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Abstract. We present a proof, which is conditional on the Birch and Swinnerton-
Dyer Conjecture for a specific abelian variety, that there do not exist rational
numbers x and c such that x has exact period N = 6 under the iteration
x 7→ x2 + c. This extends earlier results by Morton for N = 4 and Flynn,
Poonen and Schaefer for N = 5.

1. Introduction

In this note, we present a conditional proof that there do not exist rational numbers
x and c such that the sequence defined by x0 = x, xn+1 = x2

n + c (for n ≥ 0) has
exact period 6. The assumptions we have to make are that the L-series of a certain
genus 4 curve Xdyn

0 (6) extends to an entire function and satisfies the usual kind

of functional equation, and that the Jacobian of Xdyn
0 (6) satisfies the first part

of the Birch and Swinnerton-Dyer conjecture (that asserts equality between the
Mordell-Weil rank and the order of vanishing of the L-series at s = 1).

This extends a series of investigations on rational cycles under quadratic iteration.
It is easy to see that fixed points and 2-cycles are each parameterized by a rational
curve; the same is true for 3-cycles. Morton [16] has shown that 4-cycles are
parameterized by the modular curve X1(16); he used this to show that there do
not exist rational 4-cycles. Flynn, Poonen, and Schaefer [9] proved that there are
no rational 5-cycles and make a preliminary study of 6-cycles. The present paper
gives a conditional proof that there are no rational 6-cycles. It is conjectured
(see [21, Conj. 3.15, Rk. 3.17]) that there is a universal bound on the number
of rational preperiodic points under quadratic iteration. In view of the results
obtained so far, it seems reasonable to expect that there are no rational N -cycles
when N > 3, compare Conjecture 2 in [9]. Poonen [18] shows that this would
imply that there can be at most 9 rational preperiodic points.

Let f (0)(x, c) = x, f (n+1)(x, c) = f (n)(x2 + c, c) denote the iterates of x 7→ x2 + c.
For N ≥ 1, pairs (x, c) such that x is a point of period N under x 7→ x2 + c satisfy
the equation ΦN(x, c) := f (N)(x, c)− x = 0. Pairs (x, c) such that x is periodic of
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exact order N give rise to points on the affine curve Y dyn
1 (N) with equation

Φ∗
N(x, c) :=

∏
d|N

Φd(x, c)µ(N/d) = 0 .

(For some of the points, the orbit of x actually has exact order a proper divisor

of N ; see for example [21] for details.) It can be shown that Y dyn
1 (N) is smooth and

irreducible; we denote by Xdyn
1 (N) its smooth projective model. This curve has an

automorphism σ of order N induced by the map (x, c) 7→ (x2 + c, c) on Y dyn
1 (N).

We denote the quotient Xdyn
1 (N)/〈σ〉 by Xdyn

0 (N). There are formulas due to

Bousch and Morton for the genera of Xdyn
1 (N) and Xdyn

0 (N). See [2, 12, 15] or
[21, Thm. 4.17].

In this note, we work with Xdyn
0 (6), which is a curve of genus 4. Assuming the

conjecture of Birch and Swinnerton-Dyer, we determine the set of rational points
on this curve, from which we can find the set of rational points on Xdyn

1 (6). It
turns out that all of these points are “cusps”, i.e., they are in the complement
of Y dyn

1 (6) and hence do not correspond to pairs (x, c) as above.

We first find a nice model of Xdyn
0 (6) (see Section 2 below). There are ten rational

points on this curve that are easy to find. We show that they generate a torsion-
free subgroup G of rank 3 in the Mordell-Weil group J(Q), where J is the Jacobian

of Xdyn
0 (6). We further show that there are no other rational points that map into

the saturation of this subgroup in J(Q). This is done in Section 3 below. It
remains to show that G is a finite-index subgroup of J(Q). It is in this part of the
proof that we have to make assumptions on the L-series, since we want to use the
Birch and Swinnerton-Dyer conjecture. We compute enough coefficients of the L-
series to show that its third derivative at s = 1 does not vanish, which, according
to the BSD conjecture, implies that the rank of J(Q) is at most 3. See Section 4
below. (Note that a 2-descent on J , which is the usual way to obtain an upper
bound on the Mordell-Weil rank for low-genus curves, requires knowledge of the
class and unit groups of a number field of degree 119. The necessary computations
are utterly infeasible with current technology, even when assuming GRH.)

We have used the MAGMA [13] computer algebra system in order to perform
the necessary computations. A script that can be loaded into MAGMA and that
performs the relevant computations is available at [26].

