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Abstract. For any abelian variety J over a global field k and an
isogeny φ : J → J , the Selmer group Selφ(J, k) is a subgroup of the
Galois cohomology group H1(Gal(ks/k), J [φ]), defined in terms of local
data. When J is the Jacobian of a cyclic cover of P1 of prime degree p,
the Selmer group has a quotient by a subgroup of order at most p that is
isomorphic to the ‘fake Selmer group’, whose definition is more amenable
to explicit computations. In this paper we define in the same setting the
‘explicit Selmer group’, which is isomorphic to the Selmer group itself
and just as amenable to explicit computations as the fake Selmer group.
This is useful for describing the associated covering spaces explicitly
and may thus help in developing methods for second descents on the
Jacobians considered.

1. Introduction

Let k be a field and ks a separable closure of k with Galois group Gk =

Gal(ks/k). Let C be a smooth projective curve over k with Jacobian J . Let

φ : J → J be a separable isogeny and J [φ] the kernel of φ : J(ks) → J(ks).

Taking Galois invariants of the short exact sequence

0→ J [φ]→ J(ks)
φ−→ J(ks)→ 0

gives rise to a long exact sequence, which induces another short exact se-

quence

0→ J(k)/φJ(k)
δφ−→ H1(Gk, J [φ])→ H1(Gk, J(ks))[φ]→ 0,

where H1(Gk, J(ks))[φ] stands for the kernel of the map φ∗ : H1(Gk, J(ks))→
H1(Gk, J(ks)) induced by φ on cohomology. If J(k) is finitely generated,

which is the case if k is finitely generated as a field over its prime subfield,

and if φ is not an automorphism, then often, including in the cases we will

treat, the size of the group J(k)/φJ(k) yields a bound on the rank of the

Mordell-Weil group J(k). As many methods of retrieving arithmetic infor-

mation about C, such as the Mordell-Weil sieve and Chabauty’s method,

involve the rank of J(k), it is of interest to be able to bound the size of
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J(k)/φJ(k), or, equivalently, of its image in H1(Gk, J [φ]). Unfortunately,

this group H1(Gk, J [φ]) is in general very large and hard to handle.

Now assume that k is a global field. For each place v of k, we write kv for

the completion of k at v. Then the local analogues of the map J(k)/φJ(k)→
H1(Gk, J [φ]) for each place v can be put together to give the following

commutative diagram.

J(k)/φJ(k)
δφ //

��

H1(Gk, J [φ]) //

��

τ

**UUUUUUUUUUUUUUUUU
H1(Gk, J(ks))[φ]

��∏
v J(kv)/φJ(kv) //

∏
v H1(Gal(ks

v/kv), J [φ]) //
∏

v H1(Gk, J(ks
v))[φ]

Here
∏

v denotes the product over all places of k. By definition, the Selmer

group Selφ(J, k) is the kernel of τ : it consists of all elements of H1(Gk, J [φ])

that map into the image of the local map J(kv)/φJ(kv)→ H1(Gal(ks
v/kv), J [φ])

for every v. Clearly Selφ(J, k) contains the image of δφ, and it can be shown

that Selφ(J, k) is an effectively computable finite group, which already gives

a bound on J(k)/φJ(k). However, the description of Selφ(J, k) as a subgroup

of H1(Gk, J [φ]) is not amenable to explicit computations.

In [PS], Poonen and Schaefer consider curves C with an affine model

given by yp = f(x), where p is a prime number and f is p-power free and

splits into linear factors over ks. They assume that the characteristic of k

is not equal to p and that k contains a primitive p-th root ζ of unity. They

take the isogeny to be φ = 1 − ζ, where ζ acts on C as (x, y) 7→ (x, ζy).

From now on we restrict ourselves to this situation as well. Note that this

includes hyperelliptic curves as the special case p = 2; then the isogeny φ is

multiplication by 2. After an automorphism of the x-line, we may assume

that the map to the x-line does not ramify at ∞, so that the degree of f is

divisible by p.1 Let f0 be a radical of f , i.e., a separable polynomial in k[x]

with the same roots in ks as f , and set L = k[T ]/f0(T ). We assume that

every point in J(k) can be represented by a k-rational divisor on C. Poonen

and Schaefer define a homomorphism (x− T ) : J(k)→ L∗/L∗pk∗ and show

that it factors as

(1.1) J(k)→ J(k)/φJ(k)
δφ−→ Selφ(J, k)→ L∗/L∗pk∗.

We will recall the definition of this map in Section 4. For p = 2 and a

polynomial f of degree 4 with a rational root, the curve C is elliptic; the

last map in the factorization is injective in this case and the map (x − T )

gives the usual 2-descent map on C. For p = 2 and deg f = 6, Cassels [Ca1]

1For this to be true, k has to be sufficiently large. Later k will be a global field, and
there will be no problem.
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had already defined the map (x− T ) (using different notation), but it was

Poonen and Schaefer that related it to the cohomological map δφ through

the given factorization.

