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Abstract

The canonical height is an indispensable tool for the study of the
arithmetic of abelian varieties. In this dissertation we investigate
methods for the explicit computation of canonical heights on Ja-
cobians of smooth projective curves. Building on an existing
algorithm due to Flynn and Smart with modifications by Stoll
we generalize efficient methods for the computation of canonical
heights on elliptic curves to the case of Jacobian surfaces. The
main tools are the explicit theory of the Kummer surface asso-
ciated to a Jacobian surface which we develop in full generality,
building on earlier work due to Flynn, and a careful study of the
local Néron models of the Jacobian.

As a first step for a further generalization to Jacobian three-
folds of hyperelliptic curves, we completely describe the asso-
ciated Kummer threefold and conjecture formulas for explicit
arithmetic on it, based on experimental data. Assuming the va-
lidity of this conjecture, many of the results for Jacobian surfaces
can be generalized.

Finally, we use a theorem due to Faltings, Gross and Hriljac
which expresses the canonical height on the Jacobian in terms
of arithmetic intersection theory on a regular model of the curve
to develop an algorithm for the computation of the canonical
height which is applicable in principle to any Jacobian. However,
it uses several subroutines and some of these are currently only
implemented in the hyperelliptic case, although the theory is
available in general.

Among the possible applications of the computation of canon-
ical heights are the determination of generators for the Mordell-
Weil group of the Jacobian and the computation of its regulator,
appearing for instance in the famous Birch and Swinnerton-Dyer
conjecture. We illustrate our algorithm with two examples: The
regulator of a finite index subgroup of the Mordell-Weil group
of the Jacobian of a hyperelliptic curve of genus 3 and the non-
archimedean part of the regulator computation for the Jacobian
of a non-hyperelliptic curve of genus 4, where the remaining com-
putations can be done immediately once the above-mentioned
implementations are available.
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xiv INTRODUCTION

If A is an abelian variety defined over a number field k and D is a
divisor on A with ample and symmetric linear equivalence class, then we
can associate a height function hD : A(k̄) −→ R to D which measures
the arithmetic complexity of points on A. This construction is only well-
defined up to a bounded function, but we can choose a function ĥD among
these height functions with certain nice properties; for instance, ĥD is a
nonnegative quadratic form that vanishes only on torsion points of A. The
original construction of these canonical heights is due to Néron [78] and Tate.

In this thesis we are concerned with practical methods for the computa-
tion of canonical heights on certain abelian varieties, namely on Jacobians
of smooth projective curves. This is useful in several situations:

• First, computing canonical heights is required if we want to find gene-
rators of the finitely generated Mordell-Weil groupA(k) wheneverA(k)
has positive rank. See for example [94, §7].

• Second, the celebrated Birch and Swinnerton-Dyer conjecture for el-
liptic curves [5], one of the seven Clay Millenium Prize problems, has
been generalized to arbitrary abelian varieties over number fields by
Tate [101]. It has two parts and in order to verify the second part in
examples, we need to be able to compute the regulator of the Mordell-
Weil group, defined in terms of the canonical height.

• The third application that should be mentioned is the determination
of all integral points on smooth projective curves defined over Q. See
[14] for an algorithm that uses, among other ingredients, generators of
the Mordell-Weil group of the Jacobian of the curve and has proved
to be quite successful in genus 2.

For the remainder of this introduction suppose for simplicity that k = Q.
The explicit computation of the canonical height of a Q-rational point P on
an elliptic curve E has been studied for at least three decades, starting with
Tate, some of whose results are reprinted in [89, Chapter VI], and can by now
be done very quickly, see [23, §7.5]. Other notable contributions came from
Tschöpe and Zimmer [102] and Silverman [87]. Here one uses D = 2(O),
where O ∈ E is the identity element. The most successful approach is to
decompose the canonical height into canonical local heights, one for each
place v ∈MQ. Put differently, we can write

ĥ(P ) = h(P ) −
∑

v∈MQ

µv(P ),

where, assuming P 6= O, the naive height h(P ) is the height of the x-
coordinate x(P ) and the local error functions µv measure the difference
between the canonical and naive height locally.
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It turns out (see [87]) that we can normalize the µv in such a way that
for prime numbers p we can have µp(P ) 6= 0 only if p has bad reduction. In
these cases the canonical height can be computed easily once we know what
the Néron model of E at p looks like. This information can be obtained
using Tate’s algorithm reproduced in [89, §IV.9]. If v = ∞, then there are
different methods available: We can use a decomposition of µ∞(P ) into an
infinite series to approximate µ∞(P ). This approach is due to Tate with
modifications by Silverman [87]. We can also express µ∞(P ) in terms of the
Weierstrass σ-function (see [89, Chapter VI]) or we can use the behavior of
µ∞(P ) under isogenies and a trick involving the quadratically converging
arithmetic-geometric mean, which is due to Bost and Mestre [12] and turns
out to be the fastest algorithm of the three.

The aim of the first part of this thesis is to generalize these methods to
Jacobians of dimension at least 2. In the case of a Jacobian surface J we
can build on an existing algorithm due to Flynn and Smart [43] with mo-
difications by Stoll [94]. It uses the Kummer surface K associated to J and
remnants on K of the group law on J presented in [41] – in particular, the
fact that duplication on J is represented by explicitly known quartic poly-
nomials on K – but requires the computation of (possibly large) multiples
of points on J or K.

Although all three algorithms for the computation of µ∞(P ) available
for elliptic curves can be generalized to the present situation, it turns out
that currently the generalization of the series approach of Tate, already
introduced by Flynn and Smart, is faster than the other two.

Concerning non-archimedean local error functions, we have succeeded in
generalizing the relevant algorithms for elliptic curves to the situation of Ja-
cobian surfaces in that the values of the local error functions µp(P ) can now
be computed using similar formulas. Our algorithm has been implemented
in the computer algebra system Magma [67].

However, in contrast to the elliptic curve situation we have to allow
some extensions whose ramification indices can be controlled easily. This
is a compromise between working over the (local) ground field and working
over an extension such that the given model of the curve becomes semistable.
We allow extensions such that we can always reduce to a list of essentially
five different reduction types. This is possible, because we can find simple
formulas expressing how a change of model of the curve affects µp(P ).

In order to determine formulas for the computation of µp(P ) in these
cases, it is useful to study the interplay between µp and the Néron model of
J over Spec(Zp). Unfortunately, this is more complicated than for elliptic
curves and new problems appear, but for a class of reduction types which
includes the semistable models we can still get a rather strong statement.

Residue characteristic 2 is, as usual, the trickiest case. In order to deal
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with it we first have to generalize the explicit theory of the Kummer surface,
previously only worked out for simplified models and characteristic not equal
to 2, to arbitrary ground fields and more general models. This has other
applications as well, for instance in cryptography as in [34]. One can also
use the Kummer surface to search for points on the Jacobian similarly to
[96].

Another application of our algorithm is an improvement of the bound on
the height constant, that is the maximal difference between the naive and
the canonical height. Such bounds are important for the computation of
generators of the Mordell-Weil group. For Jacobian surfaces, methods for
the computation of bounds are discussed in [42], [43], [92], [94] and [103].

Having dealt with Jacobian surfaces, the next step is to generalize our
methods to Jacobians of hyperelliptic curves of genus 3. The first task is
to find the Kummer variety K and how the group law on J is reflected on
it. Earlier works in this direction are [100] and [32]. We have succeeded in
completely describing K; however, it is a rather complicated object, namely
an intersection of a quadric and 34 quartics in P7. We hope that this can
be used, for instance, to search for points on the Jacobian as in [96]. The
traces of the group law are more difficult to find. We prove that certain
biquadratic forms, fundamental for describing how addition on a Jacobian
surface is reflected on its Kummer surface, cannot exist in this situation.

We have attempted to work around this problem and have stated a
conjecture, based on experimental data, that it is still possible to describe
duplication on J using quartic polynomials on K and we show how to find
candidates for these polynomials. If this conjecture holds, then we can ge-
neralize many of our previous results – at least in principle, since the algebra
involved is much more difficult. In fact, proving our conjecture is also made
more difficult by this issue and it appears that we need some new ideas to
tackle the problem.

The observation that the previous approach quickly becomes infeasible
as we increase the dimension of the Jacobian naturally leads to a search for
other methods. Fortunately, there is a completely different way to express
the canonical height on a Jacobian J of a curve C, due to Faltings [37],
Gross [46] and Hriljac [52], [53], all using earlier results of Néron [78]. This
expression is in terms of arithmetic intersection theory on a reagular model
of the curve; more precisely, we can decompose the canonical height ĥ(P )
into a sum of local Néron symbols 〈D,E〉v , one for each place v of k. Here
D and E are divisors of degree zero on the curve with disjoint support that
both represent P .

Assuming k = Q again, we can express 〈D,E〉p for prime numbers p
using intersection theory on a regular model of C over Spec(Zp). Our task
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is to make this practical by developing algorithms for determining suitable
divisors D and E, for finding those p that may yield non-trivial local Néron
symbols and for intersection multiplicity computations on regular models.
Such models can be computed using Magma. Our algorithms rely heavily on
Gröbner basis computations and have been implemented in Magma; they are
most successful for hyperelliptic curves. Another quite similar approach has
been developed independently by Holmes and is presented in [50].

The archimedean local Néron symbol 〈D,E〉∞ is defined in terms of
Green’s functions on the Riemann surface associated to the curve. Building
on earlier work by Hriljac, we show how the symbol can be expressed using
theta functions on the analytic Jacobian. Again, this is due independently
to Holmes [50]. In the hyperelliptic case all necessary computations are pos-
sible using existing Magma functionality. For non-hyperelliptic curves there
are algorithms [7], [29], [30] due to Deconinck et al. for these computations,
and even implementations that used to work in earlier versions of Maple
[68]; they are currently being rewritten in Sage [91].

Regarding the ground field, we do not restrict to number fields, since
almost all of our results continue to hold if we work over a one-dimensional
function field k with perfect residue fields. Indeed, the previous algorithm
for genus 2 was only guaranteed to work for global fields but we require no
such restriction on k.

Organization

For convenience we now provide a brief summary of the chapters of this
thesis.

Chapter 1. Motivation and Background

In this chapter we review some of the theory that we will need later on
and explain why the search for methods for the computation of canonical
heights is an interesting problem. First we briefly discuss the theory of
places and absolute values and fix some normalizations in force throughout
this thesis. Next we introduce heights and in particular canonical heights
on abelian varieties in Section 1.2. In order to compute the latter, at least
when we have a Jacobian of small dimension, we shall use a decomposition
into (canonical) local heights as in Section 1.3.

In the non-archimedean case it turns out to be fruitful to investigate
the relations between canonical local heights and Néron models, which we
do in Section 1.4. This is especially true in the case of Jacobians, since
then we can express the Néron model in terms of certain models of the
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underlying curve. This is the subject of Section 1.5, where we also introduce
several other concepts needed in later chapters. In Section 1.6 we treat
archimedean canonical local heights before presenting a short selection of
possible applications in the final Section 1.7.

Chapter 2. Elliptic Curves

This chapter presents no original research; we are content to discuss the
known results and algorithms briefly, sometimes from a different point of
view than what can be found in the literature. We do so because the tech-
niques used in this chapter and our treatment of them are a source of inspi-
ration for the case of higher dimensional Jacobians, especially for Jacobian
surfaces that are considered in the following chapter.

In Section 2.1 we introduce heights and canonical heights on elliptic
curves using our constructions from the previous chapter. Then we decom-
pose the canonical heights into canonical local heights in Section 2.2, also
stating some results and constructions that will we shall imitate in higher-
dimensional situations. The computation of these canonical local heights in
the non-archimedean case is the subject of Section 2.3 whose most important
result is Proposition 2.14. Finally, we introduce three different methods for
the computation of archimedean canonical local heights in Section 2.4.

Chapter 3. Jacobian surfaces

In this chapter we first review the general theory of Jacobian and Kummer
surfaces in Section 3.1 and discuss known methods for the computation of
canonical heights in Section 3.2 before introducing a new algorithm for the
computation of canonical local heights at non-archimedean places in the
remainder of the chapter. After generalizing the explicit theory of Kummer
surfaces due to Flynn in Section 3.3, we develop the necessary theory for
our algorithm in Section 3.4. We focus on how the canonical local height
changes under a transformation of the given model and show that, after
possibly a small and easily controlled field extension, we can always reduce
to essentially five different types of reduction. In Section 3.5 we discuss
how these types can be distinguished using certain invariants of curves of
genus 2 called Igusa invariants before presenting formulas for the canonical
local height in these cases in Section 3.6. Finally, we discuss the situation for
archimedean places in Section 3.7. The simplification process presented in
Section 3.4.4, the case distinction based on Igusa invariants given in Section
3.5 and the methods from Section 3.6 have been implemented in Magma.

Chapter 4. Jacobian threefolds

The objective of this chapter is to generalize as many concepts and results of
the previous chapter as possible to the situation of a Jacobian threefold. It
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turns out that even in the situation of the Jacobian of a hyperelliptic curve
of genus 3 with a rational Weierstrass point at infinity several problems
appear which we did not encounter in the situation of Jacobian surfaces.
One obstacle is that the algebra is much more complicated than the algebra
needed so far.

The first task is the explicit construction of the Kummer variety K
associated to such a Jacobian J . Here we can build on earlier work by Stubbs
[100] who constructs an embedding of K into P7; we review this embedding
in Section 4.1. Next we find defining equations for the image of K under this
embedding. One of the new phenomena is that there is a quadratic relation
on K, whereas the Kummer surface is a quartic hypersurface. In Section
4.3 we discuss the traces which the group law on the Jacobian leaves on K
using earlier work due to Duquesne [32]. In Chapter 3 these were given by
certain biquadratic forms Bij and quartic forms δi. We show that no such
biquadratic forms can exist in genus 3, but conjecture, based on experimental
evidence, that there are analogs of the δi.

Under the assumption that the conjecture is valid, we can immediately
generalize several definitions and results from the previous chapter and we
do so in Section 4.4. We discuss non-archimedean canonical local heights in
Section 4.4.1, finding that some results can only be generalized under further
assumptions, and the case of archimedean canonical local heights in Section
4.4.2. Here it turns out that their computation using theta functions given
in Section 3.7.2 generalizes easily.

Chapter 5. Arithmetic intersection theory

In order to find an algorithm suitable for more general curves, we take a com-
pletely different approach in this chapter. It turns out that we can express
the canonical height of a point on the Jacobian purely in terms of data on
the curve using Theorem 5.11. This result allows us to write the canonical
height as a sum of certain pairings, called local Néron symbols, between rel-
atively prime divisors representing the point in question. In Section 5.1 we
review the construction of these symbols using intersection theory on regular
models of the curve and Green’s functions on Riemann surfaces. Apart from
the statement of Theorem 5.11, Section 5.2 also contains the basic outline
of an algorithm for the computation of canonical heights consisting of six
steps and a discussion of different ways of representing divisors.

These six steps are dealt with in the remainder of this chapter. We have
to find out which places can lead to non-trivial intersection multiplicities;
this can be done using Gröbner bases as in Section 5.3.2. The actual compu-
tations of the local Néron symbols are discussed in the remaining sections.
We explain how intersection multiplicities on certain regular models can be
computed using Gröbner bases over local rings in Section 5.3.4 and express
the archimedean local Néron symbols in terms of (by now familiar) theta
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functions on the Jacobian in Section 5.3.6. The relevant algorithms have
been implemented in Magma.

Chapter 6. Examples and timings

This chapter is divided into two parts: The first part contains a discussion
on how our algorithm for the computation of canonical heights and the
bounds on the height constant discussed in Chapter 3 relate to the state of
the art. The second part provides two examples where the canonical height
algorithm developed in Chapter 5 is used. We also discuss its limitations
and running time; this discussion is kept rather informal.

Appendix A. Proofs of some results from Chapter 3

Because some of the proofs in Chapter 3 are completely elementary, but
very long and tedious, we have chosen to collect them in this Appendix. We
hope that this will make it easier for the reader to concentrate on the main
points of Chapter 3.



Chapter 1

Motivation and background

1



2 CHAPTER 1. MOTIVATION AND BACKGROUND

In this preparatory chapter all objects from algebraic or arithmetic ge-
ometry that we use without definition are defined and discussed in Chapter
A of [49], in [65] or in [9]. We do not give any proofs for standard results,
but instead refer to the above-mentioned literature.

