works out the theory

and formulae for 3-isogeny descent in the presence of a rational 3-torsion point.
Nekovář considers quadratic twists of the Fermat curve in [25] and computes the
Selmer groups of rational 3-isogenies. Quer [27] uses the connection between 3-
isogeny Selmer groups and class groups of quadratic fields to exhibit quadratic
imaginary fields of 3-rank 6, based on elliptic curves of the form y2 = x3 + k
with rank 12. Top [36] demonstrates that the technique Quer uses applies to any
elliptic curve admitting a rational 3-isogeny. DeLong [9] finds a formula for the
dimension of the Selmer groups of these 3-isogenies which also relates the 3-ranks
of the associated quadratic fields. Elkies and Rogers [12] use explicit formulas for
3-isogeny descents to construct elliptic curves of the form x3 + y3 = k of ranks 8
through 11 over Q.
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Goins [19] uses 4-isogenies on the way to performing full 4-descents on the family
y2 + xy + ay = x3 + ax2 where

√
−a ∈ Q∗. Flynn and Grattoni [16] consider

isogenies coming from rational points of prime power order and exhibit an element
of the Shafarevich-Tate group of order 13. Their PARI programs are available
at [17].

Beaver computes Selmer groups for isogenies of degree 5 in [1] and uses an explicit
formula for the Cassels-Tate pairing to find nontrivial elements of the Shafarevich-
Tate group of order 5. Fisher gives general results regarding descents over rational
isogenies of degree ` = 5 and ` = 7 in [13, 14], which also include tables of many
specific cases.

Cremona, Fisher, O’Neil, Simon and Stoll [8] work out the general theory for
full n-descents. Schaefer relates in [29] Selmer groups for isogenies of abelian
varieties over number fields to class groups. In [30] he realizes the connecting
homomorphism in Galois cohomology as evaluation of a certain function called
the descent map (see Section 2 below) on divisors. With Stoll he explains in [31]
how to do a descent for any isogeny of odd prime power degree `e. One important
result, which is also used here, is that the set of bad primes can be reduced to
those above ` and those with the property that one of the corresponding Tamagawa
numbers is divisible by `.

In this note, we will expand on [31] and show how such an `-isogeny descent can
be performed with only little explicit computation. Our main result is given in
Theorem 11. It expresses the relevant Selmer groups as kernels of simle explicit
maps between finite-dimensional F` vector spaces. The maps and spaces are de-
fined in terms of the splitting fields of the kernels of the two isogenies involved.
See Section 3 below for an explanation of the underlying idea. Our result makes
the computation of the Selmer group sizes very easy and straight-forward. This
can be used to obtain bounds on the rank and/or the size of the `-torsion sub-
group of the Shafarevich-Tate groups of the two curves involved. The result takes
a particularly simple form when the kernel of φ is generated by a rational point,
see Corollary 16.

We have used the results to finish off the verification of the full Birch and Swinner-
ton-Dyer conjecture for a number of elliptic curves of conductor up to 5000. For
a more precise statement of this result, see Theorem 20.

2. Generalities

Let ` > 3 be a prime, and let E be an elliptic curve over Q such that E has
a rational `-isogeny. We remark that everything we do in this paper still works
for ` = 3, under the condition that E and E ′ have no special fibers of type IV
or IV∗. For simplicity, we do not discuss this case in more detail. Note that a full
3-descent as described in [8] is usually feasible (and an implementation is available
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in MAGMA, for example), so for practical purposes, it is of particular interest to
be able to deal with the case ` > 3.

Let φ : E → E ′ be the isogeny, and let φ′ : E ′ → E be the dual isogeny. Vélu [37]
gives explicit formulae for φ and E ′ in terms of E. (Note that the model given for
E ′ may not be minimal.) Our reference for the following will be [31].

We have an exact sequence of Galois modules

(2.1) 0 −→ E ′[φ′] −→ E ′ φ′
−→ E −→ 0 .

The φ′-Selmer group Sel(φ
′)(Q, E ′) sits in the Galois cohomology group H1(Q, E ′[φ′]);

it is defined to be the kernel of the diagonal map in the following diagram whose
(exact) rows are obtained by taking Galois cohomology of (2.1) over Q and over
all completions Qv, respectively.

E(Q)
δ //

��

H1(Q, E ′[φ′]) //

�� ))SSSSSSSSSSSSSS
H1(Q, E ′)

��∏
v E(Qv)

δ //
∏

v H1(Qv, E
′[φ′]) //

∏
v H1(Qv, E

′)

The Shafarevich-Tate group X(Q, E ′) is the kernel of the right-most vertical map
in the diagram. This leads to the exact sequence

0 −→ E(Q)/φ′(E ′(Q))
δ−→ Sel(φ

′)(Q, E ′) −→ X(Q, E ′)[φ′] −→ 0 .