In general, and in fact already in Cassels’ case, the last map in the fac-

torization need not be injective; its kernel is trivial or isomorphic to µp.

Following [PS], the image of Selφ(J, k) in L∗/L∗pk∗ is called the fake Selmer

group Selφfake(J, k); it is a quotient of the true Selmer group Selφ(J, k). This

means that, although the group L∗/L∗pk∗ is easier to work with explic-

itly than Selφ(J, k), information may get lost by studying the image of

J(k)/φJ(k) in the former group instead of the latter.

The aim of this paper is to replace the group L∗/L∗pk∗ by one that is

equally easy to work with and that admits an injection from Selφ(J, k) into

it, and thus also from J(k)/φJ(k). The description of such a group involves

a ‘weighted norm map’ N defined as follows. Let f = c
∏

j f
mj
j be the unique

factorization of f over k with fj monic and c ∈ k∗. For β ∈ L∗ we then set

N(β) =
∏
j

NormLj/k(βj)
mj ,

where βj is the image of β in the field Lj = k[x]/fj(x).

It turns out that the image of the last map Selφ(J, k)→ L∗/L∗pk∗ of the

factorization (1.1) is contained in the kernel of the map N : L∗/L∗pk∗ →
k∗/k∗p induced by the weighted norm map. The new group consists of all

elements of this kernel, together with some choice of p-th root of their norm.

More precisely, we will prove the following theorem.

Theorem 1.1. Let k be a global field containing a primitive p-th root of

unity, and let C, J , L and N be as in the discussion above. Assume that for

each place v of k, the curve C has a kv-rational divisor class of degree 1.

Set Γ = {(δ, n) ∈ L∗ × k∗ |N(δ) = np} and let χ : L∗ → Γ be given by

θ 7→ (θp, N(θ)). Let ι : k∗ → Γ be defined by x 7→ (x, x
1
p

deg f ). Then there is

a homomorphism (x− T, y) : J(k)→ Γ/χ(L∗)ι(k∗) that factors as

J(k)→ J(k)/φJ(k)
δφ−→ Selφ(J, k) ↪→ Γ/χ(L∗)ι(k∗)

and whose composition with the map Γ/χ(L∗)ι(k∗)→ L∗/L∗pk∗ induced by

the projection Γ→ L∗ equals the map (x− T ).

The map (x − T, y) will be defined in Section 4. The isomorphic image

of Selφ(J, k) in Γ/χ(L∗)ι(k∗) is the explicit Selmer group Selφexplicit(J, k).

If all one wants is to get the size of the Selmer group (and thus an

upper bound on the Mordell-Weil rank), then the results of [PS] are suffi-

cient, since they tell us exactly the difference between the Fp-dimensions of
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Selφ(J, k) and Selφfake(J, k). On the other hand, apart from the intellectual

satisfaction resulting from a nice explicit description of the Selmer group

itself, the additional information given by identifying Selφ(J, k) with the ex-

plicit Selmer group gives us a handle on the covering spaces corresponding

to its elements: in [FTvL] equations for the covering spaces are given in

the genus two case that depend on the image of the Selmer group element

in the fake Selmer group together with a square root of its norm, which

is precisely the information contained in the corresponding element of the

explicit Selmer group. Explicit models of these covering spaces are useful for

the search of potentially large Mordell-Weil generators and can also serve

as a starting point for second descents. In particular, one can hope that our

explicit Selmer group can be used to extend Cassels’ method for computing

the Cassels-Tate pairing on the 2-Selmer group of an elliptic curve [Ca2],

which uses the quadratic Hilbert symbol on elements of the explicit version

of the Selmer group, to Jacobians of curves of genus two.

Since our results here extend and improve what Poonen and Schaefer

have done, much of this paper is based on Poonen and Schaefer’s paper [PS],

including the weighted norm map N . The main new element brought in is

the group Γ of Theorem 1.1, which was first introduced in [FTvL]. The

recent preprint [BPS] contains in its appendix a general recipe for turning

‘fake’ Selmer groups into ‘explicit’ ones, which was developed as a general-

ization of the method given in [ScSt] for p-descent on elliptic curves with

p odd and of the approach described here. Our result could in principle also

be obtained as a special case of this general recipe. However, the more direct

approach used here leads to a much simpler proof.

In the next section we will introduce some notation, all following [PS].

In Section 3 we identify some cohomology groups with more explicit groups

such as those mentioned in Theorem 1.1. In Section 4 we define the maps

(x − T ) and (x − T, y), so that in the last section we can ‘unfake’ the

fake Selmer group and replace it with the explicit Selmer group by proving

Theorem 1.1.