1.1 Places and absolute values

We first set some notation. In this thesis k always denotes a number field or
a function field of dimension one with fixed algebraic closure k̄ and ring of
integers Ok. In the latter case we make no assumption on the characteristic
of k, unless stated otherwise, but it will always be assumed that all residue
fields are perfect. Let Mk denote the set of places of k and M0

k (respectively
M∞
k ) the set of non-archimedean (respectively archimedean) places of k. If

k is a function field, then M∞
k is empty.

For v ∈M0
k , let

v : k −→ Z ∪ {∞}

denote the additive discrete valuation at v, normalized such that it is sur-
jective.

If v ∈ Mk, then we can associate an absolute value |.|v to v in a non-
unique way. We normalize |.|v for v ∈MQ by requiring |p|v = p−1 for a non-
archimedean place v corresponding to a prime p and by setting |a|∞ = |a|
for a ∈ Q, where ∞ is the unique archimedean place of Q and |.| is the
usual absolute value. This gives rise to a normalization of absolute values
on extensions of Q. Namely, if k/Q is an extension and v ∈Mk, then there
is a unique place v′ ∈ MQ lying below v; we require that the restriction
of |.|v to Q equals |.|v′ . In the case of a one-dimensional function field, we
normalize our absolute values by requiring |a|v = exp(−v(a)) for any a ∈ k.

If v ∈ Mk is a place of k, then we write kv for the completion at v. If
v is non-archimedean, then we denote the ring of integers of kv by Ov, its
residue class field at v by kv and the cardinality of kv by qv. We set Nv equal
to log(qv) if k is a number field and v is non-archimedean and to 1 in the
other cases. Finally, we define for v ∈ Mk the local degree nv at v as the
degree of the closed point corresponding to v if k is a function field and by
[kv : Qv′ ] if k is a number field and v′ ∈MQ such that v extends v′.

If v ∈M0
k , then we have

−nv log |a|v = Nvv(a)

for any a ∈ k∗v . For archimedean v we define

v(a) := −nv log |a|v for a 6= 0

and
v(0) =∞.
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The most important property which our fields satisfy is the product
formula. It says that

∑

v∈Mk

−nv log |a|v =
∑

v∈Mk

Nvv(a) = 0 for all a ∈ k∗. (1.1)

For a proof of the product formula see [59, Chapter 2]. In addition we set
dk = [k : Q] in the number field and dk = 1 in the function field case.

1.2 Heights on projective space, Weil heights and
canonical heights

In this section we first define relative and absolute heights on projective space
over number fields or one-dimensional function fields. These are functions
taking values in the nonnegative real numbers that measure the size of a
point. Then we define heights on projective varieties, focusing on abelian
varieties, and finally canonical heights.

Definition 1.1. Let k be a number field or a one-dimensional function field
and let n ≥ 1 be an integer. Let P = (x0 : . . . : xn) ∈ Pnk . Then the
(logarithmic) height of P relative to k is

hk(P ) :=
∑

v∈Mk

−Nvmin{v(x0), . . . , v(xn)}

=
∑

v∈Mk

nvmax{log |x0|v, . . . , log |xn|v}.

Moreover, we call

h(P ) :=
1

d′k′
hk′(P )

the absolute (logarithmic) height of P , where k′ is any field such that P ∈ Pnk′
and d′k′ equals dk′ if k is a number field and [k′ : k] if k is a function field.

Then [49, Lemma B.2.1] guarantees that h(P ) does not depend on the
choice of k′.

Next we want to define heights on smooth projective varieties. The
obvious idea is to choose an embedding into projective space and define the
height on the variety to be the height on the image of the embedding. Such
embeddings correspond to very ample divisors on the variety.

More generally, let k be a number field or a one-dimensional function field
with fixed algebraic closure k̄ and let V/k be a smooth projective variety
defined over k. Let Div(V ) denote the group of divisors on V and Pic(V )
the Picard group. We also need the subgroups Div(V )(k′) and Pic(V )(k′)
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of k′-rational elements of Div(V ) and Pic(V ), respectively, where k′ is an
extension of k with algebraic closure k̄′. These are the elements fixed by the
Galois group Gal(k̄′/k′). If f ∈ k(V )∗, the we denote the principal divisor
associated to f by div(f).

There is an association, in fact a homomorphism, that is known as Weil’s
height machine and is constructed as follows:

Div(V ) −→ Pic(V ) −→
{h : V (k̄)→ R}

{h : V (k̄)→ R bounded}

Here we write a divisor D ∈ Div(V ) as the difference D = D1 −D2 of two
very ample divisors with associated embeddings φ1 and φ2, respectively, and
set

hV,D(P ) := h(φ1(P ))− h(φ2(P ))

for all P ∈ V (k̄). We associate to D the class [hV,D] in
{h:V (k̄)→R}

{h:V (k̄)→R bounded}
.

See [49, Theorem B.3.2] for a proof of the fact that this is a well-defined
homomorphism and of several other properties. In particular Weil’s height
machine is functorial in the sense that if we have a morphism φ : V −→ V ′

of smooth projective varieties defined over k and D′ ∈ Div(D′), then

[hV,φ∗(D′)] = [hV ′,D′ ◦ φ].

Suppose now that we have a morphism φ : V −→ V and a divisor
D ∈ Div(V ) such that φ∗([D]) = d[D], where [D] is the linear equivalence
class of D and d > 1. Then the sequence

(
d−nhD

(
φn(P )

))
n
converges as n

approaches infinity and we define

ĥφ,D(P ) := lim
n→∞

d−nhD
(
φn(P )

)

and obtain a height function associated to the class [D] satisfying

ĥφ,D(φ(P )) = dĥφ,D(P ) .

We call ĥφ,D the canonical height on V with respect to φ and D.
In the special case where V = A is an abelian variety defined over k, there

is a natural morphism to choose, namely the duplication map [2] : A −→ A.
Recall that if [D] is an ample symmetric divisor class on A, then we have
[2]∗([D]) = 4[D].

Definition 1.2. Let k be a number field or a one-dimensional function field
and A/k an abelian variety defined over k. Let D ∈ Div(A) such that
[D] ∈ Pic(A) is ample and symmetric. The function

ĥD := ĥ[2],D

is called the canonical height or Néron-Tate height on A with respect to D.
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The most important properties of the canonical height are summarized in
the following theorem. We denote for any group G the subgroup of elements
of G of finite order by Gtors. Furthermore, if n ∈ Z and P ∈ A is a point on
an abelian variety, then we abbreviate [n](P ) by nP .

Theorem 1.3. (Néron, Tate) Let k be a number field or a one-dimensional
function field and A/k an abelian variety defined over k. Let D ∈ Div(A)
such that [D] ∈ Pic(A) is ample and symmetric. The following are satisfied:

(i) ĥD(mP ) = m2ĥD(P ) for all m ∈ Z, P ∈ A(k̄)

(ii) ĥD(P +Q) + ĥD(P −Q) = 2ĥD(P ) + 2ĥD(Q) for all P,Q ∈ A(k̄)

Now suppose that k is a number field.

(iii) ĥD(P ) ≥ 0 for all P ∈ A(k̄) and ĥD(P ) = 0 if and only if P ∈ A(k̄)tors.

(iv) ĥD : A(k̄)/A(k̄)tors −→ R is a positive definite quadratic form that
extends R-linearly to a positive quadratic form on A(k̄)⊗ R.

(v) The set {P ∈ A(k′) : ĥD(P ) ≤ B} is finite for every number field k′

over which A is defined and every bound B.

Proof. See [49, §B.5].

1.3 Néron functions

In this thesis we are interested in practical methods to compute canonical
heights on certain abelian varieties. However, it is not a very good idea to
use Definition 1.2 for this purpose, since the size of the coordinates that
we need to compute - assuming we can represent them somehow - grows
exponentially. Fortunately, there are other methods. The definition of the
canonical height given in the previous section is due to Tate, but at the
same time Néron constructed the canonical height as the sum of local con-
tributions in [78]. It was later reformulated in the language we use below by
Lang, see [59, Chapter 11]. Although the construction is more complicated
than Tate’s construction, which allows for a rather short proof of Theorem
1.3, it has both theoretical and practical merits. We shall split the canoni-
cal height into a sum of certain functions which Lang calls Néron functions
and Hindry-Silverman call canonical local heights. We shall see that this
decomposition allows us to compute canonical heights for abelian varieties
of dimension one and two.

Let A be an abelian variety defined over a field l with an absolute value
v. Let D ∈ Div(A)(l).
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Definition 1.4. A Weil function associated with D and v is a function

λD,v : A(l) \ supp(D) −→ R

with the following property: Suppose D is represented locally by (U, f),
where U ⊂ A(l) is an open subset and f is a rational function. Then there
exists a locally bounded continuous function α : U −→ R such that for all
P ∈ U \ supp(D) we have

λD,v(P ) = − log |f(P )|v + α(P ),

where the normalization of |.|v has been fixed in Section 1.1.

In this context, ‘locally bounded’ means bounded on bounded subsets
and ‘bounded’ and ‘continuous’ refer to the v-adic topology, see [59, §10.1].

Next we define Néron functions, which are Weil functions having some
special properties.

Definition 1.5. We call an association D 7→ λD associating to each l-
rational divisor D on A a Weil function λD a Néron family if the following
conditions are satisfied.

(1) If D,E ∈ Div(A)(l), then λD+E,v = λD,v + λE,v + c1 for some c1 ∈ R.

(2) If D = div(f) ∈ Div(A)(l) is principal, then λD,v = − log |f |v + c2 for
some c2 ∈ R.

(3) For all D ∈ Div(A)(l) we have λ[2]∗(D),v = λD,v ◦ [2] + c3 for some
c3 ∈ R.

We call the image λD,v under such an association a Néron function associated
with D and v.

Lang shows in [59, §11.1] that for any l-rational divisor D on an abelian
variety A there exists a Néron function λD,v associated with D and v that
is unique up to constants. In the process he shows how Néron functions can
be constructed. This also gives a method of verifying whether a given Weil
function associated with a divisor on an abelian variety is a Néron function
when the linear equivalence class of the divisor is symmetric.

Proposition 1.6. (Lang) Let D ∈ Div(A)(l) be a divisor whose class in
Pic(A) is symmetric and let λ be a Weil function associated with D and v.
Let f ∈ l(A) be a rational function such that [2]∗(D) = 4D+div(f), and let
ε : A(l) −→ R be the unique bounded continuous function on A(l) such that

λ(2P ) = 4λ(P )− log |f(P )|v − ε(P )

for all P outside a suitable Zariski closed subset of A(l).
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Let µ(P ) :=
∑∞

n=0 4
−n−1ε(2nP ) and let λ̂ := λ−µ. Then µ : A(l) −→ R

is bounded and continuous. Furthermore, λ̂ is the unique Néron function
associated with D and v that satisfies

λ̂(2P ) = 4λ̂(P )− log |f(P )|v . (1.2)

Proof. A similar result is proved in [59, Chapter 11, Proposition 1.1]. The
following proof is a generalization of the discussion preceding [43, Theo-
rem 4].

Existence and uniqueness of ε are obvious because λ is a Weil function.
Note that although λ is only defined on A(l) \ supp(D), the function ε is
defined on all of A(l), because it is a Weil function associated with 0 ∈
Div(A) and v. See Proposition 2.3 and Corollary 2.4 of [59, Chapter 10].

It follows from this that µ converges and is defined on A(l). It is
also bounded and continuous, since multiplication by 2n is continuous. A
straightforward calculation reveals that we have

ε(P ) = 4µ(P )− µ(2P );

this is known as Tate’s telescoping trick.

Hence we get

λ̂(2P )− 4λ̂(P ) = λ(2P )− µ(2P )− 4λ(P ) + 4µ(P )

= − log |f(P )|v.

Therefore λ̂ satisfies property (3) of a Néron function. The verifications that
it also satisfies (1) and (2) are immediate; this proves the Proposition.

In particular it follows that any Weil function satisfying (1.2) will auto-
matically be a Néron function. The crucial point is that we can fix a specific
Néron function in its class modulo constants by fixing the function f .

Definition 1.7. Let f ∈ l(A) be a rational function such that [2]∗(D) =
4D + div(f). We call the unique Néron function that satisfies (1.2) the
canonical local height on A associated with D, v and f and denote it by
λ̂D,v,f .

We now relate canonical local heights to canonical heights. The following
theorem tells us that if we pick some f as above consistently for all places v,
then the sum of all canonical local heights associated with D and f coincides
with the canonical height.

Theorem 1.8. (Néron) Let k be a number field or a one-dimensional func-
tion field and let A be an abelian variety defined over k. Let D be a k-rational
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divisor on A whose class is ample and symmetric and let f ∈ k(A) be a ra-
tional function such that [2]∗(D) = 4D+div(f). For each v ∈Mk let λ̂D,v,f
denote the canonical local height associated with D, v and f . Then we have

ĥD(P ) =
1

dk

∑

v∈Mk

nvλ̂D,v,f (P )

for all P ∈ A(k) \ supp(D).

Proof. Although this theorem is not proved there directly in this form, it
follows almost immediately from the results of [59, §11.1].

It is worth noting that when the condition P /∈ supp(D) fails we can
repair the situation easily; we can use the moving lemma (cf. [49, Lemma
A.2.2.5 (ii)]) to find some D′ ∈ [D] such that P /∈ supp(D′) and use suitable
canonical local heights for D′.

Remark 1.9. The canonical local heights are defined not only on A(k), but
also on A(kv). Therefore we may and shall pass to the completion whenever
we only deal with one place at a time.

Remark 1.10. We have not defined canonical heights for anti-symmetric
divisor classes [D]. This is possible, but leads to a linear form, as opposed
to a quadratic form. It can also be decomposed into a sum of canonical local
height and the only difference is that we have to take a function f satisfying
[2]∗D = 2D+div(f) in the preceding theorem. It is also possible to construct
canonical heights for general divisors on A as a sum of a quadratic and a
linear form. All of this is done in [49, §B.5 ].

Remark 1.11. For an exposition of canonical local heights in terms of line
bundles see [8, Chapter 9].

1.4 Néron models

In this section we study the interplay between Néron functions associated to
a non-archimedean place v and the Néron model of A over the spectrum of
the ring of integers Ov of the completion kv of k at v. Our main references
are [9] and [59].

Let R denote a Dedekind domain with field of fractions l and let S =
Spec(R).

Definition 1.12. Let V be a smooth projective variety over l of dimension
d. We call a closed subscheme in some Pn

l̄
given by a set of defining equations

of V in Pn
l̄
a model of V over Spec(l) and we say that the model is R-integral

if the equations have coefficients in R. IfM is an R-integral model of V over
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Spec(l), then we call the closed subscheme of PnR defined by the equations
in M the closure of M over S.

Moreover, we define a model of V over S to be a normal and flat S-
scheme V → S of dimension d + 1 together with an isomorphism Vl ∼= V ,
where Vl is the generic fiber of V. For each closed v ∈ S we denote the
special fiber of V above v by Vv.

Remark 1.13. IfM is a model of a smooth projective variety V over Spec(l),
then we usually call M a model of V without mentioning Spec(l) explicitly.
Moreover, we will regularly abuse notation by using V for both the variety
and its given model, and talk about the closure of V when we mean in fact
the closure of the given (R-integral) model of V over S, unless this might
cause confusion. Conversely, we always mention the base scheme S when we
talk about a model of a variety V over S.

Note that if the closure of a given R-integral model of V is normal and
flat, then it is a model of V over S.

We are especially interested in models which are proper and regular.
However, if V = A is an abelian variety, then it is natural to look for models
of A over S which are regular (or even smooth over S), but also retain as
much of the group structure of A as possible. It turns out that in general it
is not possible to find such a model if we also require properness, but Néron
found a way to construct a model that satisfies a property which suffices in
applications.

Definition 1.14. Let A be an abelian variety defined over l. A Néron model
of A over S is a separated scheme A −→ S with generic fiber Al isomorphic
to A that is smooth over S and satisfies the following universal property: If
X −→ S is a smooth S-scheme with generic fiber Xl, then any morphism
φ : Xl −→ Al extends uniquely to a morphism X −→ A over S.

In particular, the uniqueness property guarantees that any l-rational
point corresponds to a section in A(S). Although this is weaker than proper-
ness, it suffices for most purposes. The next result states that Néron models
exist and that they have a structure which is as close to the group structure
on A as possible.

Theorem 1.15. (Néron) Let A be an abelian variety defined over l. Then
there exists a Néron model A −→ S of A. It is a group scheme over S
whose group scheme structure extends the Spec(l)-group scheme structure
on A. Moreover it is unique up to unique isomorphism.

Proof. The original proof is very deep and can be found in [77]. For a more
modern proof see [9].