This curve Xdyn
0 (6) appears to be the first curve of higher genus that is not very

special in some way, e.g., hyperelliptic or a modular or Shimura curve, having a
large automorphism group, or covering a curve of smaller genus, for which the set
of rational points could be explicitly determined (assuming reasonable standard
conjectures). The methods used here should be applicable in other cases as well,
provided
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• we can find a finite-index subgroup of the Mordell-Weil group,
• its rank is less than the genus, and
• the conductor is reasonably small.

Acknowledgments. I would like to thank the American Institute of Mathemat-
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conjecture in arithmetic dynamics” in January 2008, and the organizers and par-
ticipants of that workshop for creating a very productive research environment.
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shop. I also would like to thank Fritz Grunewald for his suggestion to find the
endomorphism ring of the Jacobian of Xdyn

0 (6). Last, but not least, I thank the
anonymous referee for some useful comments.

2. The Model

In order to obtain a smooth projective model of Xdyn
0 (6), we first find an equation

for Y dyn
0 (6) (the image of Y dyn

1 (6) in Xdyn
0 (6)) as an affine plane curve. For a point

(x, c) ∈ Y dyn
1 (6), we consider the “trace” of its orbit,

x + (x2 + c) + f (2)(x, c) + · · ·+ f (5)(x, c) .

The resultant with respect to x of Φ∗
6(x, c) and t−

(
f (0)(x, c) + · · ·+ f (5)(x, c)

)
is

a sixth power; one of its sixth roots is

Ψ6(t, c) = 256(t3 + t2 − t− 1)c3 + 16(9t5 + 7t4 + 10t3 + 30t2 − 19t− 37)c2

+ 8(3t7 + t6 + 2t5 + 2t4 − 17t3 + 69t2 + 52t− 48)c

+ t9 − t8 + 2t7 + 14t6 + 49t5 + 175t4 + 140t3 + 196t2 + 448t .

(This polynomial was already computed by Morton in [16].) We first resolve the
singularities at infinity. Successively getting rid of multiple factors at the edges of
the Newton polygon, we arrive at the equation

F (u, v) = (u4 − u3)v3 + (−u5 + 9u4 + 6u3 − 17u2 + 3u)v2

+ (4u4 + 74u3 − 52u2 − 54u + 24)v + 4u4 + 24u3 + 117u2 − 261u + 72

= 0 .

Here

u =
2

t + 1
and v = 4(c− 1) + (t− 1)2 +

2

t + 1
,

or

t =
2

u
− 1 and c =

v

4
− 1

u2
+

2

u
− u

4
.

The curve defined by this equation has three singularities at points (α, β), where

3β3 + 32β2 + 69β + 72 = 0 and 18α = 6β2 + 55β + 69 .
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From the Newton polygon of F , we see that the regular differentials on the smooth
projective model of this curve are contained in the space spanned by ω0, u ω0,
uv ω0, u2 ω0, u2v ω0, u3 ω0, and u3v ω0, where

ω0 =
du

∂
∂v

F (u, v)
= − dv

∂
∂u

F (u, v)
.

(See [11], in particular the example on page 42.) These differentials are regular
everywhere except perhaps at the singularities described above. In order to get
something regular there, the polynomial that ω0 is multiplied by has to vanish at
the singularities. We obtain the following basis of Ω1

Xdyn
0 (6)

.

ω1 = (u3v + 2u3 − 3u2v − u2 + 3uv + 6) ω0

ω2 = (u3v + 2u3 − u2v + u2 + 3u− 6) ω0

ω3 = (u3v + 2u3 − 4u2v − 3u2 + 3uv − 3u) ω0

ω4 = (3u3v + 4u3 − 3u2v + 6u2 − 6u) ω0

The canonical model of a curve of genus 4 is the intersection of a quadric and a
cubic in P3. We see that u is a rational function of degree 3, which implies that
the quadric splits, i.e., it is isomorphic to P1 × P1 over Q. So there is a model
of Xdyn

0 (6) that is a smooth curve of bidegree (3, 3) in P1 × P1. To find a suitable
second coordinate (besides u), we take the quotient of two differentials vanishing
on u = 0. This means that the differentials may not contain ω0 or uv ω0 with a
nonzero coefficient. A possible choice is

w =
−ω1 − ω2 + ω3 + 2ω4

ω4

=
−u2v + 3uv + 18

u2v + 2u2 + 3u + 6
.

In terms of u and w, we now have Xdyn
0 (6) as a smooth curve in P1 × P1, with

(affine) equation

G(u, w) = w2(w +1)u3− (5w2 +w +1)u2−w(w2−2w−7)u+(w +1)(w−3) = 0 .