2. Notation

Our setting will be the same as in [PS]. Let p be a prime. Let k be a

field of characteristic not equal to p and let ks be a separable closure of k

with Galois group Gk = Gal(ks/k). Assume that k contains a primitive p-th

root of unity. For any Gk-module A and any integer i ≥ 0 we abbreviate

the cohomology group Hi(Gk, A) by Hi(A). Let π : C → P1 be a cyclic cover
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of P1 over k of degree p such that all branch points are in P1(ks) \ {∞}.
By Kummer theory, the curve C has a (possibly singular) model in A2(x, y)

given by yp = f(x), where f ∈ k[x] factors over ks as

f(x) = c
∏
ω∈Ω

(x− ω)aω

with c ∈ k∗, with 1 ≤ aω < p for all ω in the set Ω ⊂ ks of roots of f ,

and where p divides the degree deg f =
∑

ω aω of f . Set d = #Ω. By the

Riemann–Hurwitz formula the genus of C equals g(C) = (d− 2)(p− 1)/2.

For any k-variety V , we write V s = V ×kks, while κ(V ) and κ(V s) denote

the function fields of V and V s. Let DivCs be the group of all divisors on

Cs. If f ∈ κ(Cs)∗, we denote the divisor of f by div(f) ∈ DivCs. We let

PrincCs = {div(f) : f ∈ κ(Cs)∗} be the subgroup of principal divisors. Set

PicCs = DivCs/PrincCs. Also set

DivC = H0(DivCs)

PrincC = H0(PrincCs),

PicC = DivC/PrincC.

As in [PS], we consider the divisor m = π∗∞ ∈ DivC, the sum of all p points

above ∞ ∈ P1. For any function h in the function field κ(Cs) of Cs we say

that h is 1 mod m if h(P ) = 1 for all points P in the support of m (for a more

general definition, see [PS, section 2]). Let DivmC
s ⊂ DivCs be the group

of all divisors with support disjoint from m, and let PrincmC
s ⊂ PrincCs

be the subgroup of all principal divisors of functions that are 1 mod m. Set

PicmC
s = DivmC

s/PrincmC
s and

DivmC = H0(DivmC
s)

PrincmC = H0(PrincmC
s),

PicmC = DivmC/PrincmC.

Let Div0Cs ⊂ DivCs be the subgroup of divisors of degree 0 and let

Div0C, Pic0
mC

s, etc. be the degree-zero parts of the corresponding groups.

Let Div(p) Cs ⊂ DivCs be the subgroup of divisors of degree divisible by

p and let Div(p) C, Pic(p)
m Cs, etc. be the degree-divisible-by-p parts of the

corresponding groups. Let J and Jm denote the Jacobian of C and the gener-

alized Jacobian of the pair (C,m), respectively, so that J(ks) = Pic0Cs and

Jm(ks) = Pic0
mC

s. We write J [p] and Jm[p] for the kernel of multiplication-

by-p, written as [p], on J(ks) and Jm(ks), respectively. We denote the trivial

group in diagrams by 1.
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3. Making cohomology groups explicit

Pick any c0 ∈ k∗ and define a radical f0 = c0

∏
ω∈Ω(x − ω) ∈ k[x] of f .

Set L = k[X]/f0(X) and Ls = L ⊗k ks. We will denote the image of X in

L and Ls by T . By the Chinese Remainder Theorem, the ks-linear maps

ρω : Ls → ks, T 7→ ω combine to an isomorphism

ρ = (ρω)ω∈Ω : Ls →
∏
ω∈Ω

ks,

which restricts to the diagonal embedding on ks ⊂ Ls. From now on, when-

ever ω is used as index, it ranges over all elements of Ω. Note that the

induced Galois action on
∏

ω k
s is given by acting on the indices as well,

so by σ
(
(aω)ω

)
=
(
σ(aσ−1ω)

)
ω
. We often identify Ls with

∏
ω k

s through ρ,

thereby identifying T with the element (ω)ω. For any commutative ring R,

we let µp(R) denote the kernel of the homomorphism R∗ → R∗, x 7→ xp. We

abbreviate µp(k) = µp(k
s) by µp and note that ρ induces an isomorphism

µp(L
s) →

∏
ω µp. Let the ‘weighted norm map’ N : Ls ∼=

∏
ω k

s → ks be

given by (βω)ω 7→
∏

ω β
aω
ω . Since p divides

∑
ω aω, the kernel of N contains

µp. The map N is Galois-equivariant, as for conjugate roots ω, ω′ ∈ Ω we

have aω = aω′ , so it induces a map N : L → k. This map is the same as

the norm map N that was defined in the introduction. Let M denote the

kernel of the induced map N : µp(L
s) → µp. Then we obtain the following

commutative diagram, in which the horizontal and vertical sequences are

exact.

(3.1) 1

��

1

��
µp

��

µp

��
1 // M //

��

µp(L
s)

��

N // µp // 1

1 // M/µp //

��

µp(L
s)/µp

N //

��

µp // 1

1 1

Note that the map N : µp(L
s) → µp is surjective because we can take 1 in

each component of µp(L
s) ∼=

∏
ω k

s except for one component, say corre-

sponding to ω, where we choose an aω-th root of ζ, which exists because

the greatest common divisor (aω, p) equals 1.
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We will give a concrete description of the Galois cohomology groups

H1(M) and H1(µp(L
s)) and their images in H1(M/µp) and H1(µp(L

s)/µp).