We only use Néron models locally, so we might as well restrict to the
case where R is a discrete valuation ring with field of fractions l, valuation
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v and residue field l. Let S = Spec(R). Let A be the Néron model of A over
S and let Al and Av be its generic and special fiber, that is the fibers lying
over the generic point and the special point v ∈ Spec(Ov), respectively. In
particular Al is isomorphic to A.

It is shown in [9, §6.5, Corollary 3] that A is also the Néron model of
A over Spec(Rsh), where Rsh is the strict henselization of R, with field of
fractions lsh. The advantage of working over Spec(Rsh) is that the residue
field of Rsh is separably closed.

Definition 1.16. Suppose the special fiber Av has irreducible components
A0
v, . . .A

n
v , where n is a nonnegative integer and A0

v is the connected com-
ponent of the identity of Av. The group of components Φv of Av is defined
by

Φv := Av/A
0
v.

The nonnegative integer cv := #Φv(l) is called the Tamagawa number of
A/l. Furthermore, the identity component A0 of A is defined as the open
subscheme of A with generic fiber A and special fiber A0

v. We define A0 to
be the subset of A of points mapping to the connected component A0

v.

Note that A0
v is always defined over l. Because of the group scheme

structure A0 is a subgroup of A and we have

Φv ∼= A(lsh)/A0(l
sh)

and

Φv(l) ∼=
(
A(lsh)/A0(l

sh)
)Gal(lsh/l)

∼= A(l)/A0(l).

The last isomorphism is not obvious, but follows from A0(l
sh)Gal(lsh/l) =

A0(l) and the vanishing of H1
(
Gal(lsh/l), A0(l

sh)
)
. The latter statement is

part of the proof of [72, Chapter 1, Proposition 3.8].
If P ∈ Al is an l-rational point on the generic fiber, then, by the universal

property of the Néron model, this point is the image of the generic point of
S under a section σP : S −→ A and the image of the special point v ∈ S lies
in one of the components of the special fiber. Let D ∈ Div(A)(l) be a prime
divisor. We write its Zariski closure on A as DA; this is a prime divisor on
A and if P does not lie in the support of D, then pulling this divisor back
to S gives

σ∗P (DA) = i(D,P )(v) ∈ Div(S) (1.3)

for some well-defined integer i(D,P ), because any divisor on S is an integral
multiple of the special point v. We call i(D,P ) the intersection multiplicity
of D and P at v. This construction can be extended to arbitrary D ∈
Div(A)(l) by linearity. In general this is not an intersection multiplicity in
the usual sense, since the Néron model might not be proper and hence one
would need a completion satisfying certain properties in order to construct
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a reasonable intersection theory on it. Such a completion is not known to
exist in general, but see the proof of Proposition 2.14 below for the elliptic
curve case. Also see [59, §12.3] for a discussion of this issue.

We can compute i(D,P ) using the following observation: If DA is rep-
resented by f ∈ l(A) = l(Al) around σP (v), then we have

i(D,P ) = v(f(P )), (1.4)

and this does not depend on the choice of f . For the next theorem we
specialize R further to the rings that we are interested in.

Theorem 1.17. (Néron, Lang) Let kv be the completion of a number field
or a one-dimensional function field at a non-archimedean place v with ring
of integers Ov. Let A be an abelian variety defined over kv and let A be its
Néron model over Spec(Ov). Let D ∈ Div(A)(kv) and let λD,v be a Néron
function associated with D and v.

For each component Ajv there is a constant γj(D) ∈ Q such that for all

P ∈ A(kv) \ supp(D)

mapping to Ajv we have

λD,v(P ) =
Nv

nv
(i(D,P ) + γj(D)).

Proof. See [59, Chapter 11, Theorem 5.1].

The preceding theorem shows that the canonical height on an abelian
variety is intimately related to intersection multiplicities on the correspon-
ding Néron models over the rings of integers of the completions. Indeed,
Néron’s original construction used these intersection multiplicities, mainly
developed by Néron himself, in a crucial way. It is possible to say more about
the possible denominators of γj(D); this is done by Lang in [59, Chapter 11,
Theorem 5.2].

1.5 Curves and Jacobians

In this section we restrict to those abelian varieties that are of special interest
to us, namely Jacobians of smooth projective curves. It turns out (see
Theorem 1.36) that in this case the Néron model, which was defined using
an abstract uniqueness property, can be described more concretely in terms
of certain models of the underlying curve, to be defined below. For this
we discuss several concepts that will also be of great importance later on,
notably in Chapter 5. For proofs and more elaborate discussions we will
mostly refer to the books [65], [25] and [9]. For now we return to the
general situation where R is a Dedekind domain with field of fractions l and
spectrum S.
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Definition 1.18. An arithmetic surface over S is an integral, projective,
normal and flat S-scheme of dimension 2 such that its generic fiber is a
smooth projective curve over l.

Arithmetic surfaces are analogs of normal fibered surfaces over a smooth
projective curve defined over an algebraically closed field, with the base
curve replaced by the arithmetic curve S. As is the case for fibered surfaces,
any prime divisor D on an arithmetic surface χ : C −→ S is either horizontal
or vertical. Here a divisor D ∈ Div(C) is called horizontal if χ(D) = S and
it is called vertical or fibral, if χ(D) is a point. For each closed v ∈ S we
let Divv(C) denote the subgroup of v-vertical divisors, that is formal linear
combinations of the irreducible components of the special fiber Cv.

For the remainder of this section, let C denote a smooth projective geo-
metrically connected curve over l of genus g, given by an R-integral model.
If it is normal and flat, then the closure (more precisely, the closure of the
given model, see Remark 1.13) of C over S is an arithmetic surface that is
a proper model of C over S, although it is not regular in general. But its
special fibers are geometrically connected, since C is, see [65, Chapter 8,
Corollary 3.6]. One way to obtain a proper regular model is to start with
the closure of C over S and try to resolve its singularities without changing
the generic fiber.

Definition 1.19. Let X denote a reduced locally Noetherian scheme. A
proper birational morphism ξ : X ′ → X with X ′ regular is called a desin-
gularization of X. If ξ is an isomorphism above every regular point of X,
then ξ is a desingularization of X in the strong sense. We say that ξ is a
minimal desingularization of X if any other desingularization of X factors
uniquely through ξ. If it exists, a minimal desingularization is unique up to
unique isomorphism.

The following theorem says that if we start with the closure C of C over
S, then we can always compute a desingularization of C in the strong sense
which is necessarily a proper regular model of C over S.

Theorem 1.20. (Lipman) Let C → S be a 2-dimensional integral, projective
flat S-scheme and define a sequence

· · · −→ Ci+1 −→ Ci −→ · · · −→ C1 −→ C0 = C (1.5)

as follows: C1 −→ C0 is the normalization of C and for each i ≥ 1 we let

Ci+1 −→ Ci

denote the normalization of the blow-up of Ci along the (necessarily finite)
singular locus of Ci. Then there exists some N ≥ 0 such that CN is regular.
In particular, CN is a desingularization of C in the strong sense.
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Proof. See [3], where C is assumed to be excellent. This condition can be
eliminated a posteriori as in [65, Chapter 8, Corollary 3.51].

The computation of proper regular models using Theorem 1.20 is im-
plemented in Magma [67] by Donnelly, at least when l is the completion of a
number field or a one-dimensional function field at a non-archimedean place.
See Section 5.3.3.

The blow-ups alluded to in Theorem 1.20 are easy and we will see several
examples later on. See [89, §IV.7] for a practical introduction and more
examples. In contrast, normalizations are usually much more difficult and
so it is a natural question when the need for them does not occur.

Definition 1.21. Let C −→ S be an arithmetic surface and let ξ : C′ −→ C
be a desingularization of C. We say that C has rational singularities if
Riξ∗OC′ vanishes for all i > 0, where OC′ is the structure sheaf of C′.

Remark 1.22. The condition on the vanishing of the higher direct images is
independent of the desingularization.

Example 1.23. Regular arithmetic surfaces have rational singularities. More
generally, arithmetic surfaces whose only singularities are ordinary double
points have rational singularities, so in particular semistable models have
rational singularities.

Lemma 1.24. (Lipman, Mattuck) Suppose that C −→ S is an arithmetic
surface with rational singularities and that ξ : C′ −→ C is the blow-up of C
along a singular point P ∈ C. Then C′ is normal and has rational singula-
rities.

Proof. See [3].

Corollary 1.25. Suppose C −→ S is an arithmetic surface with rational
singularities. Then no normalizations are necessary in order to compute a
desingularization of C in the strong sense using Theorem 1.20.

It will be important for us to characterize those cases when the closure C
of C over S has rational singularities. Unfortunately the author is not aware
of any method of doing so without first computing a desingularization of C.

Lemma 1.26. (Artin) Let C −→ S be an arithmetic surface with singular
points P1, . . . , Pn ∈ C. Let ξ : C′ −→ C be a desingularization of C. For
each i ∈ {1, . . . , n} let Yi denote the preimage of Pi under ξ, with irreducible
components Yi,1, . . . , Yi,mi

.
Then C has rational singularities if and only if we have pa(Zi) ≤ 0 for

each Zi =
∑mi

j=1 ajYi,j ∈ Divv(C
′), where the aj are nonnegative integers

and pa(Zi) is the arithmetic genus of Zi.

Proof. See [2, Proposition 1].
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Remark 1.27. This result can be improved as follows. Let Zi denote the
fundamental cycle of Yi, defined in [2]. Then C has rational singularities if
and only if pa(Zi) = 0 for all i ∈ {1, . . . , n}. See [2, Theorem 3].

If C is any model of C over S, then the minimal desingularization of C
introduced in Definition 1.19 depends on C. There exists a different notion
of minimality that only depends on C.

Theorem 1.28. (Lichtenbaum, Shafarevich) Suppose that g ≥ 1. There
exists a proper regular model Cmin of C over S, unique up to unique S-
isomorphism, such that if C is another proper regular model of C over S,
then any isomorphism from Cl to C

min
l induces an S-morphism C −→ Cmin.

We call Cmin the minimal proper regular model of C. It is unique up to
unique isomorphism.

Proof. See [21, Theorem 1.2].

From now on we assume that g ≥ 1. In order to state Proposition
1.31, which explains how the minimal proper regular model is characterized
and how it can be computed, we need to introduce intersection theory on
(regular) arithmetic surfaces. This will figure more prominently in Chapter
5. Let χ : C′ −→ S be a regular model of C over S.

In the following we will need lengths of modules. If A is a commutative
ring and M is an Artinian and Noetherian A-module, then we denote by
lengthA(M) the length of M as an A-module, that is the length of a longest
chain of non-trivial sub A-modules of M . Because of the assumptions on M
this is always a well-defined nonnegative integer.

For simplicity we now restrict to the case that R is a discrete valuation
ring with valuation v. Let π = πv be a uniformiser and let l denote the
residue field. We want to intersect divisors in Div(C′).

Definition 1.29. Let D,E be two effective divisors on C′ without common
component and let P ∈ C′v be a closed point. Let ID,P and IE,P be defining
ideals of D and E, respectively, in the local ring OC′,P . Then the integer

iP (D,E) := lengthO
C′,P

(
OC′,P/(ID,P + IE,P )

)

is called the intersection multiplicity of D and E at P . The total intersection
multiplicity of D and E is

iv(D,E) :=
∑

P

iP (D,E)[l(P ) : l],

where the sum is over all closed points P ∈ C′v.
Finally, we extend iP and iv by linearity to divisors D,E ∈ Div(C′)

without common component.
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The intersection multiplicity is symmetric and bilinear, cf. [65, Chap-
ter 9, Lemma 1.4]. In analogy with algebraic surfaces we would like to define
self-intersections of divisors. However, intersections as defined above do not
respect linear equivalence, and so the usual idea, namely to use the moving
lemma, does not work in this case. This was in fact the basic problem which
motivated the development of Arakelov intersection theory, see Remark 5.13.
But if we restrict to fibral divisors, then we have the following result:

Lemma 1.30. Let D ∈ Divv(C
′). Then we have

iv(D,div(f)) = 0

for any f ∈ l(C′v)
∗. There exists some f ∈ l(C′v)

∗ such that supp(D) ∩
supp(D + div(f)) = ∅ and we can define the self-intersection iv(D,D) by

iv(D,D) := iv(D,D + div(f)).

We have iv(D,D) ≤ 0 and the following are equivalent:

(a) iv(D,D) = 0.

(b) D is orthogonal to Divv(C
′) with respect to iv(·, ·).

(c) D = qC′v for some q ∈ Q.

Proof. See any one of [65, §9.1.2], [60, III, Proposition 3.5], or [89, IV,
Proposition 7.3].

Now we can return to our discussion of minimal proper regular models.
If the residue field is algebraically closed, then we say that a vertical divisor
D ∈ Divv(C) on a special fiber of an arithmetic surface is exceptional if it is
isomorphic to P1 and has self-intersection equal to -1. Otherwise rationality
questions have to be taken into account. For a precise formulation see [65,
§9.3.1].

Proposition 1.31. (Castelnuovo’s criterion) A proper regular model of C
over S is minimal if and only if it contains no exceptional divisors.

Proof. See [21, Theorem 3.1].

So in order to construct the minimal proper regular model of C over S,
we first compute a desingularization of the closure of C over S and then
contract exceptional divisors until none are left.

We now look at two very similar examples illustrating some of the con-
cepts introduced in this section. See also [65, §10.1.1] for other interesting
examples.
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Example 1.32. Let p > 3 be a prime number and let E be the elliptic curve
defined over Qp that is given by the equation

y2 = x3 + p6.

This equation is Zp-integral, but clearly not p-minimal.
Let C denote the closure of the given model of E over S = Spec(Zp). We

first compute a desingularization of C using Theorem 1.20 and then contract
exceptional components to find Cmin, see Figure 1.1. We shall treat π = p as
a variable and write x = xiπ

i and y = yiπ
i for any i. We first blow up the

singular point (x, y, π) = (0, 0, 0). This yields three affine charts; we only
list two since the third reveals no new information.

Chart 1: We use (x, y, π) 7→ (x1, y1, π). This yields

y21 = π(x31 + π3),

which is normal with special fiber

π = 0, y21 = 0.

So we get an affine part of a double line that we denote by D. The only
irregular point is (x1, y1, π) = (0, 0, 0).

Chart 2: In this chart we use (x, y, π) 7→ (x, y′, π′), where y′ = y/x and
π′ = π/x, which leads to

y′2 = x(1 + π′3x3), π = xπ′.

This chart is normal and has special fiber

x = 0, y′2 = 0,

π′ = 0, y′2 = x.

Hence there are two components: Another affine part of the double line D
and an affine part of a simple line A, both regular and intersecting transver-
sally. The missing point of A is regular and lies in the third affine chart; in
fact A is the strict transform of the nonsingular part of Cv.

We need to blow up the singularity on the first affine chart.
Chart 1: We apply (x1, y1, π) 7→ (x2, y2, π) and obtain

y22 = π2(x32 + 1),

which is not normal. In order to normalize, we replace y2 by y3 and get

y23 = x32 + 1.

The reduction of this is a smooth curveB of genus 1, intersectingD transver-
sally. Hence we have computed a desingularization C′ of C in the strong
sense.
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Figure 1.1: Models of E : y2 = x3 + p6 over S

But this desingularization is not a minimal desingularization of C. Con-
sider the intersection matrix of Cv, where the self-intersections are computed
using Lemma 1.30.




ip(A,A) ip(A,B) ip(A,D)
ip(B,A) ip(B,B) ip(B,D)
ip(D,A) ip(D,B) ip(D,D)


 =



−2 0 1
0 −2 1
1 1 −1




Hence D is exceptional and we can contract it to find another desingula-
rization C′′ of C with intersection matrix

(
ip(A,A) ip(A,B)
ip(B,A) ip(B,B)

)
=

(
−1 1
1 −1

)
.

So we see that C′′ is the minimal desingularization of C since the only excep-
tional divisor left is A which is the strict transform of the nonsingular part
of Cv. However, the special fiber of the minimal proper regular model Cmin

of E over S is equal to B and we get it by contracting A.
Note that in this example we had to normalize and accordingly C cannot

have rational singularities. However, we performed the normalization step
by blowing up along a singular line y2 = 0 which in practice is not much
more difficult than blowing up along a point.

Example 1.33. Now consider the curve of genus 2 that is given by the smooth
projective model of the equation

y2 = (x2 + 1)(x3 + p6),
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where p = π is as above. The desingularization steps are essentially the
same, and we shall keep the same notation.

The main difference is that now A is already a curve of genus 1, given
by the equation

π′ = 0, y′2 = x(x2 + 1).