We will denote this curve by C. Note that

c =
(−u3 − 2u2 + 5u− 10)uw − u4 + 3u3 + 8u2 − 10u + 12

4u2(uw + u− 3)

on this model. Note also that the existence of the canonical model shows that
Xdyn

0 (6) is not hyperelliptic.

Our model has good reduction except at 2 and at p = 8 029 187. Mod p, we have a
node at (u, w) = (2937959, 7887180) with tangent directions defined over Fp. This
point is regular on the arithmetic surface given by G(u, w) = 0.

Mod 2, there is a node at (1, 0) with tangent directions defined over F4 and a
tacnode at (0, 1) with local branches again defined over F4. Both singularities are
non-regular points of the arithmetic surface. Resolving these points gives us the
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minimal proper regular model over Z2. The node resolves into a chain of three
P1’s whose ends intersect the original component. Blowing up the tacnode gives a
double line, all of whose points are non-regular. Blowing up this line, we obtain a
smooth curve of genus 1, meeting the original components in two (regular) points.
Therefore, the special fiber of the minimal proper regular model consists of five
components A, B, C,C ′, D, each of multiplicity one. A and B are both elliptic
curves with trace of Frobenius −1, the other components are P1’s. A, B, and D
are defined over F2, C and C ′ are defined over F4 and conjugate. The intersection
matrix is as follows.

A B C C ′ D
A −4 2 1 1 0
B 2 −2 0 0 0
C 1 0 −2 0 1
C ′ 1 0 0 −2 1
D 0 0 1 1 −2

(For some worked examples of how to compute minimal regular models, see [7]
or [19].)

The two (separate) intersection points of A and B are swapped by the action
of Frobenius. We see that the reduction of the Jacobian has a 2-dimensional
abelian and a 2-dimensional toric component (since the dual graph of the spe-
cial fiber has two independent loops, compare [1, § 9.2]); Frobenius reverses the
orientation of both loops. We can summarize our findings in the following lemma.

Lemma 1. The Jacobian of C = Xdyn
0 (6) has conductor 22 p, where p = 8 029 187

is the big prime from above. Its Euler factor at 2 is (1 + T + 2T 2)2(1 + T )2.

We end this section by showing that Xdyn
0 (6) does not have any special geometrical

properties that might help us.

Lemma 2. We have EndQ̄ J = Z. In particular:

(1) The automorphism group of Xdyn
0 (6) is trivial (even over Q̄).

(2) The Jacobian of Xdyn
0 (6) is absolutely simple.

(3) There is no map of degree ≥ 2 from Xdyn
0 (6) to a curve of positive genus

(not even over Q̄).

Proof. We take inspiration from the proof of Prop. 9 in [9]. To make matters more
concrete, we formulate a computational lemma.

Lemma 3. Let C be a curve of genus g over a number field K, with Jacobian J ,
let v be a finite place of K of good reduction for C, and let f(T ) be the Euler factor
of L(C, s) at v. If f ∈ Q[T ] is irreducible, and no monic irreducible factor of

h(T ) =
Resx

(
f(x), f(Tx)

)
(1− T )2g
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has integral coefficients and constant term 1, then EndK̄ J embeds into the number
field generated by a root of f .

Proof. For the proof, note that the roots of h are all the quotients α/β, where α
and β are distinct roots of f . If one of these quotients is a root of unity, then h has a
monic irreducible factor that has integral coefficients and constant term 1 (namely,
some cyclotomic polynomial). Conversely, if there is such an irreducible factor,
then its roots are units in the splitting field of f , and they have absolute value 1
in all complex embeddings (since |σ(α)| = q−1/2 for all complex embeddings σ and
all roots α of f , where q is the size of the residue class field kv). Hence some α/β
is a root of unity.

Now this is the case if and only if, for some n ≥ 2, there are distinct roots α and β
of f such that αn = βn. This in turn is equivalent to the Galois orbit of αn having
size less than deg f = 2g, which means that the characteristic polynomial of the
nth power of the v-Frobenius is not irreducible.

Our assumptions therefore imply that all these characteristic polynomials are ir-
reducible. (An argument like this was used in [22] to show that certain genus 2
Jacobians are absolutely simple.) From [28, Thm. 8], we then see that the endo-
morphism algebra of J over k̄v is the number field generated by a root of f , and
since the endomorphism ring of J (over K̄) embeds into this algebra, the claim is
proved. (Note that J is simple over kv since f is irreducible.) �

To prove Lemma 2, we compute the Euler factors at p = 5 and p = 7. They are

1 + 3T + 6T 2 + 6T 3 − 8T 4 + 30T 5 + 150T 6 + 375T 7 + 625T 8 .

and

1 + 7T + 28T 2 + 94T 3 + 276T 4 + 658T 5 + 1372T 6 + 2401T 7 + 2401T 8 .