Let ∂ : L∗ × k∗ → k∗ be the homomorphism that sends (δ, n) to N(δ)n−p

and let ∂s denote the corresponding map from Ls∗ × ks∗ to ks∗. Set

Γs = ker ∂s = {(δ, n) ∈ Ls∗ × ks∗ | N(δ) = np}

and

Γ = H0(Γs) = ker ∂ = {(δ, n) ∈ L∗ × k∗ | N(δ) = np} .

We will write ι for the injection ks∗ → Γs given by x 7→ (x, x
1
p

deg f ); it

restricts to an injection ι : k∗ → Γ. Let the map χ : Ls∗ → Γs be given

by θ 7→ (θp, N(θ)). It is surjective, has kernel M , and it restricts to a map

χ : L∗ → Γ. The long exact sequence associated to the short exact sequence

(3.2) 1→M → Ls∗ χ−→ Γs → 1

contains the connecting map δχ : Γ→ H1(M), which sends (δ, n) to the class

of the cocycle Gk 3 σ 7→ σ(θ)/θ ∈ M for a fixed choice of θ ∈ Ls∗ with

χ(θ) = (δ, n). Similarly, the short exact sequence

(3.3) 1→ µp(L
s)→ Ls∗ x7→xp−−−→ Ls∗ → 1

provides a connecting map δp : L∗ → H1(µp(L
s)). Parts of the following

proposition were proved for p = 2 in [FTvL, Proposition 2.6].

Proposition 3.1. The map δχ induces an isomorphism δχ : Γ/χ(L∗) →
H1(M) and an isomorphism from Γ/χ(L∗)ι(k∗) to the image of H1(M) in

H1(M/µp). The map δp induces an isomorphism δp : L∗/L∗p → H1(µp(L
s))

and an isomorphism from L∗/L∗pk∗ to the image of H1(µp(L
s)) in H1(µp(L

s)/µp).

These maps fit in the commutative diagram

µp //

%%KKKKKKKKKKK H1(M)

��

// H1(µp(L
s))

��

Γ/χ(L∗)

δχ
77nnnnnnnnnnnn

//

��

L∗/L∗p

��

δp

77nnnnnnnnnnnn

µp //

%%KKKKKKKKKKK H1(M/µp) // H1(µp(L
s)/µp)

Γ/χ(L∗)ι(k∗)

δχ
77nnnnnnnnnnnn

// L∗/L∗pk∗
δp

77nnnnnnnnnnnn

where the back face consists of part of the long exact sequences associated

to the horizontal sequences in (3.1), the vertical maps in the front face are

the obvious quotient-by-k∗ maps, the horizontal maps in the front face are
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induced by the projection map Γ→ L∗, (δ, n) 7→ δ, and the remaining maps

from µp send ζ ∈ µp to the class of (1, ζ).

Proof. The commutativity of the front and back face are obvious. The pro-

jection map Γs → Ls∗, (δ, n) 7→ δ induces a map between the short exact

sequences (3.2) and (3.3). Part of the associated long exact sequences gives

the following diagram.

L∗
χ // Γ

��

δχ // H1(M)

��

// H1(Ls∗)

L∗
x 7→xp // L∗

δp // H1(µp(L
s)) // H1(Ls∗)

By a generalization of Hilbert’s Theorem 90 the group H1(Ls∗) is trivial

(see [Se, Exercise X.1.2]). The commutativity of the quadrilateral in the top

face follows, as well as the fact that the maps δχ and δp in it are isomor-

phisms. Similarly, also using that H1(ks∗) vanishes by Hilbert’s Theorem 90,

the natural maps from the short exact sequence

(3.4) 1→ µp → ks∗ x 7→xp−−−→ ks∗ → 1

to (3.2) and (3.3) yield long exact sequences that induce the following dia-

grams.

k∗/k∗p

��

∼= // H1(µp)

��

k∗/k∗p

��

∼= // H1(µp)

��
Γ/χ(L∗)

∼=
δχ

// H1(M) L∗/L∗p
∼=
δp

// H1(µp(L
s))

The associated maps on cokernels of the vertical homomorphisms induce

the claimed isomorphisms from L∗/L∗pk∗ to the image of H1(µp(L
s)) in

H1(µp(L
s)/µp) and from Γ/χ(L∗)ι(k∗) to the image of H1(M) in H1(M/µp).

This also implies the commutativity of the left and right faces of the cube in

the diagram. Commutativity of the quadrilateral in the bottom face follows

immediately from the commutativity of the other faces of the cube and the

fact that the quotient map Γ/χ(L∗) → Γ/χ(L∗)ι(k∗) is surjective. Finally,

choose a θ ∈ µp(L
s) with N(θ) = ζ. Then the image of ζ in H1(M) is

represented by the cocycle σ 7→ σ(θ)/θ, which coincides with δχ((1, ζ)). It

follows that also the triangular prism in the diagram commutes. �

4. A new map

Let h be a nonzero rational function on C. Then we can extend evaluation

of h on points not in the support of div(h) multiplicatively to divisors whose
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support is disjoint from that of div(h) by setting

h(D) =
∏
P

h(P )nP if D =
∑
P

nPP .