By the usual yoga (see [31, p. 1222]), we find that

H1(Q, E ′[φ′]) ∼=
(
K×/(K×)`

)(1)
,

where K is the field of definition of any nontrivial point P in the kernel E[φ], and
the superscript (1) denotes the subgroup on which the automorphism induced by
P 7→ aP acts as z 7→ za (for a ∈ F×` such that aP is in the same Galois orbit
as P ). If we define1

K(S, `) = {α(K×)` : ` | vp(α) for all primes p of K not above some p ∈ S}

⊂ K×

(K×)`
,

then the image of the Selmer group is contained in K(S, `)(1), where S contains `
and the primes p such that ` divides one of the Tamagawa numbers cp(E) or cp(E

′)
(see [31, Prop. 3.2]). Note that if E(Q)[φ] 6= 0, then we have that K = Q and
K(S, `)(1) = Q(S, `).

1There is a variant of this definition that requires K(
√̀

α)/K to be unramfied outside primes
above primes in S. This does not make a difference when ` ∈ S. For our purposes, the definition
given here is more convenient. Note that it will be used later with sets S possibly not containing `.
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We fix our notations by requiring that E[φ] ⊂ E(R) and E ′[φ′]∩E ′(R) = 0. This
puts a definite order on the pair (E,E ′).

Let F ∈ K(E) be the descent map, i.e., F has a zero of order ` at P and a pole
of order ` at the origin O of E, and is normalized such that in terms of the local
parameter t = y/x at O (we fix a globally minimal Weierstrass equation for E),
we have

F (t) = t−`(1 + tf(t)) ,

for some power series f(t) over K. Then the connecting homomorphism δ in the
sequence above can be identified with

F : E(Q) −→ K(S, `)(1) ,

where we set F (O) = 1 and F (P ) = 1/F (−P ) (if P ∈ E(Q)). We let Kp =
K ⊗Q Qp, then there is a canonical homomorphism rp : K×/(K×)` → K×

p /(K×
p )`.

The function F induces a map Fp : E(Qp) → K×
p /(K×

p )`.

We then have

(2.2) Sel(φ
′)(Q, E ′) = {ξ ∈ K(S, `)(1) : rp(ξ) ∈ Fp(E(Qp)) for all p ∈ S}

as a subgroup of K(S, `)(1).

In the following, we want to make the expression on the right hand side of equa-
tion (2.2) as explicit as possible.

3. The basic idea

We begin with a definition that is needed below.

Definition 1. For S a finite set of primes and K a number field, let

K(S, `)∗ =
∏
p∈S

O×
K,p

(O×
K,p)

`
,

where OK,p = OK ⊗Z Zp is the p-adic completion of the ring of integers of K. If
S and S ′ are finite disjoint sets of primes, then there is an obvious canonical map

K(S, `) −→ K(S ′, `)∗ .

(Note that for p /∈ S, an element of K(S, `) always has a representative that is a
p-adic unit.)

According to equation (2.2) above, we need to find the subgroup of K(S, `)(1)

consisting of elements satisfying certain local conditions at the primes p ∈ S. This
will be made fairly easy if these local conditions are of a simple nature. The
simplest possible cases certainly occur when the ‘local image’ Fp(E(Qp)) is either

trivial or the full local group Hp =
(
K×

p /(K×
p )

)(1)
. Another easy situation is when

the local image is exactly the part Up of the local group that comes from p-adic
units, since in that case, we can just drop p from S.
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Lemma 2. We now assume that for each p ∈ S, we are in one of the three cases
mentioned above, and we set

S1 = {p ∈ S : Fp(E(Qp)) = Hp} and S2 = {p ∈ S : Fp(E(Qp)) = 0} .

Then

Sel(φ
′)(Q, E ′) = ker

(
α : K(S1, `)

(1) → K(S2, `)
∗) .

Here α is the canonical map from Definition 1.

Proof. First we show that the Selmer group is contained in K(S1, `)
(1). This means

that for all p ∈ S \S2, the local image is contained in Up. But for all these primes,
we have by assumption that the image is either trivial or equals Up, so the condition
is satisfied.

Now we check that the elements in the kernel of α are exactly those that satisfy the
local conditions at all p ∈ S. If p ∈ S \ (S1 ∪ S2), then the local image equals Up,
and this condition is already taken care of since p /∈ S1. If p ∈ S1, then the local
image is all of Hp, and therefore there is no condition. Finally, if p ∈ S2, then the
local image is trivial, which means that the Selmer group elements are represented
by elements of K(S1, `) that are `th powers in Kp. Since p /∈ S1, we can always
find a representative that is a unit in Kp; then the condition says that the image
in O×

K,p/(O
×
K,p)

` is trivial. Since

ker α =
⋂

p∈S2

ker
(
K(S1, `)

(1) →
O×

K,p

(O×
K,p)

`

)
,

the claim follows. ¤

We denote by K ′, F ′, F ′
p, H ′

p, U ′
p etc. the objects corresponding to K, F , Fp, Hp,

Up etc. for the dual isogeny. Then it is a fact that there is a perfect pairing

Hp ×H ′
p −→

1
`
Z
Z
∼= F`

(induced by cup product and the Weil pairing on H1’s) such that the images of Fp

and F ′
p are exact annihilators of each other. (See [23, Cor. I.2.3 and I.3.4]; the

last statement follows from the compatibility of the two pairings.) In particular,
im(Fp) = 0 is equivalent to im(F ′

p) = H ′
p, and im(Fp) = Hp is equivalent to

im(F ′
p) = 0. In addition, we find that the F`-dimensions satisfy

dim Hp = dim H ′
p = dim im(Fp) + dim im(F ′

p) .