We observe that both polynomials satisfy the assumptions in Lemma 3 and that
the number fields they generate are linearly disjoint over Q. (We can check, for
example using MAGMA, that there is no common subfield other than Q.) This
proves the first claim.

Statement (1) then follows, since any nontrivial automorphism of the curve would
induce a nontrivial automorphism of the Jacobian J . But the only nontrivial
automorphism of J is multiplication by −1, and if it would come form an auto-
morphism of the curve, this would imply that the curve is hyperelliptic, which is
not the case. Alternatively, we can use the fact that any automorphism of our
curve must extend to an automorphism of P1 × P1. Such automorphisms either
perform a Möbius transformation on each of the factors separately, or else this
type of automorphism is followed by swapping the two factors. A Gröbner basis
computation shows that the only automorphism of P1 × P1 that fixes the curve is
the identity.
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If statement (2) were false, then the algebra Q ∼= Q ⊗Z EndQ̄ J would have zero
divisors, which is not the case.

Finally, if the curve covers another curve of positive genus and the map is not an
isomorphism, then the other curve has genus strictly between 0 and 4. But then
its Jacobian will be a factor of the Jacobian of Xdyn

0 (6), so the latter would have
to split, contradicting the fact that J is absolutely simple. �

3. Rational Points

A quick search finds the following ten rational points on C.

u w t c

P0 0 ∞ ∞ ∞
P1 0 −1 ∞ ∞
P2 0 3 ∞ ∞
P3 ∞ 0 −1 ∞
P4 1 2 1 ∞

u w t c

P5 2 1 0 0

P6 1 ∞ 1 −2

P7 ∞ −1 −1 −2

P8 −1 ∞ −3 −4

P9 −4
5

−1 −7
2

−71
48

The first five of these are the “cusps”; these are the points that have to be added
to Y dyn

0 (6) in order to obtain a smooth projective curve. It is known that all

cusps on Xdyn
1 (N) and hence also on Xdyn

0 (N) are rational points, for all N . This
follows from the Laurent series expansions for the periodic points in terms of
q = (−4c−3)−1/2, which have rational coefficients; compare [16]. In fact, the map

Y dyn
1 (N) −→ PN , (x, c) 7−→

(
1 : x : x2 + c : . . . : f (N−1)(x, c)

)
extends to a projective embedding of Xdyn

1 (N), where the cusps have coordinates
(0 : 1 : ±1 : . . . : ±1).

The remaining five points correspond to cycles of length 6 for the given value of c
that are stable as a set (or as a cycle) under the action of the absolute Galois group
of Q. For the special values c = 0 and c = −2, these cycles are “predictable”; they
come from roots of unity. For N = 6, we find cycles containing ζ9 when c = 0 and
cycles containing ζ13 + ζ−1

13 (this is the one whose trace t is −1) or ζ21 + ζ−1
21 (with

t = 1) when c = −2. (We use ζn to denote a primitive nth root of unity; these
cycles then contain all possible values of the above expressions.)

For c = −4, the points in the cycle live in a sextic abelian number field with
discriminant 53 · 74 and conductor 35; it is the field Q(

√
5, cos 2π

7
). Finally, for

c = −71
48

, we find points defined over the quadratic field Q(
√

33); one point in

the cycle is x = −1 + 1
12

√
33. In particular, this means that Xdyn

1 (6)
(
Q(
√

33)
)

contains an orbit of six non-cuspidal points.
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See also the final section of [9], where these points are already found, and the
corresponding Galois-stable 6-cycles are described.

We will now prove the following result.

Lemma 4. Let J denote the Jacobian of C = Xdyn
0 (6).

(1) J(Q) has trivial torsion subgroup.
(2) The subgroup G of J(Q) generated by the classes of divisors supported in

the 10 rational points listed above is isomorphic to Z3.
(3) This subgroup is already generated by divisors supported at the cusps.

Proof. We know that the prime-to-p torsion in J(Q) injects into J(Fp) for primes
of good reduction, so the observation that (as computed by MAGMA)

#J(F7) = 2 · 7 · 11 · 47 and #J(F13) = 3 · 17 · 23 · 43

shows that J(Q) has trivial torsion subgroup.

