COARSE LENGTH CAN BE UNBOUNDED IN 3-STEP NILPOTENT LIE GROUPS

MICHAEL STOLL

ABSTRACT. In [1], we remarked that, contrary to 2-step nilpotent simply connected Lie groups, in 3-step nilpotent simply connected Lie groups it is possible that ' \mathbb{R} -words' in the given generators cannot be replaced by an equally long \mathbb{R} -word representing the same group element and having a bounded number of direction changes. a given set of generators. In this note, we present an example.

1. INTRODUCTION

Let G be a (connected and) simply connected nilpotent Lie group with Lie algebra \mathfrak{g} . Via the exponential map, we can identify \mathfrak{g} with G. We fix a set $S = \{x_1, \ldots, x_n\}$ of generators of \mathfrak{g} . Let $S_{\mathbb{R}} = \{x^t : x \in S, t \in \mathbb{R}\}$. We consider words of the form $w = x_{i_1}^{t_1} x_{i_2}^{t_2} \cdots x_{i_k}^{i_k} \in S_{\mathbb{R}}^*$, i.e., words over the alphabet $S_{\mathbb{R}}$. We will call such words \mathbb{R} -words over S. We define the *length* of w to be

$$\ell(w) = \sum_{j=1}^{k} |t_j|$$

and the *coarse length* of w to be

$$\ell'(w) = k \, .$$

We also let |w| denote the result of evaluating w in G. In this context, we set $|x^t| = tx$ for $t \in \mathbb{R}$ and $x \in G = \mathfrak{g}$, where the product with t is taken in the Lie algebra. Then we can define the *length* and *coarse length* of an element g of G by

$$\ell(g) = \inf\{\ell(w) : w \in S^*_{\mathbb{R}}, |w| = g\} \in \mathbb{R}_{\geq 0}$$

and

$$\ell'(g) = \inf \{ \ell'(w) : w \in S^*_{\mathbb{R}}, |w| = g, \ell(w) = \ell(g) \} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$$

In our paper [1, Lemma 3.3], we show that in the case that G is 2-step nilpotent, there is a number N such that for every \mathbb{R} -word $w \in S^*_{\mathbb{R}}$, there is another \mathbb{R} -word $w' \in S^*_{\mathbb{R}}$ satisfying |w'| = |w|, $\ell(w') \leq \ell(w)$, and $\ell'(w') \leq N$. This implies that $\ell'(g) \leq N$ for all $g \in G$.

Date: 13 June, 2010.

MICHAEL STOLL

We then remark that this assertion is not true in general for 3-step nilpotent simply connected Lie groups. Since various people have asked for more precise information, we give an explicit example in this note.

2. The Example

Consider the free 3-step nilpotent Lie algebra \mathfrak{g} on two generators X and Y. Then

$$X, Y, \frac{1}{2}[X, Y], \frac{1}{12}[X, [X, Y]], \frac{1}{12}[Y, [Y, X]]$$

is a basis of \mathfrak{g} , which we use to identify \mathfrak{g} with \mathbb{R}^5 . We can also identify \mathfrak{g} with the corresponding Lie group G (i.e., we take the exponential and logarithm maps to be the identity on the underlying set); then the group law in G is given by

$$a \cdot b = a + b + \frac{1}{2}[a, b] + \frac{1}{12}[a, [a, b]] + \frac{1}{12}[b, [b, a]]$$

in terms of the Lie bracket on \mathfrak{g} .

Now we consider elements of G that can be written in the form

$$X^{s_1}Y^{t_1}X^{s_2}Y^{t_2}\cdots X^{s_N}Y^{t_N}$$

with s_i , t_j nonnegative and $\sum_i s_i = \sum_j t_j = 1$. In terms of the basis above, the result will be of the form (1, 1, u, v, w). Let M be the subset of \mathbb{R}^3 consisting of all triples (u, v, w) that can be obtained in this way.

Lemma 1. The point (0,0,0) is in the closure of M, but not in M itself.

Proof. Let Σ be the set of \mathbb{R} -words

$$X^{s_1}Y^{t_1}X^{s_2}Y^{t_2}\cdots X^{s_N}Y^{t_N}$$

with s_i , t_j nonnegative and $\sum_i s_i = \sum_j t_j = 1$ as above, and let Σ' be its image in the group G (which corresponds to $\{(1,1)\} \times M$). For $0 \le t \le 1$, define maps $a_t : \Sigma \to \Sigma$ and $b_t : \Sigma \to \Sigma$ by

$$a_t(w) = w(X^{1-t}, Y)X^t$$
 and $b_t(w) = w(X, Y^{1-t})Y^t$

(i.e., for a_t , we replace each X^s in w by $X^{s(1-t)}$ and multiply the result from the right by X^t ; similarly for b_t). Since each element of Σ can be obtained by a succession of applications of these maps to one of the words XY or YX, Σ' is the smallest subset of G containing XY and YX that is invariant under these maps. Therefore M is the smallest subset of \mathbb{R}^3 containing $(\pm 1, 1, 1)$ that is invariant under the maps induced by a_t and b_t $(0 \le t \le 1)$ on \mathbb{R}^3 , which are