Hence C′′ is not only the minimal desingularization of C, but also the mi-
nimal proper regular model of C over S, since A cannot be contracted if
we want the model to remain regular. Obviously C does not have rational
singularities.

At this point we can relate the Néron model J of the Jacobian of C
to proper regular models. For this we now restrict to the case where R is
a discrete valuation ring with valuation v. We first introduce a technical
condition.

Definition 1.34. Let χ : C −→ S be a proper regular model of C over
S. Let ∆1, . . . ,∆n denote the geometric multiplicities of the irreducible
components of the special fiber Cv, see [9, §9, Definition 3]. We say that C
satisfies Condition (†) if one of the following holds:

(a) The residue field is perfect and gcd(∆1, . . . ,∆n) = 1.

(b) There is some i such that ∆i = 1.

Remark 1.35. Condition (†) is satisfied for any proper regular model of C
over S if C has an lv-rational point.

Whenever it is satisfied, this condition enables us to use Raynaud’s re-
sults on Picard functors reproduced in [9, Chapter 9]. In the situations we
are interested in, it will be obvious that Condition (†) is indeed satisfied –
recall that from the beginning of the present thesis we have assumed that
any residue field is perfect.

Let C be a proper regular model of C over S and let PicC/S denote the
relative Picard functor of C over S discussed in [9, Chapter 8]. We will have
occasion to use the subfunctor Pic0C/S of those elements of PicC/S whose

restriction to the special fiber Cv belongs to Pic0Cv/l (cf. [9, §8.4]).

Theorem 1.36. (Bosch, Lütkebohmert, Raynaud) Let C denote a proper
model of C over S that satisfies Condition (†). Then Pic0C/S is representable
as a separated scheme. Moreover, we have

J 0 ∼= Pic0C/S .

if and only if C has rational singularities.

Proof. See [9, Theorem 9.5.4 (b)] (due to Raynaud) for the case of regular
models. The statement there requires a condition that looks slightly diffe-
rent (involving the existence of an étale quasi-section) to hold, but [9, §9.5,
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Remark 5] shows that it is equivalent to our Condition (†). The extension
to rational singularities is [9, Theorem 9.7.1].

The final result of this section reduces the computation of the group of
components Φv of Jv to an elementary group theory problem.

Proposition 1.37. (Raynaud) Let C denote a proper regular model of C
over S that satisfies Condition (†) and whose special fiber Cv over S has
irreducible components Γ1, . . . ,Γn with respective multiplicities in Cv equal
to e1, . . . , en. Let L denote the degree 0 part of the free abelian group on the
components, that is

L =

{
n∑

i=1

aiΓi :

n∑

i=1

aiei = 0

}
.

Then Φv is isomorphic to the quotient of L by the subgroup of L generated
by divisors of the form

n∑

i=1

iv(Γi,Γj)Γi,

where j ∈ {1, . . . , n}.

Proof. See [9, Theorem 9.6.1]. The proof relies on Theorem 1.36 applied to
regular models.

1.6 Theta functions

Now we continue to look for interpretations of Néron functions. Having
dealt with non-archimedean places, Néron constructs Néron functions for
archimedean places v in [78]. The main idea is to use the complex uniformi-
sation of abelian varieties over C, so the construction does not distinguish
between the cases kv = R and kv = C. See [58], [75] or [49, §A.5] for
foundational material concerning analytic abelian varieties.

Suppose A has dimension g. We view A as an abelian variety over the
complex numbers embedded using v. Let hg denote the Siegel upper half
space, that is the space of complex symmetric g×g matrices having positive
definite imaginary part. There exists a unique element τv ∈ hg such that
A(C) is isomorphic to Cg/Λv, where Λv = Zg ⊕ τvZg. We define a map j by

j : Cg // // Cg/Λv
∼=

// A(C).

Definition 1.38. A theta function with respect to Λv is an entire function
f on Cg such that

f(z + u) = exp(gu(z))f(z) for all z ∈ Cg, u ∈ Λv,
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where gu : Cg −→ C is a function satisfying

gu(z + z′) = gu(z) + gu(z
′)− gu(0)

for all z, z′ ∈ Cg.

It turns out (see [58, Chapter X, Theorem 1.1]) that for each analytic
divisor D of A(C) (so in particular for any D ∈ Div(A)(C)) we can find a
theta function with respect to Λv having divisor j∗(D). We say that two
theta functions are equivalent if they have the same divisor.

In each equivalence class there is, up to multiplication by a nonzero
constant, a unique theta function F that satisfies

F (z + u) = F (z) exp
(
πH(z, u) +

π

2
H(u, u) + 2πiR(u)

)

for all z ∈ Cg, u ∈ Λv, where H is a Hermitian form (called the Hermitian
form associated with F ) and R is an R-valued function. We call such a
theta function a normalized theta function. See [58, Chapter 6] for facts
concerning these functions. In particular we can associate a Hermitian form
HD to any divisor D and if D′ is algebraically equivalent to D, then we have
HD′ = HD.

Proposition 1.39. (Néron) Let D ∈ Div(A)(C) and let FD be a normalized
theta function with divisor j∗(D) and associated Hermitian form HD. Then
the function

λD,v(P ) := − log |FD(z)|v +
π

2
HD(z, z)

on A(C) \ supp(D) is a Néron function associated with D, where z is any
element of Cg such that j(z) = P .

Proof. See [59, Chapter 13, Theorem 1.1].

This proposition will enable us to find Néron functions on Jacobians
associated with the theta divisor and an archimedean place. Moreover, it will
play an essential part in the determination of Green’s functions in Chapter
5. In all these applications we are only concerned with certain types of
theta functions. These we define now; they are of special interest on general
complex abelian varieties for other reasons as well. For instance, one can
always find a set of such functions that define a projective embedding of the
abelian variety, see [75, §II.3]. We first define them on the product Cg × hg.

Definition 1.40. Let g ≥ 1 and a, b ∈ Qg. Let the function θa,b on Cg × hg
be given by

θa,b(z, τ) =
∑

m∈Zg

exp

(
2πi

(
1

2
(m+ a)T τ(m+ a) + (m+ a)T (z + b)

))
.

We call θa,b the theta function with characteristic [a; b].
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We fix an archimedean place v and an element τ = τv of hg associated
with our abelian variety and view theta functions as functions in one variable
z ∈ Cg. It is straightforward to check that such functions are indeed theta
functions as defined above, cf. [75].

Remark 1.41. The function θa,b is not normalized. However, the function

θ′a,b(z) := θa,b(z) exp
(π
2
zT (Im τ)−1z

)

is normalized and the associated Hermitian form is

H(z, w) := zT (Im τ)−1w̄,

where w̄ is the complex conjugate of w. This can be verified using the
transformation law of θa,b with respect to lattice points given, for instance,
in [75, II, Theorem 6.6.1].

1.7 Applications

Since their introduction by Néron and Tate, canonical heights have found
numerous applications. In this section we highlight a few, concentrating on
those that require the actual computation of the canonical height. However,
the canonical height also figures prominently in several important theorems
in arithmetic geometry, including Faltings’ Theorem, stating that a curve of
genus greater than one defined over a number field has only finitely many
rational points (especially in the proof that uses Vojta’s inequality which is
phrased in terms of the canonical height with respect to the theta divisor
on its Jacobian, see [49, Chapter E]).

Furthermore, the canonical height substantially simplifies the proof of
the Mordell-Weil Theorem for abelian varieties, more precisely the step that
the so-called “weak” Mordell-Weil Theorem implies the full Mordell-Weil
Theorem (see [49, Chapter C]).

Suppose that A = J is the Jacobian of a smooth projective curve C
of positive genus g defined over a number field k. In many cases one is
interested in actually determining a set of generators for the Mordell-Weil
group J(k).

This is an interesting problem in its own right, but also useful for other
purposes as well. If, for instance, k = Q, then a method for the computation
of the Z-rational points on a hyperelliptic curve itself is discussed in [14].
This approach uses linear forms in logarithms and the Mordell-Weil sieve
described in [13], but requires, in addition, a set of generators for the full
Mordell-Weil group.

So suppose that we have already computed the rank r of J(k). If the
dimension of J is small, then in many cases this can be done using 2-descent
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(see [93] for an implementation-oriented description); more generally one
uses n-descent for n ≥ 2 or descent by isogeny (see [85] for a general concep-
tual framework). Even if one cannot calculate the rank exactly using these
approaches, it is often possible to give an upper bound. There are methods
to search for k-rational points on the Jacobian, for example Stoll’s program
j-points [96] for the genus 2 case if k = Q. Suppose we have found r
points P1, . . . , Pr ∈ J(k) that are independent (see below). Then we know
that H = 〈P1, . . . , Pr〉 is a subgroup of J(k) of finite index. It turns out
that in order to saturate this subgroup, it suffices to have

(a) a method to compute the canonical height ĥD with respect to an ample
symmetric divisor class [D] on J ,

(b) a method to list all points in J(k) with height ĥD bounded by a con-
stant B.

Step (b) can be split up into two steps if we can

(b’) list all points in J(k) with height hD bounded by a given constant B,
where hD is some choice of Weil height function on J with respect to
D,

(b”) bound the difference ĥD − hD.

An algorithm that uses (a), (b’) and (b”) to compute generators of the
Mordell-Weil group from the knowledge of r and an independent set of
r points P1, . . . , Pr is presented in [94, §7]. In this thesis we are mostly
concerned with (a), although we shall discuss (b”) occasionally. Step (b’) is
possible using j-points in the genus 2 case.

Using part (iii) of Theorem 1.3 it is easy to decide for any abelian variety
A/k whether a given point P ∈ A(k̄) has finite order. How can we decide
whether elements of the Mordell-Weil group are independent?

Definition 1.42. Let k be a number field and A/k an abelian variety defined
over k. Let D ∈ Div(A)(k) such that [D] ∈ Pic(A) is ample and symmetric
and let ĥD be the canonical height on A with respect to D.

(i) The canonical height pairing or Néron-Tate pairing on A with respect
to D is the bilinear pairing

(·, ·)D : A(k̄)×A(k̄) −→ R

(P,Q) 7→
ĥD(P +Q)− ĥD(P )− ĥD(Q)

2
.

(ii) Let P1, . . . , Pn ∈ A(k̄). The regulator of P1, . . . , Pn with respect to D
is the quantity

RegD(P1, . . . , Pn) := det (((Pi, Pj)D)1≤i,j≤n) .
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(iii) The regulator of A(k) with respect to D is the regulator of P1, . . . , Pr,
where P1, . . . , Pr is any independent set of generators of the free part
of A(k). We denote it by RegD(A/k).

From Theorem 1.3 we see that the canonical height pairing is a positive
definite quadratic form on A(k̄)/A(k̄)tors and that the regulator of any set
of points in A(k̄) is nonnegative. Therefore, the regulator of a set of points
vanishes if and only if that set is dependent, leading to an effective method
to check independence.

The regulator of an abelian variety also appears in the formulation of the
Birch and Swinnerton-Dyer conjecture. We only introduce the conjecture
over Q, but it can be formulated over general number fields; furthermore we
introduce most terms without explaining them, see [49, §F.4.1] for a more
elaborate (but still concise) discussion.

Instead of allowing the regulator with respect to arbitrary ample sym-
metric divisors which would introduce some ambiguity, one looks at the so-
called canonical regulator, that is the regulator with respect to the Poincaré
divisor on the product A × Â, where Â is the dual abelian variety to A.
The relation between this quantity and the regulator with respect to a fixed
ample symmetric divisor on A is explained in [49, Remark F.4.1.3], but
we are not concerned with this difficulty, as Jacobians are self-dual. Let
L(A, s) denote the L-series of A whose convergence for Re(s) > 3/2 follows
by definition, ΩA the real period of a certain differential, called the Néron
differential by Hindry and Silverman, cp the Tamagawa number #Φp(Fp)
for any p ∈M0

Q andX(A/Q) the Shafarevich-Tate group.

Conjecture 1.43. (Birch and Swinnerton-Dyer)

(i) L(A, s) has a zero at s = 1 of order equal to the rank r of A(Q).

(ii) The Taylor expansion of L(A/Q, s) around s = 1 has leading coefficient

lim
s→1

L(A, s)

(s− 1)r
= ΩA



∏

p∈M0
Q

cp




#X(A/Q)Reg(A/Q)

#A(Q)tors#Â(Q)tors
.

In order for the conjecture to make sense, we need to assume that L(A, s)
has a suitable analytic continuation; in fact it is conjectured to have an ana-
lytic continuation to all of C. Moreover, finiteness ofX is conjectured, but
not known. However, under the assumption thatX is indeed finite, its order
must be a nonnegative integer, so if we can compute the other terms, some
of which are transcendental, we can gather experimental evidence for the
conjecture. This has been done for specific elliptic curves by several authors,
starting with Birch and Swinnerton-Dyer in [5] - in fact the numerical results
led them to the formulation of the conjecture, which was originally phrased
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for elliptic curves and only later extended by Tate to general abelian varieties
in [101]. Other examples include [15] and [27], see also the recent thesis of
Miller [71], where the conjecture is verified for all elliptic curves of small
conductor except for a few exceptions.

For abelian varieties of higher dimension much less has been done. The
only two examples that the author is aware of are the work by Yoshida
[104] dealing with a specific modular Jacobian of dimension 2 and another
paper [44] by Flynn et al. where they undertake a more systematic study
of a number of modular Jacobians of dimension 2. Here ”modular” means
that the Jacobian is a quotient of the Jacobian of a modular curve X0(N)
for some level N ; it is natural to first consider such Jacobians because the
analytic continuation of L-series associated to modular forms – and hence
the analytic continuation of L(A, s) – is known.

Notice that the ability to compute canonical heights explicitly comes
in twice if we wish to collect evidence for the Birch and Swinnerton-Dyer
conjecture: We need it to find a basis for the Mordell-Weil group of A and
we need it - and this basis - to compute the regulator. Since up to now
no method has been found to compute canonical heights for Jacobians of
curves of genus at least 3, it has not been possible to check the plausibility
of the conjecture in such cases (unless the Mordell-Weil rank vanishes). We
develop a method for the computation of canonical heights on arbitrary
Jacobians in Chapter 5.
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2.1 Heights on elliptic curves

Let l be a field. We consider elliptic curves given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ l, (2.1)

where the discriminant ∆ of the equation is nonzero.
For now E denotes an elliptic curve given by a Weierstrass equation

(2.1) over a number field or one-dimensional function field k with algebraic
closure k̄. Without loss of generality we may assume that ai ∈ Ok for all i,
so that the given Weierstrass equation is an Ok-integral model of E in the
sense of Definition 1.12.

In order to develop a reasonable height theory on E it is necessary to
pick an ample symmetric k-rational divisor class on E. A natural choice is a
multiple of the class of the divisor (O), where O is the identity of the group
law on E. We choose the class of D = 2(O) and retain this notation for
the remainder of this chapter. The linear system associated to this divisor
is base point free and a map to projective space corresponding to a basis of
L(2(O)) is given by

κ : E −→ P1

(x, y) 7→ (x : 1)
O 7→ (1 : 0).

Definition 2.1. Let E/k be an elliptic curve defined by an Ok-integral
Weierstrass equation (2.1). The function h : E(k̄) −→ R given by

h(P ) := hD(P ) :=
1

dk

∑

v∈Mk

−Nvmin{v(x(P )), 0}

is called the naive height on E. The canonical height on E is the function

ĥ : E(k̄) −→ R

P 7→ lim
n→∞

1

4n
h (2nP ) .

Note that this is in accordance with our constructions from Section 1.2.

2.2 Local heights

We now decompose the canonical height into a sum of canonical local heights
using Theorem 1.8. Let kv be the completion of a number field or one-
dimensional function field k and consider an elliptic curve E defined over kv
and given by an equation of the form (2.1), where we may assume that the
coefficients ai lie in the ring of integers Ov of kv.
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Consider the functions ψ2 and φ2 defined in [86, Exercise III.7] as

ψ2(P ) := 4x(P )3 + b2x(P )
2 + 2b4x(P ) + b6,

φ2(P ) := x(P )4 − b4x(P )
2 − 2b6x(P )− b8,

where the bi are the usual well-known polynomials in the ai, see [86, §3.2].
If P, 2P 6= O we have x(2P ) = φ2(P )/ψ2(P ) (see loc. cit.). We find

[2]∗(D) = 4D + div(ψ2).