If p 6= `, then by Lemma 3.8 in [29], we have

#
E(Qp)

φ′(E ′(Qp))
= # im(Fp) =

cp(E)

cp(E ′)
#E ′(Qp)[φ

′]
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and an analogous relation for φ. If p = `, then the last expression has to be
multiplied by `v`(γ

′), where (φ′)∗(ωE) = γ′ωE′ and ωE, ωE′ are the differentials
associated to a minimal Weierstrass model. This prompts the following definition.

Definition 3. We set w = v`(γ
′).

We define γ by φ∗(ωE′) = γωE, then γγ′ = `, and so we have v`(γ) = 1 − w. We
obtain

dim im(Fp) + dim im(F ′
p) = dim E(Qp)[φ] + dim E ′(Qp)[φ

′] +

{
0 if p 6= `,

1 if p = `.

We will need to determine w. This is done in the following lemma. We denote
by Ω(E) =

∫
E(R)

|ωE| the real period of E. Recall that we had fixed E to be the

curve with E(R)[φ] 6= 0 (and therefore, we have E ′(R)[φ′] = 0).

Lemma 4. We have Ω(E)/Ω(E ′) = `w.

Proof. Since E ′(R)[φ′] = 0, φ′ is an isomorphism from E ′(R) to E(R). Hence

|γ′|Ω(E ′) =

∫
E′(R)

|γ′ωE′ | =
∫

E′(R)

|(φ′)∗ωE| =
∫

E(R)

|ωE| = Ω(E) .

We know that φ∗ωE′ is an integral multiple of ω and that φ′∗ωE is an integral
multiple of ωE′ ; also (φ′ ◦φ)∗ωE = `ωE. Therefore, |γ′| = 1 (and w = 0) or |γ′| = `
(and w = 1), and the claim follows. ¤

Since we can easily compute the real periods using a system like MAGMA, Sage or
PARI-gp, w can be determined for any given isogeny. In some cases, the periods
are computed with respect to the given model, so it is important to use globally
minimal models of the two curves to get correct results.

We will show below in Section 4 that when p ∈ S, but p 6= `, then we always
have either trivial or full local image, and that the two cases are distinguished
by looking at the quotient cp(E)/cp(E

′). The only possible problem can therefore
occur when p = `. If ` divides one of the Tamagawa numbers c`(E) or c`(E

′),
then the result is the same as for p 6= `. Otherwise, we see by the above that the
following holds.

Lemma 5. Assume that ` - c`(E)c`(E
′).

(1) If E ′(Q`)[φ
′] = 0 and w = 0, then im(F`) = 0 and im(F ′

`) = H ′
`.

(2) If E(Q`)[φ] = 0 and w = 1, then im(F`) = H` and im(F ′
`) = 0.

Since Q` does not contain µ`, it is not possible that both E(Q`)[φ] and E ′(Q`)[φ
′]

are nontrivial. The cases that are left are therefore

• E ′(Q`)[φ
′] 6= 0 and w = 0 and

• E(Q`)[φ] 6= 0 and w = 1.
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Then both local images at ` are one-dimensional subspaces of the two-dimensional
space H` or H ′

`. It will turn out that im(F ′
`) = U ′

` in the first and im(F`) = U`

in the second of the two cases. So we will be able to compute at least one of the
two Selmer groups Sel(φ

′)(Q, E ′) and Sel(φ)(Q, E) easily. There is a formula due
to Cassels that relates the sizes of these two groups, see Section 6 below. This
allows us to deduce the size of the other Selmer group. Cassels’ formula may also
be useful when both Selmer groups can be computed by our methods, since one
of the two number fields K and K ′ may be significantly easier to deal with (for
example because it is of lower degree). We can then compute the easier group and
deduce the size of the other one by Cassels’ formula.

4. Tate Curves

We note that for all primes ` 6= p ∈ S, we have that ` divides cp(E) or cp(E
′),

and that our assumptions imply that if ` | cp(E)cp(E
′) for any prime p, then both

curves must have split multiplicative reduction at p.

Our reference for the following is [35, §V.3], in particular Theorem V.3.1. If an
elliptic curve E has split multiplicative reduction at p, then there is q ∈ Q×

p with

v(q) > 0 such that E(Qp) ∼= Q×
p /qZ. The subgroup of points with nonsingular

reduction is E(Qp)
0 ∼= Z×

p , and the kernel of reduction is E(Qp)
1 ∼= (1 + pZp).

Therefore we find that

E(Qp)
0/E(Qp)

1 ∼= Z×
p /(1 + pZp) ∼= F×p

(as must be the case for split multiplicative reduction) and that the component
group is

Φp = E(Qp)/E(Qp)
0 ∼= Z/vp(q)Z

where the isomorphism is induced by the valuation on Q×
p . In particular, the

Tamagawa number is cp(E) = vp(q). This description of E(L) carries over to all
finite extensions L of Qp.