If K is a field extension of k that is a field of definition of h, then this defines

a group homomorphism from the group of K-defined divisors with support

disjoint from that of div(h) into the multiplicative group of K.

In the following, we will frequently work with objects defined over L.

There are (at least) two ways of interpreting what these objects mean. We

can either just think of them as L-defined objects (functions, points, etc.),

allowing étale algebras over k instead of only field extensions. Or else we

remind ourselves that the elements of L correspond to Galois-equivariant

maps from Ω into ks; then a function defined over L can be considered as

a Galois-equivariant map from Ω into κ(Cs), etc. Sometimes, we use Ls

in place of L; then the corresponding maps from Ω need not be Galois-

equivariant. In this sense, µp(L
s) denotes the set of maps Ω → µp, and M

denotes the subset of maps η such that N(η) =
∏

ω η(ω)aω = 1.

For example, we let W = (T, 0) ∈ C(L) be a ‘generic ramification point’

on C. In the second interpretation, W corresponds to the map ω 7→ (ω, 0)

that gives all the ramification points on C indexed by the roots of f . In this

section, we will consider the function x− T , which is an L-defined rational

function on C. In our second interpretation, we associate to each ω ∈ Ω the

rational function x− ω ∈ κ(Cs). We have

div(x− T ) = pW −m and div(y) = TrW − 1
p
(deg f) m ,

where TrW =
∑

ω aω(ω, 0) denotes the ‘trace’ of W , the additive analogue

of the weighted norm N . In other words, in our first interpretation W is a

prime divisor in DivCL, while in the second interpretation it corresponds

with a Galois-equivariant map Ω → DivCs sending ω to the prime divisor

(ω, 0), the images of which have weighted sum TrW ∈ DivC.

A divisor on Cs is called good if its support is disjoint from m = π∗∞
and the ramification points of π, i.e., disjoint from the support of div(y).

This also means that the support is disjoint from the support of div(x−T ).

Let Div⊥C
s denote the group of good divisors on Cs, and set Div⊥C =

H0(Div⊥C
s). Every divisor class in PicCs and PicmC

s is represented by

a good divisor. Let Div0
⊥C

s, Div0
⊥C, Div

(p)
⊥ Cs, and Div

(p)
⊥ C denote the

obvious groups. By the introductory remarks of this section, the function

x− T defines homomorphisms

(x− T ) : Div⊥C → L∗ and (x− T ) : Div⊥C
s → Ls∗ .
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We define the map

α : Jm[p]→ Ls∗, D 7→ (x− T )(D)

h(W )
,

where D is a good divisor representing the class D, and where h ∈ κ(Cs) is

the unique function that is 1 mod m and satisfies div(h) = pD. As before,

h(W ) can be interpreted as the map ω 7→ h((ω, 0)) ∈ ks∗. Note that α is

well-defined as for any representative D′ of D there is a function g ∈ κ(Cs)

that is 1 mod m with div(g) = D′ − D, so that div(gph) = pD′; by Weil

reciprocity we have

(x− T )(D′)

(gph)(W )
=

(x− T )(div(g) +D)

gp(W )h(W )
=
g(div(x− T ))

g(pW )
· (x− T )(D)

h(W )

=
g(pW −m)

g(pW )
· (x− T )(D)

h(W )
=
g(pW )g(m)−1

g(pW )
· (x− T )(D)

h(W )
=

(x− T )(D)

h(W )
,

since g(m) = 1. We will see that α induces an isomorphism between M and

the kernel of an endomorphism of Jm that we now define.

The group µp acts on C and Cs by letting ζ ∈ µp act as (x, y) 7→ (x, ζy).

Linear extension gives a Galois-equivariant action on DivCs by the group

ring Z[µp]. The element t =
∑

ζ∈µp ζ ∈ Z[µp] sends a point Q ∈ Cs(ks) to the

divisor t(Q) = π∗(πQ), which is linearly equivalent to m. We conclude that t

sends a divisor D ∈ DivCs to a divisor linearly equivalent to (degD)m, and

the subgroups Div0Cs and Div0
mC

s to PrincCs and PrincmC
s, respectively.

This implies that the induced action of Z[µp] on J , on Jm, on Pic0C, and

on Pic0
mC factors through the quotient Z[µp]/t, which is isomorphic to the

cyclotomic subring of k generated by µp.

Fix, once and for all, a primitive p-th root of unity ζ ∈ µp, so that this

cyclotomic ring is equal to Z[ζ]. Set

φ = 1− ζ and ψ = −
p−1∑
i=1

iζ i

and notice that φψ = p. Note that this is slightly different from [PS], where

φ and ψ are defined as elements of the group ring Z[µp]. Let Jm[φ] and J [φ]

denote the kernels of the action of φ on Jm(ks) and J(ks) respectively.