The main tool for proving the other assertions is the homomorphism

ΦS :
9⊕

i=0

ZPi −→ PicC −→
∏
p∈S

PicC/Fp ,

where S is a set of primes of good reduction. We take S = {3, 5, 7, 11, 13} and
compute the kernel of ΦS. This kernel is a subgroup of rank 9 in Z10 =

⊕
ZPi.

We apply LLL to it and find that there are six independent elements with very
small coefficients (and three large additional basis vectors). We suspect that the
small elements come from actual relations between our points; this can then be
verified by exhibiting a suitable rational function. (MAGMA provides the necessary
functionality for these computations.) Denoting linear equivalence by ‘∼’, we find
the following six independent relations.

P0 + P6 + P8 ∼ P1 + P7 + P9

P0 + P1 + P2 ∼ 2P3 + P7

∼ 2P4 + P6

P0 + P2 + P7 + P9 ∼ P1 + P3 + P5 + P6

2P0 + P1 + P6 ∼ P2 + P3 + 2P5

3P0 + P3 ∼ P1 + P2 + P6 + P8

On the other hand, looking at the image of ΦS, we see that the degree 0 subgroup
of Z10 surjects onto (Z/3Z)3. Since we know that there is no torsion in J(Q), this
implies that the rank of the image of the degree 0 subgroup in J(Q) must be at
least 3. The existence of the relations above implies that the rank is at most 3, so
the rank is exactly 3, and since there is no torsion, the group must be isomorphic
to Z3.
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Finally, from the relations we have given it is easy to verify that P3 and P5, . . . , P9

can be expressed in terms of P0, P1, P2, and P4. This means that our subgroup is
already generated by divisors supported at the latter four points (all of which are
cusps). The only relation between the cusps is

5P0 − 10P1 − 2P2 + P3 + 6P4 ∼ 0 ;

it is perhaps worth noting that this relation is not induced by the standard “dy-
namical units” as provided by [21, Thm. 2.33] or [17], applied to the coordinate

ring of Y dyn
1 (6). �

Our next result is as follows.

Lemma 5. The ten points P0, . . . , P9 are the only rational points whose images
in PicC are in the saturation of the subgroup described in the previous lemma.

Proof. We use Chabauty’s method (see for example [3, 4, 14, 25]) for the proof.
Recall that there is a pairing

Ω1
J(Qp)× J(Qp) −→ Qp , (ω,Q) 7−→

∫ Q

0

ω

that induces a perfect Qp-bilinear pairing

Ω1
J(Qp)× J1(Qp)⊗Zp

Qp −→ Qp ,

where J1(Qp) denotes the kernel of reduction. If G ⊂ J(Qp) is a subgroup of rank
less than dim J = 4, then there must be a nonzero differential ω that kills G under
this pairing. Note that ω then also kills the saturation

Ḡ = {P ∈ J(Qp) : nP ∈ G for some n ≥ 1}

of G. We will apply this with p = 5 and G the subgroup generated by the known
rational points as above.

For points in the kernel of reduction, the integral can be evaluated by formally
integrating the power series representing ω in terms of a system of local param-
eters at the origin and then plugging in the values at Q of these parameters.
For practical computations, it is convenient to use the canonical identification
Ω1

J(Qp) ∼= Ω1
C(Qp).

Let P ′ ∈ C(Q) be a fixed base-point. Let Q ∈ J1(Qp). Then Q is represented by
a divisor of the form (Q1 + Q2 + Q3 + Q4) − 4P ′, where the points Qj ∈ C(Q̄p)
all reduce to P ′ modulo the prime above p in their field of definition. Let τ be a
uniformizer at P ′ that reduces mod p to a uniformizer at the reduction of P ′. The
differential ω can be written as φ(τ) dτ with a power series φ ∈ Qp[[T ]]. Let

λ = λ1T + λ2T
2 + . . .
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be its formal integral. Then∫ Q

0

ω =
4∑

j=1

λ
(
τ(Qj)

)
=

∞∑
n=1

λn

4∑
j=1

τ(Qj)
n ;

the series converges in Qp. Note that the power sums can be computed from the
coefficients of the characteristic polynomial(

X − τ(Q1)
)(

X − τ(Q2)
)(

X − τ(Q3)
)(

X − τ(Q4)
)
,

which lie in the field of definition of Q.