The `-torsion subgroup of E is generated by µ` and q`, where q`
` = q. So we have a

point of order ` in E(Qp) if either µ`(Qp) is nontrivial, which means p ≡ 1 mod `,
or if q is an `th power in Qp. In any case, the cyclic subgroups of order ` are
µ` and the subgroups generated by some q`. The first kind of subgroup is always
defined over Qp, the second kind only if q` ∈ Q×

p .

In the first case, the corresponding isogenous curve is E ′(Qp) ∼= Q×
p /(q`)Z, where

the isogeny φ is induced by z 7→ z`. The dual isogeny φ′ is induced by the
identity map, which implies that E(Qp)/φ

′(E ′(Qp)) is trivial. Note that we have
cp(E

′) = vp(q
`) = `vp(q) = `cp(E).

In the second case, the corresponding isogenous curve is E ′(Qp) ∼= Q×
p /qZ

` , with

isogeny φ induced by the identity. The dual isogeny φ′ is induced by z 7→ z`, so
we have E(Qp)/φ

′(E ′(Qp)) ∼= Q×
p /(Q×

p )`, and cp(E) = `cp(E
′).
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This leads to the following result.

Lemma 6. Let p be a prime number.

(1) If cp(E
′) = `cp(E), then im(Fp) = 0 and im(F ′

p) = H ′
p.

(2) If cp(E) = `cp(E
′), then im(Fp) = Hp and im(F ′

p) = 0.

If ` 6= p ∈ S, then we are in one of these two cases.

Proof. We have seen in the discussion above that if the curves E and E ′ have
split multiplicative reduction at p, then we are in one of the two cases. The
claims on the local images follow from im(Fp) ∼= E(Qp)/φ

′(E ′(Qp)) and im(F ′
p)
∼=

E ′(Qp)/φ(E(Qp)) and the discussion preceding the statement of the lemma. If
` 6= p ∈ S, then we must have split multiplicative reduction, therefore the first
part applies. ¤

5. The local image at `

As mentioned at the end of Section 3, the only cases that are left to consider are
when ` - c`(E)c`(E

′) and either

E ′(Q`)[φ
′] 6= 0 and w = 0 , or E(Q`)[φ] 6= 0 and w = 1 .

Note that the case ` | c`(E)c`(E
′) is taken care of by Lemma 6.

We now have the following result.

Lemma 7. Assume that ` - c`(E)c`(E
′).

(1) If E ′(Q`)[φ
′] 6= 0 and w = 0, then im(F ′

`) = U ′
` and U` = H`.

(2) If E(Q`)[φ] 6= 0 and w = 1, then im(F`) = U` and U ′
` = H ′

`.

Proof. It suffices to prove the second assertion (say), the other one following by
symmetry. We have E(Q`)[φ] 6= 0, so that the kernel is generated by some P ∈
E(Q`), and H`

∼= Q×
` /(Q×

` )`. Since ` does not divide c`(E), the point P must
have nonsingular reduction. In terms of a minimal integral Weierstrass equation,
the descent map is then given by a polynomial f(x) + g(x)y ∈ Z`[x, y] (with
deg f ≤ (` − 1)/2 and g monic of degree (` − 3)/2). It follows that F`(Q) is a
unit for all points Q ∈ E(Q`) that do not reduce to the same point as the origin
or P . For points in the same residue class as P , we use that F`(Q) = 1/F`(−Q).
For points in the kernel of reduction, we use that F`(Q) = F`(Q−P )/F`(−P ). So
we see that im(F`) ⊂ U`. Since both sides are of dimension 1 (for im(F`) we use
the assumption w = 1 here), they must be equal. The statement on U ′

` follows by
inspection of H ′

`
∼=

(
Q`(µ`)

×/(Q`(µ`)
×)`)(1), which is generated by the images of

the units ζ and 1 + λ`, where ζ is a primitive `th root of unity and λ = 1− ζ. ¤
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6. Cassels’ formula

We make the following definition.

Definition 8.

Σ1 = {p : cp(E) = `cp(E
′)} and Σ2 = {p : cp(E

′) = `cp(E)} .

Then S = Σ1 ∪ Σ2 ∪ {`}. Note that by the discussion in Section 4, Σ1 ∪ Σ2 is
exactly the set of primes where E (or equivalently, E ′) has split multiplicative
reduction.

Cassels [4] has established a formula relating the sizes of Sel(φ
′)(Q, E ′) and Sel(φ)(Q, E).

It reads as follows.

# Sel(φ)(Q, E)

# Sel(φ
′)(Q, E ′)

=
#E(Q)[φ]

#E ′(Q)[φ′]

Ω(E ′)

Ω(E)

∏
q

cq(E
′)

cq(E)

If E(Q)[φ] = 0, then the right hand side is (by Lemma 4 and Definition 8)
`#Σ2−#Σ1−w. Otherwise it is `#Σ2−#Σ1+1−w. (Note that E ′(Q)[φ′] = 0 accord-
ing to our convention, since the nontrivial points in this kernel are not real.) In
terms of F`-dimensions, this says the following.