$$a_t(u, v, w) = ((1-t)u - t, (1-t)^2v - 3t(1-t)u + t(2t-1), (1-t)w + t)$$

$$b_t(u, v, w) = ((1-t)u + t, (1-t)v + t, (1-t)^2w + 3t(1-t)u + t(2t-1)).$$

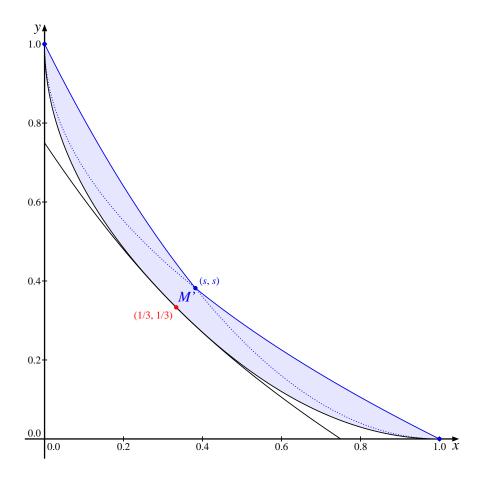


FIGURE 1. The set M'. Here $s = (3 - \sqrt{5})/2$.

We now project to the new coordinates

$$x = \frac{v + 3u + 2}{6}$$
 and $y = \frac{w - 3u + 2}{6}$

In terms of x and y, we get (again abusing notation slightly)

$$a_t(x,y) = ((1-t)^2 x, (1-t)y + t)$$

$$b_t(x,y) = ((1-t)x + t, (1-t)^2 y).$$

Let M' be the image of M under this projection. Then M' is the smallest subset of \mathbb{R}^2 containing (1,0) and (0,1) that is invariant under a_t and b_t as above. It is then not hard to show that $M' \setminus \{(1,0), (0,1)\}$ is given by the following inequalities:

$$x < 1$$
 and $y < 1$ and $4x > 3(1-y)^2$ and $4y > 3(1-x)^2$
and $(x \le (1-y)^2$ or $y \le (1-x)^2$).

MICHAEL STOLL

(One shows that the inequalities are satisfied for $a_t(1,0)$ when t < 1, similarly for $b_t(0,1)$ when t < 1, and that they are preserved under a_t and b_t when t < 1. This shows the inclusion relevant for us. The other one follows from the fact that all points on the diagonal x = y that satisfy the inequalities can be reached; all other points in the domain can be reached from there.) See Figure 2, where $s = (3 - \sqrt{5})/2$.

In particular, (1/3, 1/3) is not in M', so (0, 0, 0) is not in M.

On the other hand,

$$X + Y = \lim_{n \to \infty} (X^{1/n} Y^{1/n})^n$$
,

so (0,0,0) is in the closure of M. In other words, X + Y is in the closure of Σ' , but not in Σ' .

This implies that the coarse length is unbounded on the set of elements of G in the form given above. (Since otherwise, M would have to be compact, compare [1].) Note that the length of a word as above cannot be shortened to be less than 2, since otherwise we could not reach the projection (1, 1) in G/G'.

Corollary 2. Let $g_0 \in G$ correspond to (1, 1, 0, 0, 0) with respect to the basis above, *i.e.*, $g_0 = X + Y$ as an element of \mathfrak{g} . Then $\ell'(g_0) = \infty$. (*I.e.*, there is no geodesic joining the origin to g_0 consisting of finitely many steps in directions given by the generators.)

Proof. It is clear that $\ell(g_0) \geq 2$, since for the element $g \in G$ corresponding to (s, t, u, v, w), we always have $\ell(g) \geq |s| + |t|$. We claim that $\ell(g_0) = 2$. This follows from the facts that ℓ is continuous on G, that ℓ takes the value 2 on Σ' and that $g_0 \in \overline{\Sigma'}$. Now, since g_0 is not in Σ' , by definition of Σ' there is no \mathbb{R} -word w of length 2 that represents g_0 , hence the set in the definition of $\ell'(g_0)$ is empty. \Box

Corollary 3. For every N, there exists an \mathbb{R} -word $w \in \Sigma$ such that there is no \mathbb{R} -word w' satisfying $\ell(w') \leq 2 = \ell(w), |w'| = |w|$ and $\ell'(w') \leq N$.

Proof. If $g \in \Sigma'$, then any \mathbb{R} -word representing g must have length ≥ 2 , and any \mathbb{R} -word of length 2 representing g must be in Σ . The previous corollary implies that as we let g approach g_0 within Σ' , the minimal coarse length of an \mathbb{R} -word in Σ representing g tends to infinity.

References

 M. STOLL: Asymptotics of the growth of 2-step nilpotent groups, J. London Math. Soc. 58, 38-48 (1998).

MATHEMATISCHES INSTITUT, UNIVERSITÄT BAYREUTH, 95440 BAYREUTH, GERMANY. *E-mail address*: Michael.Stoll@uni-bayreuth.de

4