In our concrete case, we take P ′ = P1. Applying LLL to the kernel of the reduction
map

⊕
j 6=1 Z(Pj − P1) → J(F5), we find a basis of G ∩ J1(Q5), given by

D1 = P7 − P9

D2 = P0 − 6P1 + 2P5 + P7 + P8 + P9

D3 = P0 − 3P1 + 2P2 + P4 + P6 − P7 − P8

For each of these, we find D′
j such that Dj ∼ D′

j − 4P ′ and D′
j is effective of

degree 4, with points reducing to P ′. The point P ′ = P1 has coordinates (u, w) =
(0,−1); we can choose u as a uniformizer at P ′ and its reduction. The space of
regular differentials is spanned by

ω0 =
du

∂
∂w

G(u, w)
, ω1 = u ω0 , ω2 = w ω0 , and ω3 = uw ω0 .

We expand each ωi as a power series in u times du and let λi ∈ uQ[[u]] be its
formal integral. Then we evaluate each λi at each D′

j as described above. We
determine the kernel of the resulting matrix, which gives us the differential ω that
kills our subgroup G. We find that reduced mod 5, this differential is ω̄ = ω̄2.
It vanishes at the points where w = 0 or u = ∞. There are two such points
in C(F5), namely (∞,−1) and (∞, 0). At the former, ω̄ vanishes to first order,
which implies that there are at most two rational points in that residue class
(see for example [25, Prop. 6.3]). Since we have the points P7 = (∞,−1) and
P9 = (−4/5,−1), these must be all the rational points in this residue class. At
(∞, 0), we compute explicitly that the logarithm λ that vanishes on C(Q) on this
residue class is

λ = γτ
(
1− (2 + O(5))5τ + O(52)

)
with some constant γ 6= 0, where 5τ is the uniformizer w at (∞, 0). So λ has a
single zero on this residue class, which is taken care of by P3 = (∞, 0). On all other
points in C(F5), ω̄ does not vanish, hence there can be at most one rational point in
each of these residue classes. Since it is easily checked that {P0, . . . , P9} → C(F5)
is surjective, this shows that there are no other points P in C(Q) such that P −P ′

is in G. In fact, there is no such point that maps into the saturation of G in J(Q5)
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(since ω kills Ḡ). So there is no rational point on C mapping into the saturation
of G other than those already known. �

Theorem 6. If the rank of J(Q) is 3, then Xdyn
0 (6) has only the ten rational points

listed above. In particular, it then follows that the only rational points on Xdyn
1 (6)

are the cusps, so that there is no cycle of exact length 6 consisting of rational
numbers under an iteration x 7→ x2 + c.

Proof. If J(Q) has rank 3, then J(Q) is the saturation of G, the subgroup generated
by degree 0 divisors supported on the known rational points, since the latter then
has finite index in J(Q). The previous lemma then shows that there are no other

rational points on Xdyn
0 (6) than those already known. None of the non-cuspidal

points among these lift to a rational point on Xdyn
1 (6), so the latter curve can

have no non-cuspidal rational points. A rational 6-cycle would give rise to a non-
cuspidal rational point on this curve, so such a rational 6-cycle cannot exist. �

4. Bounding the Rank

It remains to show that the rank of J(Q) is 3. We know that the rank is at least 3,
so it suffices to show that it is at most 3.

The standard procedure for obtaining an upper bound for the rank is a descent
on the Jacobian. However, the complexity of this quickly becomes prohibitive
when the genus is not very small and the curve does not have any helpful special
features. For example, 2-descent on Jacobians of general non-hyperelliptic genus 3
curves is still in its infancy and so far has been successful in only one example
(assuming GRH for the computation). Here, we have a curve of genus 4, and it
appears that there are no helpful special properties, see Lemma 2 above. Usually,
our best bet is a 2-descent, and for this, the most promising approach seems to be
to look at the odd theta characteristics (whose differences generate the 2-torsion
subgroup). On a curve of genus 4, there are 120 of them; they correspond to
(1, 1)-forms on P1 × P1 that meet the curve tangentially in three points (more
precisely, the intersection divisor is twice an effective divisor of degree 3). We can
set up the scheme describing these; after a Gröbner basis computation, we find
that it has one rational point, and the other 119 points form a single Galois orbit.
This means that in order to do anything in the direction of a 2-descent, we would
have to compute the ideal class group and fundamental units of a number field of
degree 119. Before we are able to perform such computations (even if we allow
ourselves to assume GRH), we need very substantial progress in the development
of suitable algorithms.

The result on the Galois orbits on the odd theta characteristics can be obtained
faster by computing the Gröbner bases of the scheme over F5 and over F13. We
first note that 1+u+w gives rise to the point defined over Q (the (1, 1)-forms are
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of the form a + bu + cw + duw). Over F5, the remaining 119 points split into nine
orbits of length 7 and four orbits of length 14, whereas over F13, they split into
seven orbits of length 17. Since these partitions must refine the orbit partition
over Q, there must be a single orbit of length 119.