Proposition 4.1. There is an isomorphism ε : Jm[φ]→M such that the ho-

momorphism α is the composition of ψ : Jm[p]→ Jm[φ] and ε. Furthermore,

ε induces an isomorphism J [φ]→M/µp.

Proof. This is extracted from [PS]. Let Jm[p] denote the p-torsion of the

group PicmC
s/〈m′〉, where m′ denotes the class of π∗P for any P ∈ A1(k) ⊂
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P1(k). By [PS, Section 7] there is a pairing

ep : Jm[p]× Jm[p]→ µp,

defined for a pair (D1,D2) of classes, represented respectively by divisors

D1 and D2 with disjoint support, to be

ep(D1,D2) = (−1)d1d2
h2(D1)

h1(D2)
,

where for i = 1, 2 we have di = degDi, while hi ∈ κ(Cs) is the unique

function such that x−dihi is 1 mod m and div(hi) = pDi − dim. Note that

the group Jm[p] ∼= Pic0
m(Cs)[p] is a subgroup of Jm[p]. By [PS, Section 6

and Prop. 7.1] there is an isomorphism ε : Jm[φ] → M such that ε(ψD) =

ep(D,W ) for all D ∈ Jm[p]. Let the class D ∈ Jm[p] be represented by a

good divisor D, automatically of degree d1 = 0, and let h ≡ 1 mod m be a

function satisfying div(h) = pD. Note that x−1(x − T ) is 1 mod m, so that

we can take x−T as the function corresponding to W in the definition of ep.

Therefore, we have

ε(ψD) = ep(D,W ) = (−1)0 (x− T )(D)

h(W )
= α(D),

which shows that α factors as claimed. For the fact that ε induces an iso-

morphism J [φ]→M/µp, see [PS, Section 6]. �

As in [PS], we denote the isomorphisms Jm[φ] → M and J [φ] → M/µp

from Proposition 4.1 both by ε.

Next, we define the homomorphism

(γy) : Div
(p)
⊥ Cs → ks∗,

∑
P

nP (P ) 7→ c−
1
p

P
nP
∏
P

y(P )nP ,

where c is the leading coefficient of f as before. This map descends to a

map (γy) : Div
(p)
⊥ C → k∗. The name (γy) comes from the fact that if we

choose any p-th root γ ∈ ks of c−1, then the map (γy) is the restriction to

Div
(p)
⊥ Cs of evaluation of γy on Div⊥C

s. On Div0
⊥C

s it is also induced by

evaluation of y. Therefore, when appropriate, we may refer to the map (γy)

as just y. We remark that

(4.1) N(x− T ) =
∏
ω

(x− ω)aω = c−1f(x) = c−1yp = (γy)p .

Our main result gives a cohomological interpretation of the combined

map

(x− T, γy) : Div
(p)
⊥ Cs → Ls∗ × ks∗ .
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To this end, let ε∗ denote the maps on cohomology induced by both maps

ε. The short exact sequences

1→ Jm[φ]→ Jm(ks)
φ−→ Jm(ks)→ 1 and 1→ J [φ]→ J(ks)

φ−→ J(ks)→ 1

induce connecting maps Jm(k) → H1(Jm[φ]) and J(k) → H1(J [φ]) that we

both denote by δφ.

Theorem 4.2. The map

(x− T, γy) : Div
(p)
⊥ Cs → Ls∗ × ks∗, D 7→

(
(x− T )(D), (γy)(D)

)
induces natural homomorphisms Pic0

mC → Γ/χ(L∗) and Pic0C → Γ/χ(L∗)ι(k∗)

making the following diagram commutative.

Jm(k)

��

δφ // H1(Jm[φ])
ε∗
∼=

//

��

H1(M)

��

Pic0
mC

��

∼=
;;vvvvvvvvv

(x−T,γy)
// Γ/χ(L∗)

δχ

∼=
;;vvvvvvvvv

��

J(k)
δφ // H1(J [φ])

ε∗
∼=

// H1(M/µp)

Pic0C
, �

;;vvvvvvvvv (x−T,γy)
// Γ/χ(L∗)ι(k∗)

, � δχ

;;vvvvvvvvv

Proof. For any good divisor D =
∑

P nP (P ) of degree divisible by p we

have, using (4.1),

N
(
(x− T )(D)

)
=
(
N(x− T )

)
(D) = (c−1yp)(D) = (γy)(D)p,

so (x−T, γy) induces a homomorphism Div
(p)
⊥ C → Γ. Suppose D ∈ Div0

⊥C

is principal, say D = div(h) for some h ∈ κ(C)∗. Then by Weil reciprocity

we have

(x−T )(D) = (x−T )
(
div(h)

)
= h

(
div(x−T )

)
= h(pW−m) = h(W )p·h(m)−1

and

(γy)(D) = y
(
div(h)

)
= h

(
div(y)

)
= h

(
TrW − 1

p
(deg f)m

)
= N(h(W ))·h(m)−

1
p

deg f .

We therefore find

(x− T, γy)(D) = χ(h(W )) · ι(h(m)−1).