Lemma 9.

dim Sel(φ)(Q, E) + #Σ1 + w = dim Sel(φ
′)(Q, E ′) + #Σ2 + dim E(Q)[φ] .

We can combine the information from both Selmer groups in the following way.

Lemma 10. Let r denote the rank of E(Q) (and E ′(Q)). Then we have

r + dimX(Q, E)[`] ≤ r + dimX(Q, E ′)[φ′] + dimX(Q, E)[φ]

= dim Sel(φ
′)(Q, E ′) + dim Sel(φ)(Q, E)− dim E(Q)[φ]

= 2 dim Sel(φ
′)(Q, E ′)−#Σ1 + #Σ2 − w

= 2
(
dim Sel(φ)(Q, E)− dim E(Q)[φ]

)
+ #Σ1 −#Σ2 + w .

The same bound holds for dimX(Q, E ′)[`]. In particular, we get an upper bound
for dimX(Q, E)[`] and dimX(Q, E ′)[`] if we know the rank r and the size of one
of the two Selmer groups.

Proof. Note first that we have E(Q)[φ] = E(Q)[`]. The only nontrivial part of
this statement is that E(Q)[`] 6= 0 implies E(Q)[φ] 6= 0. But if there is a rational
`-torsion point on E and E(Q)[φ] = 0, then E[φ] ∼= µ` by the Weil pairing,
contradicting our assumption that E[φ] ⊂ E(R).
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We have the exact sequences

0 −→ E(Q)

φ′(E ′(Q))
−→ Sel(φ

′)(Q, E ′) −→ X(Q, E ′)[φ′] −→ 0

0 −→ E ′(Q)

φ(E(Q))
−→ Sel(φ)(Q, E) −→ X(Q, E)[φ] −→ 0

0 = E ′(Q)[φ′] −→ E ′(Q)

φ(E(Q))
−→ E(Q)

`E(Q)
−→ E(Q)

φ′(E ′(Q))
−→ 0

0 −→ X(Q, E)[φ] −→ X(Q, E)[`] −→ X(Q, E ′)[φ′] ,

and we know that

dim E(Q)/`E(Q) = r + dim E(Q)[`] = r + dim E(Q)[φ] .

From this, we can deduce that

r + dimX(Q, E)[`] ≤ r + dimX(Q, E ′)[φ′] + dimX(Q, E)[φ]

= dim
E(Q)

φ′(E ′(Q))
+ dim

E ′(Q)

φ(E(Q))
− dim E(Q)[φ]

+ dimX(Q, E ′)[φ′] + dimX(Q, E)[φ]

= dim Sel(φ
′)(Q, E ′) + dim Sel(φ)(Q, E)− dim E(Q)[φ]

= 2 dim Sel(φ
′)(Q, E ′)−#Σ1 + #Σ2 − w

= 2 dim Sel(φ)(Q, E) + #Σ1 −#Σ2 + w − 2 dim E(Q)[φ] .

For the last two equalities, we use Lemma 9.

To get the bound for dimX(Q, E ′)[`], we use the exact sequence

0 −→ X(Q, E ′)[φ′] −→ X(Q, E ′)[`] −→ X(Q, E)[φ] .

¤

If X(Q, E) (or equivalently, X(Q, E ′)) is finite, then the dimensions of X(Q, E ′)[φ′]
and X(Q, E)[φ] are even, and it follows that the rank r has the same parity as
#Σ1 + #Σ2 + w. Recall that Σ1 ∪ Σ2 is the set of primes of split multiplicative
reduction. By [11, Theorem 5] the root number ε(E/Q) for E is given in terms of
local Artin symbols and the local root number at `:

ε(E/Q) = (−1)1+#Σ1+#Σ2ε(E/Q`)
∏

p6=` additive

(−1, Qp(P )/Qp) .

Since the parity conjecture is known for Selmer groups [10, Theorem 1.4] and
we are assuming X(Q, E) is finite, this implies by the above observation that
(−1)#Σ1+#Σ2+w = ε(E/Q). Combining this with the product formula for the Artin
symbol and the fact that the Artin symbol is trivial for primes p 6= ` of semistable
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reduction (see [11] again) and at infinity according to our normalization, this gives
us a formula for the local root number at `:

ε(E/Q`) = (−1)1−w(−1, Q`(P )/Q`) .

7. The main result

We apply Lemma 2 and obtain the following expressions for the Selmer groups

Theorem 11. Let φ : E → E ′ be an isogeny of prime degree ` > 3 of elliptic
curves over Q, with dual isogeny φ′ : E ′ → E, and assume that ker(φ) ⊂ E(R).
Let K and K ′ be the splitting fields of E[φ] and E ′[φ′], respectively, and define Σ1,
Σ2 and w as in Definitions 8 and 4 above.

If ` - c`(E)c`(E
′), w = 1 and E(Q`)[φ] = 0, then let S1 = Σ1 ∪ {`}, else let

S1 = Σ1.

If ` - c`(E)c`(E
′), w = 0 and E ′(Q`)[φ

′] = 0, then let S2 = Σ2 ∪ {`}, else let
S2 = Σ2.