We can extract some more information. First note that the theta characteristics
can be identified with the 2-torsion subgroup J [2] (by sending the unique odd
theta characteristic that is defined over Q to the origin). The Galois action on J [2]
must then have orbits of lengths 1 and 119. We will determine the image of Galois
in Sp8(F2) and deduce that the remaining 136 elements also form a single orbit.

First note that the Galois group cannot surject onto Sp8(F2), since otherwise the
Galois action on the non-zero 2-torsion points on J would be transitive. The
Frobenius automorphisms at p = 5 and 13, acting on J [2], have orders 14 and 17,
as we saw above. Up to conjugation, Sp8(F2) has only two proper subgroups whose
order is a multiple of 14 · 17, namely Γ = GO−

8 (Fp) of index 120 and O−
8 (F2) of

index 240. The latter has no elements of order 14, so the image of Galois in Sp8(F2)
must be Γ.

Since the action of Γ on J [2] has orbits of lengths 1, 119, and 136, our claim
follows. It can be checked that the smallest faithful permutation representation
of Γ has degree 119 (see [5] or the MAGMA script [26]), so that this is really the
smallest possible degree of a number field that we can hope for in a 2-descent
computation.

Note that we showed in Lemma 2 that J has no endomorphisms other than the
multiplication-by-n maps, so that multiplication-by-2 is the isogeny J → J of
lowest possible degree that can be used for a descent argument. There are no
nontrivial Galois-stable subgroups of J [2], so there are no 2-isogenies to other
abelian varieties either.

A possible alternative approach to obtaining a bound for the rank assumes the
(weak) Birch and Swinnerton-Dyer conjecture [27], plus standard conjectures on
analytic continuation and functional equations of L-series, see for example [10,
Conj. 3.1.1]. The conjecture predicts that the rank of J(Q) is the same as the
order of vanishing of the L-series L(J, s) = L(C, s) at s = 1. In order to be able to
evaluate the L-series and its derivatives there, we need to compute its coefficients
an for values of n up to a suitable multiple of the square root of its conductor.
Luckily, in our case the conductor 22 · 8 029 187 is not too large, so that we can
actually perform the computation in reasonable time.

We use Tim Dokchitser’s L-series package [6] in its MAGMA implementation. We
will not need to find the Euler factor at the large bad prime (it is beyond the
necessary range of coefficients). For the other bad prime 2, we found the Euler
factor in Section 2. For the good primes, we need the Euler factor up to T d, where
d = blogp mc and m is the number of coefficients required. This information can be
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obtained by counting the number of points in C(Fpe) for e = 1, . . . , min{d, 4}. For
a precision of 10−20, we need 183997 coefficients (which we can compute in a day or
so). We verify numerically that our L-series satisfies the functional equation it is
supposed to satisfy (with sign −1). Then we find that the L-series and its first two
derivatives vanish at s = 1 to the given precision, whereas L′′′(C, 1) = 0.83601 . . .
is clearly nonzero. Assuming (the first part of) the Birch and Swinnerton-Dyer
conjecture for J , this implies that rank J(Q) ≤ 3. We therefore obtain our main
result below.

Theorem 7. Let J be the Jacobian of Xdyn
0 (6). If the L-series L(J, s) extends to

an entire function and satisfies the standard functional equation, and if the Birch
and Swinnerton-Dyer conjecture is valid for J , then there are no rational cycles
of exact length 6 under x 7→ x2 + c.

It would be very desirable to get some additional corroboration of the result by
also verifying the second part of the Birch and Swinnerton-Dyer conjecture. From
the information obtained in Section 2, we can deduce that the Tamagawa number
at 2 is c2 = 4, whereas all other Tamagawa numbers are 1. Since there is no torsion
in the Mordell-Weil group (see Lemma 4), the conjecture would predict that

R Ω #X =
L′′′(J, 1)/3!

4
= 0.03483 . . . ,

where R is the regulator of the Mordell-Weil group, Ω is the volume
∫

J(R)
|η|, where

η is a generator of H0(J , Ω4
J / Spec Z) for the Néron model J of J over Z, andX is

the Shafarevich-Tate group of J , conjectured to be finite, in which case its order
is a square, since C has rational points, see [20].

Up to a small integral factor, Ω can be computed numerically as the determi-
nant of integrals

∫
γ
ω, where γ runs through a basis of the part of the homology

H1(C(C), Z) that is fixed by complex conjugation, and ω runs through a basis of
the Q-defined differentials on C, like the ωj used in Section 3. This computation
does not present any essential problems. See for example [7, § 3.5].