This is contained in χ(L∗)ι(k∗) and if h is 1 mod m then in fact in χ(L∗). As

every class in Pic0C and Pic0
mC is represented by a good divisor, we obtain

the claimed homomorphisms and see that the front face of the diagram

commutes.
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The commutativity of the right-side face follows from Proposition 3.1,

while that of the back and left-side faces is obvious. For the top face, take

any D ∈ Pic0
mC, represented by a good divisor D ∈ Div0

⊥C, and choose a

class D′ ∈ Pic0
mC

s ∼= Jm(ks) with pD′ = D and a good divisor D′ ∈ Div0
⊥C

s

representing D′. Then φ(ψD′) = pD′ = D, so δφ(D) is represented by the

cocycle that sends σ ∈ Gk to σ(ψD′)−ψD′ = ψ(σ(D′)−D′) and ε∗(δφ(D))

is represented by σ 7→ ε(ψ(σ(D′)−D′)). Let h be a function that is 1 mod m,

satisfying

div(h) = pD′ −D ,

so that div(σ(h)/h) = p(σ(D′) − D′). Therefore, by Proposition 4.1, the

class ε∗(δφ(D)) is represented by the cocycle that sends σ to

ε (ψ(σ(D′)−D′)) = α(σ(D′)−D′) =
(x− T )(σ(D′)−D′)

(σ(h)/h)(W )
=
σ(θ)

θ
,

for all σ ∈ Gk, with

θ =
(x− T )(D′)

h(W )
.

We now show that χ(θ) = (θp, N(θ)) equals (x − T, γy)(D). In the first

component, we have

θp =
(x− T )(D′)p

h(W )p
=

(x− T )(pD′)

h(pW )
=

(x− T )(div(h) +D)

h(div(x− T ) + 1
p
(deg f)m)

= (x−T )(D)

by Weil reciprocity and the fact that h(m) = 1. In the second component,

we similarly have

N(θ) =
N
(
(x− T )(D′)

)
N(h(W ))

=
y(D′)p

h(TrW )
=

y(pD′)

h(div(y) + 1
p
(deg f)m)

=
y(div(h) +D)

h(div(y) + 1
p
(deg f)m)

= y(D) .

This implies that δχ ((x− T, γy)(D)) is represented by the cocycle σ 7→
σ(θ)/θ as well, so the top face of the diagram commutes indeed. Finally,

commutativity of the bottom face of the diagram follows from commuta-

tivity of the other faces and the fact that the map Pic0
mC → Pic0C is

surjective. �
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The diagrams of Proposition 3.1 and Theorem 4.2 combine to the fol-

lowing diagram.

(4.2)

Jm(k)

��

δφ // H1(Jm[φ]) ∼= H1(M)

��

// H1(µp(L
s))

��

Pic0
mC

��

∼=
;;vvvvvvvvv

(x−T,y)
//

(x−T )

22Y Z [ \ ] ^ _ ` a b c d eΓ/χ(L∗)

δχ

∼=
;;vvvvvvvvv

//

��

L∗/L∗p

��

δp

∼=
;;vvvvvvvvv

J(k)
δφ

// H1(J [φ]) ∼= H1(M/µp) // H1(µp(L
s)/µp)

Pic0C
, �

;;vvvvvvvvv (x−T,y)
//

(x−T )

22Y Z [ \ ] ^ _ ` a b c d eΓ/χ(L∗)ι(k∗)
, � δχ

;;vvvvvvvvv
// L∗/L∗pk∗

, � δp

;;vvvvvvvvv

The two compositions of the horizontal maps in the front face of this dia-

gram, indicated by dashed arrows, are the (x− T ) maps that play a major

role in [PS]. Indeed, if we replace the front face by the diagram

Pic0
mC

��

(x−T )
// L∗/L∗p

��

Pic0C
(x−T )

// L∗/L∗pk∗

then all information in this restricted diagram can already be found in [PS].

Remark 4.3. As explained in [PS, Section 10], the group Pic0C is the

largest subgroup of J(k) whose image under the map J(k)→ H1(µp(L
s)/µp)

is contained in the image of L∗/L∗pk∗. Similarly, it is the largest sub-

group whose image under J(k) → H1(J [φ]) is contained in the image of

Γ/χ(L∗)ι(k∗).

5. ‘Unfaking’ the fake Selmer group

In this section, we make the additional assumption that k is a global

field. For each place v of k, we let kv denote the completion at v, with

absolute Galois group Gv = Gal(ks
v/kv); we set Lv = L⊗k kv and

Γv = {(δ, n) ∈ L∗v × k∗v | N(δ) = np} .

We also assume that for each place v of k, the curve C has a kv-rational

divisor class of degree 1. As mentioned in [PS, Section 13], this assumption

is automatically satisfied when the genus g(C) = (d− 2)(p− 1)/2 satisfies

g(C) 6≡ 1 (mod p). It implies that the injection Pic0C → J(k) is an iso-

morphism (see [PS, Prop. 3.2 and 3.3]). As before, we will abbreviate the
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product over all places of k to
∏

v. The bottom face of diagram (4.2) then

yields the front face of the following diagram, where, as before, we have

identified H1(J [φ]) with H1(M/µp).