Let
α : K(S1, `)

(1) −→ K(S2, `)
∗ and β : K ′(S2, `)

(1) −→ K ′(S1, `)
∗

be the canonical maps.

Then Sel(φ
′)(Q, E ′) = ker α unless ` - c`(E)c`(E

′), w = 0 and E ′(Q`)[φ
′] 6= 0, and

Sel(φ)(Q, E) = ker β unless ` - c`(E)c`(E
′), w = 1 and E(Q`)[φ] 6= 0.

In the two excluded cases, we still have inclusions Sel(φ
′)(Q, E ′) ⊂ ker α and

Sel(φ)(Q, E) ⊂ ker β, respectively.

We see that in each case, we obtain an explicit description for at least one of
the two Selmer groups, which we can therefore determine fairly easily. We repeat
the observation that this is sufficient to obtain a bound on the `-torsion in X,
compare Lemma 10.

Proof. We observe that in all relevant cases, the sets S1 and S2 correspond to
those defined in Lemma 2. For primes p 6= `, this follows from Lemma 6, which
also covers the case p = ` when ` | c`(E)c`(E

′). The remaining cases for p = `
are dealt with in Lemmas 5 and 7. In the cases where we do not claim equality,
we fail to take into account the local condition at ` (which is of codimension 1
in U` = H` or U ′

` = H ′
`). ¤

This provides some easy bounds on the Selmer groups. To make this more precise,
we observe the following. We denote the class number of a number field K by hK .

Lemma 12. Let K/Q be a Galois extension with Galois group a subgroup of F×` .
Let S be a set of primes. If ` - hK, then

dimF`
K(S, `)(1) = #S ′ + 1
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if K is totally real but K 6= Q, or K = Q(µ`) with the standard action on µ`, and

dimF`
K(S, `)(1) = #S ′

otherwise. In each case S ′ ⊂ S is the subset of primes that are totally split in K.

Proof. The case K = Q is clear. In general there is an exact sequence

0 −→ US/U `
S −→ K(S, `) −→ ClS(K)[`] −→ 0

where US is the group of S-units of K and ClS(K) is the S-class group. The
assumption ` - hK implies that ClS(K)[`] = 0. By the Dirichlet unit theorem, the
group US has torsion-free rank #SK + #ΣK − 1, where SK is the set of places
of K above primes in S and ΣK is the set of infinite places of K. Let G ⊂ F×` be
the (cyclic) Galois group of K/Q. The representation of G on the Q-vector space
US ⊗Z Q must involve all characters of G of fixed order n | #G with the same
multiplicity mn. Let Kn be the the subfield of K of degree n. Then∑

k|n

mkϕ(k) = #SKn + #ΣKn − 1

for all n | #G. We then have dim K(S, `)(1) = m#G (plus 1 if µ` ⊂ K with the
standard action). It can be checked that for K 6= Q, the unique solution of this
system of linear equations has m#G = #(S ∪ {∞})′. This gives the result when
K 6= Q(µ`), since then the S-unit group has no `-torsion. For K = Q(µ`), we get
an additional dimension from µ` when F×` acts on it in the standard way. ¤

This applies to our situation in the following way.

Corollary 13. In the situation of Theorem 11, the following assertions hold.

(1) If ` - hK, then we have

dim K(S1, `)
(1) = #Σ1 + 1− dim E(Q)[φ] ,

and therefore (writing X[`] for either X(Q, E)[`] or X(Q, E ′)[`])

r + dimX[`] ≤ #Σ1 + #Σ2 + 2(1− dim E(Q)[φ])− w .

(2) If ` - hK′, then we have

dim K ′(S2, `)
(1) = #Σ2 + dim E(Q)[φ] ,

and therefore (writing X[`] for either X(Q, E)[`] or X(Q, E ′)[`])

r + dimX[`] ≤ #Σ1 + #Σ2 + w .
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Proof.

(1) First note that for all p ∈ Σ1, p is totally split in K (since by the discussion
in Section 4, we have E(Qp)[φ] 6= 0). If S1 6= Σ1, then we have E(Q`)[φ] =
0, and so the additional element ` of S1 does not split completely. In the
notation of Lemma 12, we thus have S ′

1 = Σ1. Also, K is totally real. The
claim on the dimension of K(S1, `)

(1) follows. By Theorem 11, we have

Sel(φ
′)(Q, E ′) ⊂ ker α ⊂ K(S1, `)

(1) ,

so dim Sel(φ
′)(Q, E ′) ≤ #Σ1 + 1 − dim E(Q)[φ]. Lemma 10 now gives the

estimate on r + dimX[`].
(2) In the same way as in part (1), we find that S ′

2 = Σ2. Now K ′ is not
totally real, so Lemma 12 gives the dimension of K ′(S2, `)

(1) as stated.
The estimate then follows using Lemma 10 as in part (1).

¤

Example 14. Let ` ≥ 11 be a prime, and let φ : E → E ′ be an `-isogeny of elliptic
curves of conductor `2 (such that E[φ] ⊂ E(R) as usual). By work of Mazur [21]
we have ` ≤ 163, and we find that in fact this applies to exactly the following
curves E (with ` = 11, 19, 43, 67, 163):

121a2, 121b1, 121c2, 361a1, 1849a1, 4489a1 and 26569a1 .