This is because the normalization (x(P ), 1) of κ(P ) for P 6= O corresponds
to the choice of the divisor D in its class [D]. In order to use Theorem 1.8
we set

λv(P ) := −
Nv

nv
min{v(x(P )), 0} = max{log |x(P )|v , 0}

for P ∈ E(kv)\{O}. It is easy to see that λv is a Weil function on E(kv)\{O}.
If P, 2P 6= O, then we get

λv(2P )− 4λv(P ) = − log |ψ2(P )|v −
Nv

nv
εv(P ),

where
εv(P ) = min{v(ψ2(P )), v(φ2(P ))} − 4min{0, v(x(P ))}

is bounded and continuous in the v-adic topology.
According to Proposition 1.6, we can now define canonical local heights

on elliptic curves.

Definition 2.2. Let E/kv be an elliptic curve defined over the completion
kv of a number field or a one-dimensional function field k at a place v ∈Mk.
The function λ̂v : E(kv) \ {O} −→ R defined by

λ̂v(P ) := −
Nv

nv
(min{v(x(P )), 0} − µv(P ))

is called the canonical local height on E, where

µv(P ) =
∞∑

n=0

1

4n+1
εv(2

nP ).

So the canonical local height at v is the canonical local height associated
with 2(O), v and ψ2.

Now suppose that E is defined over k. Then we have

h(P ) =
1

dk

∑

v∈Mk

nvλv(P )

and from Theorem 1.8 we deduce

ĥ(P ) =
1

dk

∑

v∈Mk

nvλ̂v(P ).

for all P ∈ E(k) \ {O}.
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Remark 2.3. There are several normalizations in use for the canonical height
and even more for the canonical local height on elliptic curves. Our nor-
malization λ̂v of the canonical local height on elliptic curves defined below
corresponds to the one used in [28], so in particular we have

λ̂v(P ) = 2λ̂SilBv (P )−
1

6
v(∆) (2.2)

where λ̂SilBv is the normalization used in Silverman’s second book [89, Chap-
ter VI] on elliptic curves and ∆ is the discriminant of the given Weierstrass
model of E. The advantages of this normalization are discussed in [28]; the
most important property that λ̂SilBv satisfies is independence of the model.
This follows from Proposition 2.5 below.

The key properties that the canonical local height, normalized as above,
satisfies are summarized in the following theorem.

Theorem 2.4. (Néron, Tate) Let E be an elliptic curve defined over kv.
Then the canonical local height λ̂v on E satisfies the following properties:

(i) λ̂v is continuous on E(kv) \ {O} and bounded on the complement of
any open neighborhood of O with respect to the v-adic topology.

(ii) The v-adic limit
lim
P→O

(λ̂v(P )− log |x(P )|v)

exists.

(iii) For all P ∈ E(kv) \ {O} with 2P 6= O we have

λ̂v(2P )− 4λ̂v(P ) = log |ψ2(P )|v

(iv) For all P,Q ∈ E(kv) \ {O} such that P ±Q 6= O we have

λ̂v(P +Q) + λ̂v(P −Q) = 2λ̂v(P ) + 2λ̂v(Q)− 2 log |x(P )− x(Q)|v .

(v) If k′/kv is a finite extension and v′ is the extension of v to k′, then we
have λ̂v′(P ) = λ̂v(P ) for all P ∈ E(kv).

Moreover, λ̂v is determined uniquely by (i)− (iii).

Proof. For a proof of results corresponding to (i)-(iii) and (v) for λ̂SilvBv

see [89, Chapter VI, Theorem 1.1]. Part (iv) for λ̂SilvBv is proved as [89,
Chapter VI, Corollary 3.3] for archimedean v and is [89, Exercise 6.3] for
non-archimedean v; the properties of λ̂SilBv proved in [89] translate easily to
our situation using (2.2). In fact part (iii) and (assuming the other properties
have been verified) uniqueness are immediate from Proposition 1.6, parts (i)
and (ii).
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For several applications it is important to know how the canonical local
height changes under isogenies.

Proposition 2.5. (Bernardi) Let E and E′ be elliptic curves defined over
kv and given by Weierstrass models with respective discriminants ∆ and ∆′.
Let α : E −→ E′ be an isogeny of degree d and let λ̂v denote the canonical
local height, see Definition 2.2. If P ∈ E(kv) satisfies α(P ) 6= 0, then we
have

λ̂v(α(P )) = dλ̂v(P ) + v(Fα(P )) +
1

6
v(m(α)),

where

Fα(P ) =
∏

Q∈ker(α)\{O}

(x(P )− x(Q))

and

m(α) = lim
P→O

(
x(P )

x(α(P ))

)6 ∆′

∆
.

Proof. See [4].

Remark 2.6. We can use Proposition 2.5 to find out how the canonical local
height behaves under changes of the model. Another application is discussed
in Section 2.4.

We want to stress that the normalization of the canonical local height
introduced in Definition 2.2 very much depends on the normalization κ(P ) =
(x(P ), 1) corresponding to the choice of D = 2(O) in its linear equivalence
class. We could instead define the canonical local height not on the elliptic
curve itself, but on the image κ(E) = P1, or even on

KA := {(x1, x2) ∈ A2 : ∃P ∈ E such that κ(P ) = (x1 : x2)} = A2 \ {(0, 0)}

as follows: The polynomials ψ2 and φ2 only depend on the x-coordinate of
P . We can extend the relation x(2P ) = φ2(x(P ))/ψ2(x(P )) to all of E by
letting F (X,Z) and G(X,Z) be the degree 4 homogenizations of ψ2 and φ2,
respectively. Hence we have

κ(2P ) = (G(κ(P )) : F (κ(P ))).

It is easy to see that with these definitions εv(P ) does in fact not depend
on the normalization (x(P ), 1) for (κ1(P ) : κ2(P ))). Let

δ(x1, x2) := (F (x1, x2), G(x1, x2)).

Then we have δ(1, 0) = (1, 0) and if x = (x1, x2) ∈ KA represents κ(P ) for
some P ∈ E, then we know that δ(x) represents κ(2P ).
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Definition 2.7. Suppose x = (x1, x2) ∈ KA(kv). Then we define

εv(x) := min{v(δ1(x)), v(δ2(x))} − 4min{v(x1), v(x2)}

and

µv(x) :=

∞∑

n=0

1

4n+1
εv(δ

◦n(x)).

It follows that we have εv(P ) = εv(x) and µv(P ) = µv(x) whenever
x represents κ(P ) for some P ∈ E(kv). Hence it makes sense to define a
canonical local height on KA(kv) as follows:

Definition 2.8. The canonical local height on KA(kv) is the function map-
ping x = (x1, x2) ∈ KA(kv) to

λ̂v(x) := −
Nv

nv
(min{v(x1), v(x2)} − µv(x)) .

Suppose that E is defined over k and P ∈ E(k). Because of the product
formula (1.1) the normalization of κ(P ) that is encoded in the expression
min{v(x1), v(x2)} does not contribute globally if we sum up all over all
places v ∈Mk, so we have

ĥ(P ) =
1

dk

∑

v∈Mk

nvλ̂v(x)

for any x ∈ KA(k) representing κ(P ). This construction has the advantage
that it does not depend on the choice of a divisor in its divisor class and is
therefore defined for any point on the curve. Furthermore, the properties
that this canonical local height enjoys are better in some sense; for example,
the identities

λ̂v(δ(x)) = 4λ̂v(x)

and
λ̂v(x) = lim

n→∞
4−nλ̂v(δ

◦n(x))

follow immediately from the definitions.
We will generalize this construction to the case of Jacobian surfaces later

on.

2.3 Non-archimedean places

We constructed canonical local heights on an elliptic curve E defined over
kv in the previous section. Now we want to discuss how we can explicitly
compute the values of these functions in practice, first for non-archimedean
v. We start with the following definition.
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Definition 2.9. Let C/l be a smooth projective curve defined by an R-
integral model over the fraction field l of a discrete valuation ring R whose
closure C over S = Spec(R) is normal and flat. We say that the model of C
is geometrically minimal if the minimal desingularization of C is isomorphic
to the minimal proper regular model of C over S.

Example 2.10. If p > 3 is a prime number, then the closure of the Weierstrass
model

y2 = x3 + p6

over Spec(Zp) is not geometrically minimal (see Example 1.32 and Lemma
2.12), but the closure of the model

y2 = (x2 + 1)(x3 + p6)

over Spec(Zp) is geometrically minimal (see Example 1.33 and Remark 3.31).

Remark 2.11. As in the examples, geometric minimality is usually not hard
to check in practice, assuming we can compute desingularizations and con-
tractions. It is equivalent to the statement that the minimal proper regular
model is a desingularization of the closure over R of the model of C.

This condition was discovered to be of interest by Sadek, see [84]. We
use his terminology.

We first prove a lemma that characterizes v-minimal Weierstrass models
in geometric terms. Recall that we are interested in elliptic curves defined
over kv , where v is non-archimedean.

Lemma 2.12. Let E/kv be an elliptic curve given by an Ov-integral Weier-
strass equation. The given model is geometrically minimal if and only if it
is v-minimal.

Proof. This can be verified in a very computational manner. It is clear that
the closure C over Spec(Ov) of the given equation is normal and flat and
so it is a model of E over Spec(Ov). We can use Tate’s algorithm for the
computation of the minimal proper regular model discussed in [89, §IV.9]
and note that if the model we start with is v-minimal, we never get to
the final step of the algorithm. Because no contractions occur, this process
yields a desingularization of C.

If, on the other hand, the model is not v-minimal, then the special fiber
at the last step of the algorithm consists of three components A,D and B,
where A has mutliplicity 1 and is the strict transform of the nonsingular part
of Cv, D has multiplicity 2 and B has multiplicity 1 (see Example 1.32).
However, the transformation acting on an affine point (ξ, η) by (ξ, η) 7→
(π−2ξ, π−3η) which is applied at this point corresponds to contracting D and
B and restarting the algorithm with a Weierstrass equation whose reduction
modulo π is B instead of Cv. Hence the minimal proper regular model cannot
be a desingularization of C.
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This result is also proved by Conrad in [24, Corollary 4.7], by Liu in
[65, §9.4] and by Sadek in [84, Theorem 4.1]. Note that these proofs do not
use Tate’s algorithm at all; indeed, Sadek’s proof generalizes to models of
genus one curves of degree ≤ 4 that have a kv-rational point. Geometric
minimality provides a non-explicit and hence sometimes more convenient
way of identifying v-minimality, as explained in [84].

In addition, Conrad proves the following result that will come up again
in Chapter 3:

Lemma 2.13. The closure of an Ov-integral Weierstrass model of an elliptic
curve has rational singularities if and only if the model is v-minimal.

Proof. Instead we can check directly using Remark 1.27 that closures of
v-minimal Weierstrass models have rational singularities by computing the
possible fundamental cycles and using the adjunction formula to find its
arithmetic genus. Conversely, it is easy to see that if the model is not v-
minimal, then a desingularization of its closure necessarily includes at least
one normalization step as in Example 1.32. See [24, Corollary 8.4] for a
more conceptual proof.

In Section 1.4 we have related the computation of Néron functions to
the Néron model E of E over the spectrum of the ring of integers Ov of the
completion kv. We let π denote a uniformiser and kv the residue field of
Ov. It is verified in [89, Chapter IV, Theorem 6.1] that for elliptic curves
the Néron model at v can be constructed by discarding all singular points
from the special fiber of the minimal proper regular model Cmin of E over
Spec(Ov) defined in Theorem 1.28.

Proposition 2.14. Let E/kv be an elliptic curve given by an Ov-integral
Weierstrass equation that is v-minimal.

(i) The values of εv and µv at P ∈ E(kv) only depend on the component
of the special fiber Ev that P maps to.

(ii) We have εv(P ) = µv(P ) = 0 for P ∈ E(kv) mapping to the identity
component.

Proof. By virtue of Lemma 2.12 we only need blow-ups in order to form
the minimal proper regular model from the closure C over Spec(Ov) of the
given model. Recall that according to Theorem 1.17 there are constants
γj(D) = γj(2(O)) for each of the components Ejv ∈ {E0v , . . . , E

n
v }, where E

0
v

is the identity component, such that for all P ∈ E(kv) \ {O} mapping to Ejv
we have

λ̂v(P ) =
Nv

nv
(i(D,P ) + γj(D)),

where i(D,P ) was defined in (1.3).
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The Néron model is simply the smooth part of the minimal proper regular
model. Hence it follows from (1.4) that in the case of an elliptic curve
i(D,P ) coincides with the usual intersection multiplicity iv(DCmin , (P )Cmin),
introduced in Definition 1.29, on the minimal proper regular model Cmin

over Spec(Ov). Moreover, a blow-up is an isomorphism outside of its center
(see the beginning of Section 5.3.4). Therefore Lemma 2.12 guarantees that
if P reduces to a regular point modulo v, then we can compute i(D,P ) as
the intersection multiplicity of the Zariski closures DC and (P )C over C.

In other words, we have

i(D,P ) = −min{v(x(P )), 0}

and therefore

µv(P ) =
nv
Nv

λ̂v(P )−min{v(x(P )), 0} = −γ0(D),

for points mapping to the identity component proving part (i) for such
points. If, on the other hand, a point satisfies v(x(P )) ≥ 0, then the points
P and O do not reduce to the same point modulo v, so Lemma 2.12 implies
that i(D,P ) vanishes for any point mapping to a non-identity component
Ejv .

This shows that

µv(P ) = −
nv
Nv

λ̂v(P ) = −γj(D)

only depends on j and also implies the same assertion for εv, because of

εv(P ) = 4µv(P )− µv(2P ).

In order to prove part (ii) it is enough to show that εv(P ) vanishes for any
P ∈ E(kv) mapping to E0v ; this is done in the proof of [89, Chapter IV,
Theorem 4.1] and we do not repeat it here.

Remark 2.15. We slightly abuse notation by saying that εv and µv factor
through the component group Φv whenever (i) and (ii) are satisfied. See
the discussion of Φv in Section 1.4.

Remark 2.16. A simple formula expressing γj(D) and hence λ̂v in terms of
intersection multiplicities is proved in [18]; see also [28] where all possible
values of the γj(D) are determined in order to give optimal bounds for the
difference between the naive local height and the canonical local height in
the non-archimedean situation (see Section 1.7).

Suppose from now on that the given Weierstrass model of E is v-minimal.
Given any Weierstrass equation we can find such a v-minimal equation using
Tate’s algorithm or using a much faster algorithm due to Laska [61]. The
component groups of Néron models of elliptic curves are well-understood
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and can be computed using Tate’s algorithm. If, for instance, the curve has
multiplicative reduction and m = v(∆) (Kodaira type Im), then over the
algebraic closure of kv the special fiber of Cmin is an m-gon and we have

Φv ∼= Z/mZ.

In all other cases we have

Φv ∼= G, where G ∈ {{0},Z/2Z,Z/3Z,Z/2Z ⊕ Z/2Z,Z/4Z}

(see [89, §IV.8]).

In order to find formulas for λ̂v we use Proposition 2.14. We need the
polynomial ψ2 introduced above, as well as the triplication polynomial ψ3

(see [87]) satisfying

λ̂v(3P ) = 9λ̂v(P )− log |ψ3(P )|v .

Algorithm 1 Computation of λ̂v(P )

if P maps to E0v then

return −Nv

nv
min{v(x(P )), 0}

else if v(c4(E)) = 0 then

m← v(∆)
n← min{v(2y(P ) + a1x(P ) + a3),m/2}

return −Nv

nv

n(m−n)
m

else if v(ψ3(P )) ≥ v(ψ2(P )) then
return −2Nv

3nv
v(ψ2(P ))

else

return − Nv

4nv
v(ψ3(P ))

end if

Theorem 2.17. (Néron, Tate, Silverman) Suppose P ∈ E(kv). Then Al-
gorithm 1 returns the canonical local height λ̂v(P ).

Proof. See [87, Theorem 5.2]. The history of the results is briefly discussed
following [28, Proposition 5]. Note that if E has bad reduction, then the
condition v(c4(E)) = 0 is satisfied precisely when E has multiplicative re-
duction (see [86, Proposition 5.1]). Here c4(E) is a well-known invariant of
E defined in [86, §III.1].

Due to Silverman’s work in [87] all steps can be made both effective and
efficient.
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2.4 Archimedean places

Let v be an archimedean place of a number field k. Then we either have
kv = R or kv = C. Several methods have been proposed for the computation
of the canonical local height λ̂v. We first discuss an approach due to Tate
with modifications by Silverman, then a completely different method due to
Néron and Silverman and finally an algorithm devised by Bost and Mestre.