The computation of the regulator is a different matter. For this, we would need
to compute the canonical height of points in J(Q). For Jacobians of genus 2
curves, there is an explicit theory of heights (see [8, 23, 24]) that allows us to do
that. For Jacobians of curves of genus ≥ 3, however, no comparable results seem
to be currently available. So for the time being, we have to leave the numerical
verification of the full Birch and Swinnerton-Dyer conjecture for J as a challenge
problem.
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5. What Next?

Without fundamentally new ideas, it seems unlikely that we can make our result
unconditional in the foreseeable future. In another direction, it looks rather hope-
less to try to get a similar result for Xdyn

0 (7). This curve has genus 16 and bad
reduction at the 35-digit prime p = 84562 62122 13597 75358 18884 16725 49561
and possibly at 2. In any case, the conductor will be very large (at least p) and
so there will be no reasonable chance to use the L-series numerically to obtain
information on the rank. It might still be possible to get some information on the
subgroup of the Jacobian generated by the cusps (e.g., by making use of dynami-
cal units). It will be very hard, however, to use this information for a Chabauty
argument, for example.

Another question is how the large bad primes can be explained or even predicted.
We have 3701 for N = 5 (the only bad prime for Xdyn

0 (5), see [9]; their model is
also bad at 2, but this can easily be repaired), 8029187 for N = 6 and the 35-digit
prime above for N = 7. Note that unless we can shed light on this question, it is
likely to be very hard to try and prove algebraically that Y dyn

1 (N) is smooth, since
such a proof must break down when the characteristic is one of these primes.

The following could be a possible line of attack for a proof that Y dyn
1 (N)(Q) is

empty for large N . There is a good description of the formal neighborhoods of
the cusps on Xdyn

1 (N), using symbolic dynamics. If we could use this to prove,
for any odd prime p, that the cusp is the only rational point in its residue class
mod p, and also to prove a similar statement modulo a suitable power of 2, then
this would imply that a parameter c ∈ Q that allows for a cycle of exact length N
of rational numbers must be essentially integral (more precisely, its denominator
must divide a fixed power of 2). It is then fairly easy to show that N is bounded.

For example, assume that c ∈ Z and x is in a cycle. Then x must also be an
integer. If c > 0, we have x2 + c > |x|, so there cannot be a cycle. For c = 0,
the only possibilities are x = 0 and x = 1. For c = −1, the only possibilities are
x = 0 and x = −1. If c < −1, we have x2 + c > |x| whenever |x| ≥

√
|c| + 1. So

we must have |x| <
√
|c| + 1. But then we also need that |x2 + c| <

√
|c| + 1,

which implies that
√
|c| −

√
|c| − 1 < |x| <

√
|c|+1. This interval has length less

than 2, so there are at most two possible values for |x|. This implies that there
must be either a fixed point or a cycle of length 2. Indeed, for any x ∈ Z, x is a
fixed point for c = x− x2, and (x,−x− 1) is a 2-cycle for c = −x2 − x− 1.

In the more general case when m2c ∈ Z for some fixed integer m ≥ 1, we can
use similar arguments to show that the cycle must be contained in a union of a
bounded number of intervals whose lengths are bounded. Since the possible values
of x are in the set 1

m
Z, there must be a bound on their number.
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In the spirit of the methods used in this paper, the necessary result for odd primes p
would follow from the following two statements.

(1) The cuspidal group (i.e., the group generated by degree zero divisors sup-
ported at the cusps) is of finite index in the Mordell-Weil group of the

Jacobian of Xdyn
1 (N).

(2) For every cusp P , there is a regular differential on Xdyn
1 (N), defined over Qp,

that kills the cuspidal group and whose reduction mod p does not vanish
at P .

However, we need some additional ideas to approach a proof of either one of these.
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Séminaire Bourbaki, Vol. 9, Exp. No. 306, (Soc. Math. France, Paris, 1995) 415–440.

[28] W.C. Waterhouse and J.S. Milne, ‘Abelian varieties over finite fields’, 1969 Number
Theory Institute, Stony Brook, N.Y., 1969, Proc. Sympos. Pure Math. 20, (Amer. Math.
Soc., Providence, 1971) 53–64.

School of Engineering and Science, Jacobs University Bremen, Campus Ring 1,
28759 Bremen, Germany.

E-mail address: m.stoll@jacobs-university.de


	1. Introduction
	Acknowledgments

	2. The Model
	3. Rational Points
	4. Bounding the Rank
	5. What Next?
	References