(We use the labeling of the Cremona database [6].)

By [34, Proposition VII.4.1], the points in E[φ] and E ′[φ′] are defined over an
abelian extension of Q of degree dividing ` − 1 and only ramified at `. By the
Kronecker-Weber theorem [26, Theorem V.1.10], all such number fields are con-
tained in Q(µ`). The field K = Q(P ) for any P ∈ E[φ] \ {0} is totally real,
hence contained in the maximal totally real subfield Q(µ`)

+ of Q(µ`). By [2], for
example, it is known that ` does not divide the class number of Q(µ`)

+. Since
[Q(µ`)

+ : K] divides `− 1 and hence is coprime to `, this implies that ` - hK . If `
is a regular prime, i.e., ` 6= 67, then ` - hK′ as well.

Since K is totally ramified at `, we have that [Q`(P ) : Q`] = [K : Q]. Again by
work of Mazur, E has no rational `-torsion, implying that K 6= Q. This implies
P /∈ E(Q`), so E(Q`)[φ] = 0. In the same way, we see that E ′(Q`)[φ

′] = 0.

Since E has additive reduction at ` and good reduction everywhere else, we find
Σ1 = Σ2 = ∅. If ` = 67, we verify that w = 1. Corollary 13 now shows that

r + dimF`
X(Q, E)[`] ≤ w .

We then verify that the rank is equal to w, and we see that

X(Q, E)[`] = X(Q, E ′)[`] = 0 .
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Example 15. Consider E = 294a1 with 7-isogenous curve E ′ = 294a2. We find
Σ1 = ∅, Σ2 = {2}, w = 1, and the rank r = 0. We have K = Q(µ7)

+ (the maximal
real subfield of Q(µ7)) and K ′ = Q(

√
−7). Note that Corollary 13 gives a bound

of 2 for the dimension of X(Q, E)[7]. So we need to look more carefully to prove
that there is no 7-torsion in X(Q, E). According to Theorem 11,

Sel(φ)(Q, E) = ker
(
β : K ′({2}, 7)(1) → K ′({7}, 7)∗

)
.

The group K ′({2}, 7) is generated by (the classes of) 1+
√
−7 and 1−

√
−7; the two

are swapped by the nontrivial automorphism. Therefore K ′({2}, 7)(1) is generated

by their quotient. We check that 1+
√
−7

1−
√
−7

is not a seventh power in Q7(
√
−7). This

implies that β is injective, hence Sel(φ)(Q, E) = 0. Lemma 10 then gives the bound

dimX(Q, E)[7] ≤ 0 + 0− 1 + 1 = 0 .

8. When there is rational `-torsion

Now we consider the case that E(Q)[φ] 6= 0 in some detail. From Theorem 11 and
Lemma 9, we obtain the following.

Corollary 16. Assume that we have a nontrivial point P in E(Q)[φ]. Let S1 = Σ1,
and set S2 = Σ2 if w = 1 or ` ∈ Σ1, S2 = Σ2 ∪ {`} otherwise. Let

α : Q(S1, `) −→ Q(S2, `)
∗

be the canonical map. Then Sel(φ
′)(Q, E ′) = ker α, and

r + dimF`
X(Q, E)[`] ≤ 2 dimF`

ker α−#Σ1 + #Σ2 − w ≤ #Σ1 + #Σ2 − w .

Proof. The result on the Selmer group follows from Theorem 11. (Note that
E(Q)[φ] 6= 0 implies E(Q`)[φ] 6= 0 and therefore E ′(Q`)[φ

′] = 0. Note also that
p ∈ Σ2 implies p ≡ 1 mod `, so that ` /∈ Σ2.) The general bound of Lemma 10
and the trivial fact that dim Q(S, `) = #S then give the estimates. ¤

Note that (for p ∈ Σ2, which implies that p ≡ 1 mod `)

Z×
p /(Z×

p )` ∼= µ`(Fp) ∼= Z/`Z ,

where the first isomorphism is given by x 7→ x(p−1)/` mod p. The second isomor-
phism depends on the choice of a generator of µ`(Fp). Note also that

Z×
` /(Z×

` )` ∼= Z/`Z
via x 7→ (x`−1 − 1)/` mod `.

Example 17. Consider curve E = 50b1, with 5-isogenous curve 50b3. Note that
E(Q)[5] 6= 0. We have Σ1 = {2}, Σ2 = ∅, and w = 1. By Corollary 16, we have

dim Sel(φ
′)(Q, E ′) = 1. The rank is zero, so we find the bound

dimX(50b1)[5] ≤ 2− 1 + 0− 1 = 0 .
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Example 18. For curve E = 174b1, which is 7-isogenous to 174b2, we have
E(Q)[7] 6= 0 and find Σ1 = {2, 3}, Σ2 = {29}; also w = 1. The group µ7(F29) is
generated by 16; we have

160 = 1, 161 = 16, 162 = 24, 163 = 7, 164 = 25, 165 = 23, 166 = 20 .