Tate’s approach seems to be quite natural from our setup because it uses
Definition 2.2. Namely, we compute N terms of the infinite converging series
defining µv(P ), where N is chosen to guarantee the desired accuracy. This
integer can be found by observing that the error we have if we cut off the
series after N terms is of order 4−N . Therefore the series converges linearly.
The exact error is given in [87, Theorem 4.2].

Tate’s original series is only guaranteed to converge in all cases if kv = R,
but this was fixed by Silverman in [87]. The idea is to switch to a slightly
different series whenever the terms become too large. A similar method for
guaranteeing convergence would be to use our canonical local heights for
pairs x = (x1, x2) ∈ KA. This construction allows us to renormalize the
pairs at each step, so that convergence can be ensured easily.

Although Tate presented the first practical method for the computation
of λ̂v, there are more efficient methods available now in case v is real.

One algorithm depends on the original construction of Néron functions
for archimedean places due to Néron and discussed in Proposition 1.39.
Suppose E is embedded into P2

C using v and recall the notation from Section
1.6. Let τv ∈ H = h1 such that E(C) is isomorphic to C/Λv, where Λv =
Z⊕ τvZ and let j be the composition

j : C // // C/Λv
∼=

// E(C).

Moreover, let σ(z) = σ(z,Λv) : C −→ C be the Weierstrass σ-function,
η : C ∼= Λv ⊗Z R −→ C the extension of the quasi-period map to an R-
linear homomorphism, see [89, Chapter I]. Let q = exp(2πiτv) and recall the
Definition 2.2 of the canonical local height.

Proposition 2.18. (Néron) The canonical local height is given by

λ̂v(P ) = − log

∣∣∣∣exp(−
1

2
zη(z))σ(z)

∣∣∣∣
v

= − log

∣∣∣∣∣∣
q

w2
−w
2 (1− u)

∏

n≥1

(1− qnu)(1− qnu−1)

(1− qn)2

∣∣∣∣∣∣
v

,

where P ∈ E(C) \ {O}, z ∈ C is any complex number satisfying j(z) =
P, u = exp(2πiz) and w = Im z

Im τv
.
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Proof. See [89, Chapter VI, Theorems 3.2, 3.4].

Remark 2.19. Proposition 2.18 provides the simplest example for Proposi-
tion 1.39.

The question is how this result can be used for practical purposes. The
fact that we can compute the canonical local height using Proposition 2.18
relies on three computational “tricks”; however, they only work for real em-
beddings. So suppose v is real. First, it is possible to compute τv using the
quadratically converging arithmetic-geometric mean. This is basically due
to Gauss and is described by Bost and Mestre in [11]; see also [23, Algo-
rithm 7.4.7]. Second, a very similar method can be used to compute the
elliptic logarithm of a point P ∈ E(C), that is an element z ∈ C satisfy-
ing j(z) = P and an additional normalization condition. This technique is
sometimes called Landen’s transformation, cf. [11] and [23, Algorithm 7.4.8].
Finally, the σ-function can be computed in practice in terms of the sine-
function using a trick due to Silverman. The complete algorithm can be
found in [23, Algorithm 7.5.7]. This method can be shown to be indeed
faster than Tate’s series, especially if one is interested in high precision of
the result.

The third method available for the computation of the canonical local
height on an elliptic curve at an archimedean place is due to Bost and
Mestre. The purpose of the remainder of this section is merely to give a
summary of the unpublished manuscript [12]; to the author’s knowledge the
only additional reference is an implementation in Pari [79]. The algorithm
uses the arithmetic-geometric mean and goes as follows: We first use an
isogeny to make sure that our elliptic curve is embedded in P2

R using v and
given by a simplified Weierstrass model

E0 : y
2 = x(x+ a20)(x+ b20),

where a0, b0 ∈ R≥0. For n ≥ 1 we recursively define an elliptic curve over
the real numbers by

En : y2 = x(x+ a2n)(x+ b2n),

where

an =
an−1 + bn−1

2
, bn =

√
an−1bn−1

and we define the 2-isogeny φn−1 : En → En−1 by

(x, y) 7→

(
x(x+ b2n)

x+ a2n
, y

(x+ an−1an)(x+ bn−1an)

(x+ a2n)
2

)
.

Now let λ̂n denote the canonical local height on En(R). Then Proposition
2.5 asserts

λ̂n−1(Pn−1) = 2λ̂n(Pn)− log |x(Pn) + a2n|, (2.3)
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whenever we have Pn−1 = φn−1(Pn) and x(Pn−1) 6= 0. We want to give a
recursive formula for the canonical local height, so we restrict ourselves to
affine points P0 = (x0, y0) ∈ E0(R) lying on the connected component of
the identity of E0(R), since such points always have a preimage in E1(R)
under φ0 and moreover this preimage is guaranteed to lie on the connected
component of the identity of E1(R). In general 2P lies in this component
for any point P and we can use part (iii) of Theorem 2.4 to compute λ̂v(P ).

According to the theory of the arithmetic-geometric mean, the sequence
of curves (En)n converges to a cubic curve

E∞ : y2 = x(x+M(a, b)2)2

with a double point, where M(a, b) is the common limit of the sequences
a = (an)n and b = (bn)n. Furthermore, the sequence of points (Pn)n =
(xn, yn)n converges to a point P∞ = (x∞, y∞) ∈ E∞(R) and the sequence
of isogenies (φn)n converges to the identity map on E∞(R). From (2.3) we
get the following limit formula

λ̂v(P ) = λ̂0(P ) = log lim
n→∞

(xn + a2n)
2n−1

∏n−1
m (xm + a2m)

2m−1
. (2.4)

Here xn can be calculated as

xn =
1

2

(
xn−1 − an−1bn−1 +

√
(xn + a2n)(xn + b2n)

)
.

We can use (2.4) to compute λ̂v(P ) for a nonzero point P ∈ E(R) satisfying
our various assumptions. If P ∈ J(k) and v is a real place of k, then we can
embed P into E(R), apply some transformations such that the image Q of P
under it satisfies the assumptions, compute λ̂(Q) and finally use Proposition
2.5 to deduce the value of λ̂v(P ).

Notice that the quotient

(xn + a2n)
2n−1

∏n−1
m (xm + a2m)

2m−1

converges quadratically as n goes to ∞. The crucial point is that the
sequence of canonical local heights (λ̂n(Pn))n converges quadratically to
λ̂∞(P∞) = log |x∞ + M(a, b)2|. Hence this algorithm is faster than the
other two methods in theory; more importantly for us, it is also superior
in practice, because the operations involved (in particular the square roots)
are not too expensive.
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Chapter 3

Jacobian surfaces
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After the case of elliptic curves had been treated successfully, the next
question to ask was whether canonical heights could also be computed expli-
citly for other abelian varieties. In this context it is natural to first consider
Jacobians of curves of genus 2. In the late 1980s and early 1990s Cassels
and Flynn embarked on a program to make the arithmetic of curves of genus
2 more explicit, one of the goals being the ability to compute Mordell-Weil
groups of Jacobians surfaces with moderately sized coefficients over number
fields, see [20]. One of the main tools was the explicit construction of the
Kummer surface associated to a Jacobian surface due to Flynn, see [41].

The first algorithm for the computation of the canonical height on Jaco-
bian surfaces, which in fact works entirely on the associated Kummer surface
and uses the decomposition into canonical local heights given in Theorem
1.8, was introduced by Flynn and Smart in 1997 in [43]. However, it proved
to be infeasible in certain cases. Some modifications to their algorithm were
proposed by Stoll in 2002 in [94]. Although this yielded a significant im-
provement, the situation, especially for non-archimedean places, remained
far from the satisfactory state of the available methods for elliptic curves.
In this chapter we report on our attempt to improve this situation.

3.1 Jacobian surfaces and Kummer surfaces

In this section we let l denote a field of characteristic char(l) 6= 2. Let

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

be a binary sextic in l[X,Z] without multiple factors. Then the affine equa-
tion

Y 2 = F (X, 1) (3.1)

defines a curve of genus 2 over l and we let C denote its smooth projective
model over l. Note that we can find an equation of this form for any curve of
genus two defined over l, because of the assumption char(l) 6= 2. We denote
the Jacobian variety of C by J . Recall that the Jacobian of a smooth
projective curve of genus g ≥ 1 is an abelian variety of dimension g and
that, as a group, it is isomorphic to the kernel of the degree map on the
Picard group of C.

In [20, Chapter 2] Cassels and Flynn construct an explicit embedding
of the Jacobian into P15, where its image is given as the intersection of 72
quadrics, but in practice it is quite difficult to work with this embedding
explicitly.

If we form the quotient of J by the negation map, then we get another
classical variety K, the Kummer surface associated with J . The Kummer
surface can be embedded into P3 (as opposed to P15), so explicit calculations
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are much more efficient on K than on J . In [40] and [41] Flynn finds an
explicit embedding of K into P3. Since remnants of the group structure are
preserved when passing to the Kummer surface, these remnants can be used
to obtain a feasible method for performing arithmetic on J .

Explicit embeddings of both the Jacobian and the Kummer surface can
be found using a modified version of the classical theta divisor on the Ja-
cobian. The classical theta divisor Θ over an algebraically closed field l is
defined to be the divisor on J given by the image of C under the embedding

ι : C →֒ J

P1 7→ [(P1)− (∞)],

where we may assume f6 = 0 because l is algebraically closed, and so we
have a unique point∞ at infinity. If, on the other hand, l is not algebraically
closed, then we have to consider the case f6 6= 0. In that situation there
are two branches ∞+ and ∞− over the singular point at infinity on the
projective closure of the given equation and we define Θ+ and Θ− to be the
images of C under the embeddings

ι+ : C →֒ J

P1 7→ [(P1)− (∞+)]

and

ι− : C →֒ J

P1 7→ [(P1)− (∞−)],

respectively. It follows from a theorem of Lefshetz (see for example [58,
Chapter VI, Theorem 6.1]) that a basis of the space L(2(Θ+ +Θ−)) gives a
P15 embedding of the Jacobian and a basis of the space L(Θ++Θ−) gives a
P3 embedding of the Kummer surface. If Θ is the theta divisor corresponding
to any fixed l′-rational Weierstrass point, where l′ is an extension field of
l, then L(Θ+ + Θ−) is isomorphic to L(2Θ) over l′. All our constructions
below continue to work in case f6 = 0.

An l-rational point P on J can be represented by an unordered pair
{P1, P2} where P1 and P2 are points on the curve C that are either both
defined over l or are defined over a quadratic extension of l and conjugate
over l such that (P1) + (P2)− (∞+)− (∞−) or (P1) + (P2)− 2(∞) is in P ,
viewed as a divisor class on C. If P 6= 0, then this representation is unique.

Following the notation from [20], suppose P1 = (x, y) and P2 = (u, v)
are affine points on the curve such that x 6= u. Then a projective embedding
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of the Kummer surface is given by

κ1 = 1

κ2 = x+ u

κ3 = xu

κ4 =
F0(x, u)− 2yv

(x− u)2
,

where

F0(x, u) = 2f0 + f1(x+ u) + 2f2(xu) + f3(x+ u)xu+ 2f4(xu)
2

+f5(x+ u)xu+ 2f6(xu)
3.

The values of κ1(P ), . . . , κ4(P ) for P not of the form P = [(x, y) − (u, v)]
with x 6= u can be found in [43, §2].

The functions κ1, κ2, κ3, κ4 satisfy the quartic equation

K(κ1, κ2, κ3, κ4) = K2(κ1, κ2, κ3)κ
2
4 +K1(κ1, κ2, κ3)κ4 +K0(κ1, κ2, κ3) = 0,

(3.2)
where

K2(κ1, κ2, κ3) = κ22 − 4κ1κ3,

K1(κ1, κ2, κ3) = −4κ31f0 − 2κ21κ2f1 − 4κ21κ3f2 − 2κ1κ2κ3f3 − 4κ1κ
2
3f4

−2κ2κ
2
3f5 − 4κ33f6,

K0(κ1, κ2, κ3) = −4κ41f0f2 + κ41f
2
1 − 4κ31κ2f0f3 − 2κ31κ3f1f3 − 4κ21κ

2
2f0f4

+4κ21κ2κ3f0f5 − 4κ21κ2κ3f1f4 − 4κ21κ
2
3f0f6 + 2κ21κ

2
3f1f5

−4κ21κ
2
3f2f4 + κ21κ

2
3f

2
3 − 4κ1κ

3
2f0f5 + 8κ1κ

2
2κ3f0f6

−4κ1κ
2
2κ3f1f5 + 4κ1κ2κ

2
3f1f6 − 4κ1κ2κ

2
3f2f5

−2κ1κ
3
3f3f5 − 4κ42f0f6 − 4κ32κ3f1f6 − 4κ22κ

2
3f2f6

−4κ2κ
3
3f3f6 − 4κ43f4f6 + κ43f

2
5 .

We let κ := (κ1, κ2, κ3, κ4) be the map from the Jacobian into P3. Clearly it
identifies inverses and is hence 2 to 1, except on points of order 2, where it is
injective. Therefore the image of κ is an explicit realization of the Kummer
surface K in P3 given by the defining equation K(κ1, κ2, κ3, κ4) = 0. Note
that when f6 = 0 the same formulas work.

Definition 3.1. Let l be a field with algebraic closure l̄ and let x =
(x1, x2, x3, x4) ∈ A4

l̄
\ {(0, 0, 0, 0)}. Let K ⊂ P3

l be the Kummer surface
associated with the Jacobian J of a smooth projective genus 2 curve defined
over l. We say that x is a set of Kummer coordinates on K if the image of x
in P3

l̄
lies on K. If P ∈ J , then we say that x is a set of Kummer coordinates

for P if x represents κ(P ), that is, if κ(P ) = (x1 : x2 : x3 : x4). The set of
all sets of Kummer coordinates on K is defined by

KA := {(x1, x2, x3, x4) ∈ A4 : ∃P ∈ K such that P = (x1 : x2 : x3 : x4)}
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Note that KA equals the set of elements of A4 \ {(0, 0, 0, 0)} satisfying
the equation of K. Compare this to the case of an elliptic curve discussed
in Section 2.2, where KA was simply A2 \ {(0, 0)}.

Now we describe how the group law is reflected on the Kummer surface.
First, since a point Q ∈ J of order 2 is equal to its inverse and κ precisely
identifies inverses, addition of κ(Q) is well-defined on the Kummer surface
K. Furthermore, addition of κ(Q) extends to a linear map on P3 and thus
can be written as multiplication by a matrix WQ.

Second, there is a matrix B = (Bij(x, y))i,j∈{1,2,3,4} of biquadratic forms
with the following property: Suppose we have Kummer coordinates x =
(x1, x2, x3, x4) and y = (y1, y2, y3, y4) for P,Q ∈ J respectively, then we can
choose Kummer coordinates w and z for P + Q and P − Q, respectively,
satisfying

Bij(x, y) = wizj + wjzi for 1 ≤ i 6= j ≤ 4

Bii(x, y) = wizi for 1 ≤ i ≤ 4.

We abbreviate this by
w ∗ z = B(x, y). (3.3)

Finally, multiplication by 2 is well-defined on the Kummer surface, because
duplication commutes with negation – more generally, multiplication by
any n ∈ Z is well-defined on K. The duplication map can be given by
quartic polynomials δ1, δ2, δ3, δ4 (unique modulo the defining equation of the
Kummer surface if we require the normalization condition δ((0, 0, 0, 1)) =
(0, 0, 0, 1) to be satisfied) such that for P ∈ J we have

κ(2P ) = δ(κ(P )), (3.4)

where δ = (δ1, δ2, δ3, δ4). Explicit expressions for WQ, B and δ can be found
in [20]. We discuss them in a more general setting in Section 3.3.

3.2 Canonical heights on Jacobian surfaces

3.2.1 Global construction

Let k be a number field or a one-dimensional function field of characteristic
char(k) 6= 2 with fixed algebraic closure k̄, let C be a curve of genus 2 defined
over k and given by the smooth projective model of an affine equation of
the form

Y 2 = F (X, 1),

as in (3.1), so F (X,Z) ∈ k[X,Z] is homogeneous of degree 6 and has
no multiple roots in P1

k̄
. We may assume without loss of generality that

F (X,Z) ∈ Ok[X,Z]. Let J be the Jacobian of C and K the associated
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Kummer surface introduced above. In this section we want to construct
canonical heights on J , so according to Theorem 1.3 we first need to pick
an ample and symmetric divisor class. The previous section suggests the
class of the divisor D1 as a natural choice, where D1 = 2Θ if C has a
unique rational point at infinity and D1 = Θ+ + Θ− otherwise. Its linear
system is base point free and the corresponding morphism to P3 is given by
κ = (κ1, κ2, κ3, κ4) defined above.