(5.1)

∏
v J(kv)/φJ(kv)

� �

(x−T,y)v

//

(x−T )v

,,∏
v Γv/χ(L∗v)ι(k

∗
v)� _

(δχ)v

��

//
∏

v L
∗
v/L

∗
v
pk∗v� _

(δp)v

��

J(k)/φJ(k) � �

(x−T,y)
//

r
;;vvvvvvvvv

Γ/χ(L∗)ι(k∗)
� _

δχ

��

r
;;vvvvvvvvv

// L∗/L∗pk∗
� _

δp

��

r
;;vvvvvvvvv

∏
v J(kv)/φJ(kv)

� �

(δφ)v

//
∏

v H1(Gv, J [φ]) //
∏

v H1(Gv, µp(L
s)/µp)

J(k)/φJ(k) � �

δφ

//

r
;;vvvvvvvvv

H1(J [φ]) //

r
;;vvvvvvvvv

H1(µp(L
s)/µp)

r
;;vvvvvvvvv

For each map in this front face, there is an analogous map over each com-

pletion kv of k. Taking the product over all places gives the back face of the

diagram, while r denotes each map from a global group to the product of

the analogous local groups.

The image of J(k)/φJ(k) in each of the four global groups is contained

in the inverse image under r of the image of
∏

v J(kv)/φJ(kv) in the corre-

sponding product of local groups. We give three of these inverse images a

name.

Selφ(J, k) = r−1

(
im

(
(δφ)v :

∏
v

J(kv)/φJ(kv)→
∏
v

H1(Gv, J [φ])

))
,

Selφfake(J, k) = r−1

(
im

(
(x− T )v :

∏
v

J(kv)/φJ(kv)→
∏
v

L∗v/L
∗
v
pk∗v

))
,

Selφexplicit(J, k) = r−1

(
im

(
(x− T, y)v :

∏
v

J(kv)/φJ(kv)→
∏
v

Γv/χ(L∗v)ι(k
∗
v)

))
.

The Selmer group Selφ(J, k) is commonly known. The fake Selmer group

Selφfake(J, k) was introduced by Poonen and Schaefer in [PS]. The two groups

are related by an exact sequence

µp → Selφ(J, k)→ Selφfake(J, k)→ 0,

and it is also known when the first map is injective (see [PS, Thm. 13.2]).

However, it is not always obvious whether the image of J(k)/φJ(k) in

Selφ(J, k) maps injectively to Selφfake(J, k). This means that although the



16 M. STOLL AND R. VAN LUIJK

fake Selmer group is more practical to work with explicitly, in doing so in-

formation may be lost. The following theorem shows that no information

is lost when we work instead with the explicit Selmer group Selφexplicit(J, k),

which is just as easy to work with as the fake Selmer group.

Theorem 5.1. The map δχ induces an isomorphism Selφexplicit(J, k)→ Selφ(J, k).

Proof. The fact that δχ maps Selφexplicit(J, k) injectively to Selφ(J, k) is clear,

so it remains to prove surjectivity. Note that we have an isomorphism

H2(µp) ∼= Br(k)[p]. Therefore, identifying H1(J [φ]) with H1(M/µp) through

ε∗ as before, the long exact sequences associated to the vertical short exact

sequences in diagram (3.1), together with the results of Proposition 3.1, give

rise to a commutative diagram with exact columns:

Γ/χ(L∗)ι(k∗)

δχ
��

// L∗/L∗pk∗

δp
��

H1(J [φ])

δ1
��

// H1(µp(L
s)/µp)

δ2
��

Br(k)[p] Br(k)[p]

An analogous statement holds for every completion kv of k. Now suppose

we have an element ξ ∈ Selφ(J, k). Then by definition r(ξ) is contained in

the image of (δφ)v and therefore in the image of (δχ)v (see diagram (5.1)).

It follows that r(ξ) maps to 0 in
∏

v Br(kv)[p] under the product of the

local versions of δ1. Since the map Br(k)[p]→
∏

v Br(kv)[p] is injective, we

conclude δ1(ξ) = 0, so there is an element η ∈ Γ/χ(L∗)ι(k∗) with δχ(η) = ξ.

A short diagram chase shows η ∈ Selφexplicit(J, k), so δχ : Selφexplicit(J, k) →
Selφ(J, k) is indeed surjective. �

Remark 5.2. Similarly, the map δp induces an isomorphism from Selφfake(J, k)

to the group

r−1

(
im

(∏
v

J(kv)/φJ(kv)→
∏
v

H1(Gv, µp(L
s)/µp)

))
.

Proof of Theorem 1.1. The map (x−T, y) : J(k)→ Γ/χ(L∗)ι(k∗) factors as

J(k)→ J(k)/φJ(k)→ Selφexplicit(J, k) ⊂ Γ/χ(L∗)ι(k∗).

Theorem 1.1 therefore follows immediately from Theorem 5.1. �
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