If we identify Z×
29/(Z×

29)
7 ∼= µ7(F29) with Z/7Z by sending 16 to 1, then 2 is mapped

to 1, and 3 is mapped to 5. So α is surjective and dim ker α = 1. We obtain the
bound (the rank is again zero)

dimX(174b1)[7] ≤ 2− 2 + 1− 1 = 0 .

Example 19. We now consider E = 294b2 with E(Q)[7] 6= 0 and 7-isogenous
curve 294b1. We find Σ1 = {2, 3}, Σ2 = ∅, and w = 0. By Corollary 16, we have

Sel(φ
′)(Q, E ′) = ker

(
Q({2, 3}, 7) → Z×

7 /(Z×
7 )7 ∼= Z/7Z

)
.

The map is given by a 7→ (a6 − 1)/7 (mod 7). Since both 2 and 3 have nontrivial

image, we have dim Sel(φ
′)(Q, E ′) = 1, and (the rank is zero)

dimX(294b2)[7] ≤ 2− 2 + 0− 0 = 0 .

9. Application to the Birch and Swinnerton-Dyer Conjecture

Theorem 20. Let φ : E → E ′ be an isogeny of degree ` of elliptic curves over Q,
and assume that the analytic rank of E is 0 or 1 and the conductor of E is less
than 5000. If the `-primary parts of X(Q, E) and X(Q, E ′) are predicted by the
Birch and Swinnerton-Dyer conjecture to be trivial, then they are indeed trivial.
This means that the conjecture holds up to a rational factor that is a unit at `.

Proof. By the results of [13] and [22], as well as calculations based on [15], the only
remaining cases are the following pairs (E, `): (121b1, 11), (361a1, 19), (441d1, 7),
(784h1, 7), (1849a1, 43), (3025a1, 11), (3136r1, 7), (4489a1, 67).

Four of these cases can be found in Example 14, which shows that X(Q, E)[`] = 0
for each case. This leaves the four cases (441d1, 7), (784h1, 7), (3025a1, 11) and
(3136r1, 7). For all four curves we have that Σ1 = Σ2 = ∅ and w = 1. One can
verify that ` - hK and r = 1 in each case and so by Corollary 13, we find that
X(Q, E)[`] = X(Q, E ′)[`] = 0. ¤

The remaining cases where the analytic rank of E is at most 1 and the conductor
is at most 5000 are

E ∈ {570l1, 870i1, 1050o1, 1938j1, 1950y1, 2370m1, 2550be1, 3270h1}
for ` = 5 and E ∈ {546f1, 858k1, 1230k1} for ` = 7. In these cases the Birch and
Swinnerton-Dyer conjecture implies that

X(Q, E)(`) = 0 but X(Q, E ′)(`) = (Z/`Z)2 .
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In this situation an `-isogeny descent shows that X(Q, E ′)[`] = (Z/`Z)2, as found
in [13] or using the above methods. However this shows neither that

X(Q, E)[`] = 0 nor that X(Q, E ′)(`) = X(Q, E ′)[`] .

These cases require a second descent over φ′ : E ′ → E, a full `-descent on E,
or at the very least one must show that the elements of order ` in X(Q, E ′) are
not divisible by `. This will be the subject of a forthcoming paper with Brendan
Creutz.
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[28] P. Satgé: Groupes de Selmer et corps cubiques, J. Number Th. 23 (1986), 294–317.
[29] E.F. Schaefer: Class groups and Selmer groups, J. Number Th. 56 (1996), no. 1, 79–114.
[30] E.F. Schaefer: Computing a Selmer group of a Jacobian using functions on the curve, Math.

Ann. 310 (1998), 447–471.
[31] E.F. Schaefer, M. Stoll: How to do a p-descent on an elliptic curve, Trans. Amer. Math.

Soc. 356 (2004), 1209–1231.
[32] E.S. Selmer: The diophantine equation ax3 +by3 +cz3 = 0, Acta Math. (Stockh.) 85 (1951),

203–362.
[33] E.S. Selmer: The diophantine equation ax3 + by3 + cz3 = 0. Completion of the tables, Acta

Math. (Stockh.) 92 (1954), 191–197.
[34] J.H. Silverman: The arithmetic of elliptic curves, Springer Graduate Texts in Mathematics

106, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1986.
[35] J.H. Silverman: Advanced topics in the arithmetic of elliptic curves, Springer Graduate

Texts in Mathematics 151, Springer-Verlag, New York Berlin Heidelberg, 1994.
[36] J. Top: Descent by 3-isogeny and 3-rank of quadratic fields, Advances in number theory

(Kingston, ON, 1991), 303–317, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
[37] J. Vélu: Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Série A 273 (1971),

238–241.
[38] J. Woo: Arithmetic of elliptic curves and surfaces: descents and quadratic sections, Ph.D.

thesis, Harvard University (2010).

Mathematics Institute, University of Warwick, Coventry CV4 7AL, U.K.

E-mail address: rlm@rlmiller.org

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

E-mail address: Michael.Stoll@uni-bayreuth.de