Definition 3.2. The naive height on J is the function on J(k̄) defined by

h(P ) := hD1(P ) = h(κ(P )).

Furthermore, we call the function ĥ : J(k̄) −→ R that maps P ∈ J(k̄) to

ĥ(P ) := ĥD1(P ) = lim
n→∞

1

4n
h (2nP ) .

the canonical height on J .

We want to decompose the canonical height into a sum of Néron functions
as in Theorem 1.8. However, we must take into account that Néron functions
associated with a divisor are only defined on points outside the support of
the divisor. For i = 1, 2, 3, 4 we define

Di := {P ∈ J : κi(P ) = 0} ∈ Div(J)(k); (3.5)

for i = 1 this coincides with our earlier definition. Note that we can find some
i such that P /∈ supp(Di) for every point P ∈ J(k). In order to use Theorem
1.8 for the computation of the canonical height, it suffices to find canonical
local heights λDi,v associated with Di, v and gi for all i = 1, 2, 3, 4 and for all
v ∈Mk, where gi is some fixed function such that [2]∗(Di) = 4Di + div(gi).
In other words, we want to find Néron functions satisfying (1.2) for Di, gi
and all places v simultaneously.

Remark 3.3. The map κ is analogous to the map κ on an elliptic curve
defined in Section 2.2, since both maps identify inverses. The choice of the
normalization (x(P ) : 1) which is defined for all P 6= O corresponds to
the normalization κ(P )/κ1(P ) and hence to the choice of D1 is its linear
equivalence class.

Let v ∈ Mk and let C be a smooth projective curve of genus 2 defined
over kv and given as the smooth projective model of an Ov-integral equation
(3.1). We adopt the following notation: If n ≥ 1 and z = (z1, . . . , zn) ∈ k

n
v ,

then we set
v(z) := min{v(z1), . . . , v(zn)}.

Definition 3.4. Let i ∈ {1, 2, 3, 4}, let P ∈ J(kv) \ supp(Di) and let

x =

(
κj(P )

κi(P )

)

j=1,...,4

.
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The naive local height of P associated with Di and v is

λi,v(P ) := −
Nv

nv
v(x).

Now suppose P ∈ J(kv) \ supp(Di) such that also 2P /∈ supp(Di). Then
we find

λi,v(2P )− 4λi,v(P ) = − log |gi(P )|v −
Nv

nv
εv(P ), (3.6)

where
gi(P ) = δi(x)

and
εv(P ) = v(δ(x)) − 4v(x). (3.7)

It is easy to see that we have [2]∗(D) = 4D + div(gi) and that εv is locally
bounded and continuous in the v-adic topology. Moreover, εv(P ) does not
depend on the normalization x of κ(P ); we return to this below. Since the
coefficients of F and of the δi are v-integral, εv(P ) is always nonnegative if
v is non-archimedean.

From (3.6) we see that λi,v is a Weil function associated with Di, see
Definition 1.4. Using Proposition 1.6, we can define canonical local heights
on Jacobian surfaces:

Definition 3.5. Let v be a place of k and fix some i ∈ {1, 2, 3, 4}. We call
the Néron function

λ̂i,v : J(kv) \ supp(Di) −→ R

P 7→
Nv

nv
(λi,v(P )− µv(P ))

the canonical local height on J associated with Di and v, where

µv(P ) =

∞∑

n=0

1

4n+1
εv(2

nP ).

for any P ∈ J(kv).

Remark 3.6. Our notation is slightly different from the notation of [43];
namely, our εv and µv are equal to their functions of the same name, mul-
tiplied by −1.

Now suppose that C is defined over k. If P ∈ J(k) \ suppDi, then

h(P ) =
∑

v∈Mk

nvλi,v(P ) (3.8)

is obvious.
Furthermore, the next proposition follows immediately from Theorem

1.6 and the construction of λ̂i,v:
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Proposition 3.7. Suppose i ∈ {1, 2, 3, 4} and P ∈ J(k) \ supp(Di). Then
we have

ĥ(P ) =
∑

v∈Mk

nvλ̂i,v(P ).

3.2.2 The algorithm of Flynn and Smart

Flynn and Smart have introduced an algorithm for the computation of ĥ(P )
for P ∈ J(k), where k is a global field and char(k) 6= 2, in [43]. The first
step is to successively compute multiples mP for m = 1, 2, . . . until we reach
some M such that εv(MP ) = 0 for all non-archimedean places v ∈Mk.

We assume that k is a global field, because then, according to [20, §7.5],
the kernel of reduction at v (with respect to the given model) has finite
index in J(kv) for all non-archimedean v and if MP lies in this kernel, then
clearly εv(MP ) = 0. For each v ∈M0

k we letMv denote the smallest positive
integer such that εv(MvP ) = 0. We obviously have Mv = 1 for places v of
good reduction. Defining M to be the least common multiple of the Mv

works. Stoll proves in [94] that εv(MP ) = 0 implies εv(2
nMP ) = 0 for all

n ≥ 0 (see Theorem 3.9), thus verifying the correctness of the crucial point
of the algorithm, namely the equation

ĥ(MP ) = h(MP )−
∑

v∈M∞

k

Nv

nv
µv(MP ). (3.9)

In order to compute the right hand side we can pick any set of Kummer
coordinates for MP . If k = Q or, more generally, if k is a number field
of class number one, the condition εv(MP ) = 0 for any v ∈ M0

k can be
tested easily: We first pick a set of Kummer coordinates x = (x1, x2, x3, x4)
for κ(MP ) such that x1, . . . , x4 are integral and relatively prime. Then the
vanishing of εv(MP ) for all v ∈M0

k is equivalent to the condition

gcd
(
δ1(x), δ2(x), δ3(x), δ4(x)

)
= 1.

Supposing that we have succeeded in findingM , we can then proceed to
the second step which uses the quadraticity of the canonical height and the
identity (3.9) to compute ĥ(P ):

ĥ(P ) =
1

M2
ĥ(MP ) =

1

M2


h(κ(MP )) −

∑

v∈M∞

k

Nv

nv
µv(κ(MP ))




Here the computation of µv(κ(MP )) for archimedean v can be done nume-
rically by computing a large enough number of terms to achieve a desired
accuracy; this is similar to the Tate series approach for elliptic curves, see
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Section 2.4. But we need to estimate the error, so we need a bound on the
local height constant

γv = sup {|εv(P )| : P ∈ J(kv)} .

Such bounds will be discussed below, see the end of Section 3.2.3.
Also recall that in order to compute h(MP ) we can simply pick some

i such that κi(MP ) 6= 0 and compute h(P ) using (3.8) – of course, if k is
a number field of class number one, we can find a set of Kummer coordi-
nates for MP with relatively prime entries, so that the non-archimedean
contributions to the naive height all vanish.

Remark 3.8. Although their algorithm completely avoids factorisation of
integers, which can be quite expensive, it has a significant disadvantage.
Namely one has to (globally) compute the points κ(mP ) and their doubles
for all m between 1 and M . However, the size of the coordinates of κ(mP )
roughly grows like m2, so for large values of M this algorithm becomes
infeasible. See the discussion in the introduction to [94].

3.2.3 Stoll’s refinements

In order to tackle the problem just described, Stoll analyzes the map εv for
non-archimedean v in [94]. The main result is the following theorem.

Theorem 3.9. (Stoll) Let v be non-archimedean and let C be a smooth
projective genus 2 curve given by a model Y 2 = F (X, 1), where F (X,Z) ∈
Ov[X,Z] is homogeneous of degree 6 and has no multiple factors. Let

Uv := {P ∈ J(kv) : εv(P ) = 0}.

Then Uv is a subgroup of J(kv) and εv factors through the quotient J(kv)/Uv.
Moreover, εv(−P ) = εv(P ) and Uv contains the kernel of reduction with
respect to the given model. If k is a global field, then Uv has finite index in
J(kv).

Proof. See [94, Theorem 4.1].

Notice that since εv factors through the Kummer map κ which identifies
inverses, the assertion εv(−P ) = εv(P ) is trivial. The theorem clearly shows
εv(P ) = 0⇒ εv(2P ) = 0. Our Theorem 3.29 will generalize Theorem 3.9.

This theorem is used in [94] to introduce a revised version of the al-
gorithm of Flynn and Smart. The difference is that we compute µv(P )
exactly for non-archimedean v and for these computations we only need to
find mP for m between 1 and M ′ := max{Mv : v ∈ M0

k}. Fix v ∈ M0
k

such that εv(P ) 6= 0. We calculate εv(κ(mP )) for m = 1, 2, . . . ,Mv until
εv(κ(MvP )) = 0. Then µv(κ(P )) can be computed exactly as a rational
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combination of the εv(κ(mP )); namely as a finite number of terms plus a
finite number of geometric series, see [94, §6].

This revised version has significant advantages over the original algo-
rithm of Flynn and Smart. First, the computations in the second step need
not be performed exactly, a suitable finite v-adic precision is sufficient. Se-
cond, it only requires the computation of εv(κ(mP )) for m = 1, 2, . . . ,M ′,
where M ′ = max{Mv : v ∈ M0

k},, in contrast to the original algorithm,
which required us to go up to M = lcm{Mv : v ∈ M0

k}. A more detailed
discussion and analysis of the resulting algorithm can be found in [94].

Remark 3.10. If k is a one-dimensional function field that is not a global
field (for example k = l(t), where l is some number field), then the above al-
gorithm is still applicable in case we can find an Mv such that εv(MvP ) = 0
for a given P . It is an open problem whether we can change the model
to ensure that such an Mv can always be found. If this is false in general,
one can still ask the same question if we only allow the curve to have cer-
tain reduction types at the non-archimedean places. We will return to this
question later on in Remark 3.75.

According to Section 1.7 it is not sufficient to be able to compute cano-
nical heights in order to determine the Mordell-Weil group J(k). Indeed,
if we want to apply the algorithm introduced in [94, §7] we also need a
method to list rational points of naive height up to an upper bound. This
upper bound can be decomposed into a certain upper bound on the canonical
height and a bound on the difference between the naive and the canonical
height. See also Remark 5.14.

Let β be defined by

β := sup
{
|h(P )− ĥ(P )| : P ∈ J(k)

}
.

We call β the height constant of J . Then we have

β ≤
∑

v∈Mk

βv,

where
βv = sup {|µv(P )| : P ∈ J(kv)} .

In order to find an upper bound on βv , it is sufficient (but not necessary) to
find an upper bound on

γv = sup {|εv(P )| : P ∈ J(kv)} ,

for if B is such a bound, then B/3 is clearly an upper bound for βv. Bounds
for the height constant are already presented in [42] and [43]. Stoll improves
on this by explicitly bounding the non-archimedean local height constants
as follows:
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Proposition 3.11. (Stoll) Let v be non-archimedean. Then we have

γv ≤ − log |24 disc(F )|v

and hence

βv ≤ − log |24 disc(F )|v/3.

Proof. See [92, Theorem 6.1].

Stoll presents several improvements of these bounds in certain cases in
[92, §7] and also explains how to obtain bounds for the archimedean local
height constants ([92, p. 190]). Further improvements are due to Stoll [94,
§5] and Uchida [103, §6].

In this thesis we concentrate on the computation of canonical heights.
However, several of our results allow us to improve on the bound on βv given
in Proposition 3.11 and we shall mention these improvements along the way.

Finally, there is a program [96] written by Stoll that searches for rational
points of naive height up to a given bound, provided that bound is not too
large.

3.2.4 The “kernel” of εv

The group Uv = {P ∈ J(kv) : εv(P ) = 0} remains rather mysterious in
Theorem 3.9. We present a characterization of Uv when the residue cha-
racteristic is not 2 that depends on the choice of model (in P15) of J . The
same result is proved independently in [13, Proposition 5.9]. Our proof is
based on a case distinction.

Proposition 3.12. Let k be a number field or one-dimensional function
field, let kv be the completion of k at a non-archimedean place v ∈ Mk

with residue field k of characteristic char(k) 6= 2 and let Y 2 = F (X, 1) be
a model for a smooth projective genus 2 curve C defined over kv. Let J be
the Jacobian of C and let J0(kv) denote the points of J(kv) of non-singular
reduction mapping to the component of the identity of the reduction of J ,
where reduction means reduction with respect to the model consisting of 72
quadratic relations in P15 constructed in [20] and determined by the given
model of C. Then we have

Uv = J0(kv).

In order to prove the proposition, we can assume kv is strictly Henselian,
so kv is algebraically closed. We work over kv ; the result is an immediate
consequence of the following:
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No. F(X,Z) cond. add.

1 0 x4 = 0
2 Z6 x4 = 0
3 XZ5 x4 = 0 x1 = 0
4 X2Z4 x4 = 0
5 X3Z3 x4 = 0 x1x3 = 0
6 X(X − Z)Z4 x4 = 0 x1 = 0
7 X2(X − Z)Z3 x4 = 0 x1x3 = 0
8 X2(X − Z)2Z2 x4 = 0
9 X(X − Z)(X − aZ)Z3 x1 = x4 = 0
10 X2(X − Z)(X − aZ)Z2 x4 = 0 x1x3 = 0
11 X(X − Z)(X − aZ)(X − bZ)Z2 x1 = x4 = 0

Table 3.1: Conditions for the vanishing of δ(x) for orbit representatives

Lemma 3.13. Let l be an algebraically closed field with char(l) 6= 2 and
let F (X,Z) ∈ l[X,Z] be a binary sextic. Let JF ⊂ P15

l be the scheme
defined using the 72 quadratic equations from [20, Chapter 2] that define the
Jacobian when F is square-free. Let J0

F be the component of JF containing
O = (1 : 0 : . . . : 0). Let KF ⊂ P3

l be the scheme defined by the equation
(3.2), let κ : JF −→ KF be the map defined in Section 3.1. Finally, let the
polynomials δi on KF be also as defined in that section (and given explicitly
in [20]) and set δ = (δ1, δ2, δ3, δ4). Then we have

δ(κ(P )) 6= (0, 0, 0, 0) ⇔ P ∈ J0
F

for all P ∈ JF .

Proof. It suffices to consider one representative for each orbit of binary sex-
tics under the action (X : Z) 7→ (aX+bZ : cX+dZ) of GL2(l), see the proof
of [94, Proposition 3.1]. Table 3.1 is the same as Table 1 of loc. cit. and
contains the following information: Representatives for each orbit (column
F (X,Z)), together with conditions (column cond.) for the simultaneous
vanishing of all δi(x), which we abbreviate by δ(x) = 0, where x is a set of
Kummer coordinates on KF (cf. Definition 3.1), and additional conditions
(column add.) for a set of coordinates satisfying the conditions to lie on
KF . Notice that here a, b /∈ {0, 1} are distinct and that we can obviously
disregard the case of square-free reduction.

Let CF be given by the equation Y 2 = F (X,Z) in weighted projective
space P2

l (1, 3, 1). We use [13, Proposition 5.5] which states that a point
P ∈ JF \ {O} is smooth if and only if it is of one of the following two forms:

1. We have P = [(P1)− (P2)], where P1, P2 are smooth points on CF .

2. If (A(X,Z), Y −B(X,Z)) is the Mumford representation of P (see Sec-
tion 5.2.2), then A(X,Z) = cL(X,Z)2 has a double root at a multiple
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root of F , but L3 does not divide F −B2.

Furthermore, the point O is always smooth. Note that when F = 0 all
smooth points of JF are of the second type.

We first want to show that a point P ∈ J0
F satisfies δ(κ(P )) 6= 0 if F is one

of the 11 orbit representatives from Table 3.1. We have κ(O) = (0 : 0 : 0 : 1)
and δ((0, 0, 0, 1)) = (0, 0, 0, 1).

If P is of type 1, then neither P1 nor P2 are equal to the singular point
at ∞, so x1 6= 0 and if X2|F (X,Z), then we must also have x3 6= 0. This
takes care of the situation where F is not a square. If, on the other hand,
F (X,Z) is a square, say F (X,Z) = G(X,Z)2, then we are in case 2, 4
or 8 and P ∈ J0

F \ {O} means that P1 and P2 are affine, lie on the same
component and P1 6= P2. But for affine P1, P2 we can check easily that x4
is a nonzero multiple of

2G(x1, 1)G(x2, 1) + 2y1y2
(x1 − x2)2

,

where Pi = (xi, yi). Hence we have x4 = 0 if and only if P1 and P2 lie on
different components.

If P is of the second form above, then we can apply a transformation τ to
P and F and move the multiple root to ∞. Then τ(P ) satisfies κ(τ(P )) =
(0 : 0 : 1 : x4), where x4 6= c. But an easy calculation using the equation
3.2 of the Kummer surface reveals that we have x4 6= 0 as well, and so
δ(κ(P )) 6= 0, since for our chosen representatives swapping any two multiple
roots does not change the necessary condition x4 = 0 for the vanishing of δ.

We still have to show that if P ∈ JF is a singular point, then we have
δ(κ(P )) = 0. For this we observe that a singular point on JF must map into
the singular locus of KF (but not necessarily vice versa). We define K ′

sing

as follows:

K ′
sing := {x ∈ K : x is singular, δ(x) 6= 0, x 6= (0 : 0 : 0 : 1)}

It suffices to show that, for each of our orbit representatives from Table 3.1,
none of the points in K ′

sing are of the form κ(P ), where P ∈ JF \ J
0
F . Hence

we first compute K ′
sing for each of these representatives.

1. K ′
sing = ∅

2. K ′
sing = ∅

3. K ′
sing = ∅

4. K ′
sing = {(1 : 0 : 0 : −1)}

5. K ′
sing = ∅

6. K ′
sing = {(1 : 1 : 0 : 1)}
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7. K ′
sing = {(1 : 0 : 0 : 1)}

8. K ′
sing = {(1 : 0 : 0 : −1), (0 : 0 : 1 : −1), (1 : 2 : 1 : −1)}

9. K ′
sing = {(x1 : x2 : 0 : 0), (1 : a : 0 : 1), (1 : 1 : 0 : a), (a : a(1 + a) : 1 :

0)}

10. K ′
sing = {(1 : 0 : 0 : −1), (1 : 0 : 0 : −a), (1 : 1 + a : a : −a)}

11. K ′
sing = {(x1 : x2 : 0 : 0), (1 : 0 : 0 : ab), (1 : a+ b : ab : ab), (1 : a+ 1 :

a : ab), (1 : b+ 1 : b : ab), (0 : 1 : 1 : 1), (0 : 1 : a : a2), (0 : 1 : b : b2)}

Suppose that x = κ(P ) lies in K ′
sing. Furthermore, suppose x1 6= 0 if Z is

the only multiple factor of F (X,Z) and x1x3 6= 0 if X2Z2 divides F (X,Z).
Then P must lie in J0

F .

It is easy to show that if x = κ(P ) is of the form x = (1 : 0 : 0 : −f2) if
f0 = f1 = 0 or of the form x = (0 : 0 : 1 : −f4) if f5 = f6 = 0, then P is
a smooth ramification point of κ. Moreover, we can apply a transformation
to the point (1 : 2 : 1 : −1) in case 8 to put it into either one of these two
forms without changing F .

This takes care of all cases, except for case 11, where the points (0 : 1 :
1 : 1), (0 : 1 : a : a2), (0 : 1 : b : b2) remain to be considered. Let x be one
of these points. Then Z must divide A(X,Z), since x1 = 0 holds. Actually
we must have Z2|A(X,Z), since otherwise x would have to satisfy x4 = 0,
using the explicit description of κ for such points given in [43, §2].

But if P were not smooth, then Z3 would have to divide F −B2, that is

B2 = −abXZ5 + (b+ a(b+ 1))X2Z4 + . . .

which is impossible. Hence P must be smooth, if it exists, and the proof is
finished.

3.3 Kummer surfaces for general models

It would be desirable to improve the computation of the non-archimedean
µv by coming up with an algorithm that does not require the computation of
points κ(mP ) on the Kummer surface for large m at all. Ideally, we would
like to use an approach similar to Theorem 2.17 which relies on the explicit
knowledge of the different possible reduction types of an elliptic curve at v.
However, one problem is that if the residue characteristic at v is equal to 2,
then models of the form Y 2 = F (X, 1) always have bad reduction and are
often not minimal at v.
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Hence we want to generalize Flynn’s construction of the Kummer surface
to the case of a genus 2 curve defined over a field l of arbitrary characteristic.
For this we need to consider affine defining equations of the form

Y 2 +H(X, 1)Y = F (X, 1), (3.10)

where

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

and
H(X,Z) = h0Z

3 + h1XZ
2 + h2X

2Z + h3X
3

are binary forms of degrees 6 and 3, respectively, in l[X,Z]. This defines
an affine part of a smooth projective curve of genus 2 if and only if the
discriminant ∆ of the model does not vanish. The discriminant of such a
model is defined in [66] and [63]. If the characteristic of l is not equal to 2,
we have ∆ = 2−12 disc(4F +H2). Note that we can find an equation of this
form for any smooth projective curve of genus 2, see for instance [20].

3.3.1 Embedding the Kummer surface in arbitrary charac-
teristic

Suppose that we have an equation of the form (3.10) with nonzero discri-
minant, let C be its smooth projective model over l and let J denote its
Jacobian.

Remark 3.14. The results of this section have been obtained independently
by Duquesne in the special case char(l) = 2 and h3 = 0, see [33]. He was
interested in cryptographic applications and indeed one can use the results
obtained in the present section in this context, see [34]. All of our results
specialize to his whenever char(l) = 2 and h3 = 0 and they specialize to
Flynn’s original results whenever we have char(l) 6= 2 and H = 0. The
content of this section has been published in [73]. Explicit formulas and
several Magma routines will be made available on the author’s webpage
[74].

The first obvious task is to find the map κ : J −→ P3 in the general
case. As in [41] we want to find a basis for the 4-dimensional vector space
L(D1), where D1 = 2Θ if there is a unique rational point at infinity on C
and D1 = Θ+ +Θ− otherwise, since such a basis must give the desired map
κ : J −→ P3. Suppose we have a generic point P ∈ J represented by an
unordered pair {P1, P2}, where P1 = (x, y), P2 = (u, v) and x 6= u. A basis
may be found by looking for four linearly independent functions on J which
are symmetric in P,Q, have a pole of order at most 1 at infinity and may
have a pole of any order at 0 ∈ J , but are regular elsewhere. As in [41], 3
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members of such a basis are easily found, namely the symmetric polynomials
in x and u given by κ1 = 1, κ2 = x+ u and κ3 = xu.

Looking for a suitable fourth coordinate, the following basis can be found:

κ1 = 1, κ2 = x+ u, κ3 = xu, κ4 =
F0(x, u)− 2yv −H(x, 1)v −H(u, 1)y

(x− u)2
.

This obviously specializes to the basis given in Section 3.1 in the case H = 0
and it also specializes to the basis introduced in [33] when char(l) = 2
and h3 = 0. All of these are elements of L(D1), because they are even,
symmetric, have no pole except at infinity, and grow at worst like xu at
infinity. We have a basis, because these 4 elements of the 4-dimensional
vector space L(D1) are obviously linearly independent.

Similar to the classical case, these κ1, κ2, κ3, κ4 satisfy the quartic equa-
tion

K(κ1, κ2, κ3, κ4) = K2(κ1, κ2, κ3)κ
2
4 +K1(κ1, κ2, κ3)κ4 +K0(κ1, κ2, κ3) = 0,

(3.11)
where

K2(κ1, κ2, κ3) = κ22 − 4κ1κ3,

K1(κ1, κ2, κ3) = −4f2κ
2
1κ3 − 4f6κ

3
3 − 4f0κ

3
1 − h1h3(κ

2
2κ3 − 2κ1κ

2
3)

− h2h3κ2κ
2
3 − h1h2κ1κ2κ3 − h

2
1κ

2
1κ3 − 2f3κ1κ2κ3 − h

2
0κ

3
1

− h22κ1κ
2
3 − 2f5κ2κ

2
3 − h

2
3κ

3
3 − 4f4κ1κ

2
3 − 2f1κ

2
1κ2

− h0h1κ
2
1κ2 − h0h2(κ1κ

2
2 − 2κ21κ3)− h0h3(κ

3
2 − 3κ1κ2κ3),

K0(κ1, κ2, κ3) = (−4f0f2 − f0h
2
1 + f21 + f1h0h1 − f2h

2
0)κ

4
1

+ (−4f0f3 − 2f0h1h2 + f1h0h2 − f3h
2
0)κ

3
1κ2

+ (2f0h1h3 − 2f1f3 − f1h0h3 − f1h1h2 + 2f2h0h2

− f3h0h1)κ
3
1κ3

+ (−4f0f4 − 2f0h1h3 − f0h
2
2 + f1h0h3 − f4h

2
0)κ

2
1κ

2
2

+ (4f0f5 + 2f0h2h3 − 4f1f4 − f1h1h3 − f1h
2
2 + 2f2h0h3

+ f3h0h2 − 2f4h0h1 + f5h
2
0)κ

2
1κ2κ3

+ (−4f0f6 − f0h
2
3 + 2f1f5 + f1h2h3 − 4f2f4 − f2h

2
2 + f23

+ f3h0h3 + f3h1h2 − f4h
2
1 + f5h0h1 − f6h

2
0)κ

2
1κ

2
3

+ (−4f0f5 − 2f0h2h3 − f5h
2
0)κ1κ

3
2

+ (8f0f6 + 2f0h
2
3 − 4f1f5 − 2f1h2h3 + f3h0h3 − 2f5h0h1

+ 2f6h
2
0)κ1κ

2
2κ3

+ (4f1f6 + f1h
2
3 − 4f2f5 − 2f2h2h3 + f3h1h3

+ 2f4h0h3 − f5h0h2 − f5h
2
1 + 2f6h0h1)κ1κ2κ

2
3

+ (−2f3f5 − f3h2h3 + 2f4h1h3 − f5h0h3 − f5h1h2
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+ 2f6h0h2)κ1κ
3
3

+ (−4f0f6 − f0h
2
3 − f6h

2
0)κ

4
2

+ (−4f1f6 − f1h
2
3 − 2f6h0h1)κ

3
2κ3

+ (−4f2f6 − f2h
2
3 + f5h0h3 − 2f6h0h2 − f6h

2
1)κ

2
2κ

2
3

+ (−4f3f6 − f3h
2
3 + f5h1h3 − 2f6h1h2)κ2κ

3
3

+ (−4f4f6 − f4h
2
3 + f25 + f5h2h3 − f6h

2
2)κ

4
3.

The zero locus of K(κ1, κ2, κ3, κ4) gives an explicit realization of the Kum-
mer surface associated with J . It is compatible with the other known results,
see Remark 3.14.

Now our task is to find the maps on the Kummer surface which make it so
useful for explicit computations, namely the duplication map δ, the matrix
of biquadratic forms B and the matrix W that corresponds to translation
by a point of order 2.

3.3.2 Duplication

We first determine the duplication map δ = (δ1, δ2, δ3, δ4) on the Kummer
surface K embedded in P3, see (3.4). Here δ1, δ2, δ3, δ4 are quartic polyno-
mials in κ1, κ2, κ3, κ4 and δ makes the following diagram commute:

J

κ

��

[2]
// J

κ
��

K
δ

// K,

where [2] denotes the multiplication-by-2 map on the Jacobian.
In the classical case, Flynn used the biquadratic forms described in the

next section to obtain the duplication map. This is possible in the present
situation (and gives the same result), but we can also use a different approach
that does not depend on the biquadratic forms. We temporarily assume that
l is a field of characteristic not equal to 2, so that we can find a simpler model
C ′ for our curve C given by

Y 2 = 4F (X, 1) +H(X, 1)2.

Let J ′ denote its Jacobian and let K ′ denote its Kummer surface. Then
clearly J and J ′ are isomorphic, as are K and K ′. If we can explicitly
determine the isomorphism

τ : K
∼=

// K ′
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induced by the isomorphism C ∼= C ′, we can use the following commutative
diagram, where δ′ denotes the duplication map on K ′:

K

τ

��

δ
// K

τ

��

K ′ δ′
// K ′

It is easy to find the isomorphism τ , in fact a short calculation shows that
it is given by

τ : K → K ′

(x1 : x2 : x3 : x4) 7→ (x1 : x2 : x3 : 4x4 − 2(h0h2x1 + h0h3x2 + h1h2x3)) .

This is a rather easy example of a more general formula, see the discussion
following Proposition 3.24 below. Thus we can find δ as

δ := τ ◦ δ′ ◦ τ−1.

Notice that this construction is only valid for characteristic 6= 2, so in order
for the result to remain valid in the remaining case, we want the polynomials
δi to be defined and remain non-trivial modulo 2. Unfortunately this is
not the case, but we can use the fact that the duplication map is only
defined modulo the defining polynomial K(κ1, κ2, κ3, κ4) and hence we can
add multiples of this polynomial to the δi. We do not change δ1 and δ3,
but we add −(32h0h3 + 32h1h2)K(κ1, κ2, κ3, κ4) to δ2 and (48h0h1h2h3 +
48h20h

2
3 + 32h0h3f3)K(κ1, κ2, κ3, κ4) to δ4. After dividing all the δi by 64

we obtain polynomials, also called δ1, δ2, δ3, δ4, that are defined and remain
non-trivial modulo 2.

Proposition 3.15. The map δ constructed above represents duplication on
the Kummer surface in any characteristic.

Proof. We only need to show that the map δ = (δ1, δ2, δ3, δ4) represents
duplication in characteristic 2. Since this is a geometric statement, we may
as well assume that we have a field l of characteristic 2 that is algebraically
closed. Let W (l) be its ring of Witt vectors with field of fractions l′. Let C̃
denote a genus 2 curve over l, given by the smooth projective model of an
equation

y2 + H̃(x, 1)y = F̃ (x, 1)

where F,H ∈ l[X,Z] are homogeneous of degrees 6 and 3, respectively, with
Jacobian J̃ and Kummer surface K̃. Then K̃ lifts to a Kummer surface K
of a Jacobian J over l′. Let δ denote the duplication map on K that we
have just found, reducing to the well-defined, non-trivial map δ̃ on K̃. Let
P̃ ∈ J̃ , lifting to P ∈ J . Then

δ(κ(P )) = κ(2P )
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and so if we normalize κ(P ) such that the entries lie in W (l) with one of
them having valuation zero, then either we have

δ̃(κ̃(P̃ )) = κ̃(2P̃ )

or δ̃1(κ̃(P̃ )) = . . . = δ̃4(κ̃(P̃ )) = 0. This can be seen by viewing δ and δ̃ as
maps on the respective P3’s. We need to show that the latter case cannot
occur.

For this we first reduce to a few simple cases. We use a change of model
so that, depending on the number of roots of H(X,Z), we are in one of the
following three situations:

(a) H = Z3

(b) H = XZ2

(c) H = X2Z +XZ2

Next, we can use another suitable transformation Y 7→ Y + U(X,Z) where
U(X,Z) is a binary cubic, see (3.16). It is not difficult to see that we can
reduce to the case where

f = f1x+ f3x
3 + f5x

5.

The condition that C is nonsingular means in the respective cases:

(a) f5 6= 0

(b) f1f5 6= 0

(c) f1f5(f1 + f3 + f5 + f21 + f23 + f25 ) 6= 0

For each of these cases let x = (x1, x2, x3, x4) ∈ l4 be a quadruple that
satisfies the defining equation K̃(x) = 0 of the Kummer surface associated
to the Jacobian of C. We can use elementary methods, quite similar to those
used to prove [94, Proposition 3.1], to show the following.

Lemma 3.16. If δ̃i(x) = 0 for all i ∈ {1, 2, 3, 4}, then we must already have
xi = 0 for all i ∈ {1, 2, 3, 4}.

This means that the quadruple does not define a point on the Kummer
surface and so the map δ̃ represents the duplication map on K. Since the
proofs are not very enlightening but rather lengthy, they are not given here
but may be found in Appendix A.1.
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3.3.3 Biquadratic forms

Let P,Q ∈ J and let x, y be Kummer coordinates for P and Q, respectively.
Addition on the Jacobian does not descend to give a well-defined addition
map on the Kummer surface. Indeed, given x and y, we can find Kummer
coordinates of κ(P +Q) and κ(P −Q), but in general we cannot tell them
apart. Instead we can deduce from classical identities of theta functions (see
[54]) that

κi(P +Q)κj(P −Q) + κj(P +Q)κi(P −Q)

is biquadratic in (x1, x2, x3, x4), (y1, y2, y3, y4) for any i, j ∈ {1, 2, 3, 4} and
therefore there is a matrix B := (Bij)i,j∈{1,2,3,4} of biquadratic forms in x, y
having the property that there are Kummer coordinates w and z for P +Q
and P −Q, respectively, such that we have

w ∗ z = B(x, y).

Recall from (3.3) that we use this notation to abbreviate

Bij(x, y) = wizj + wjzi for i 6= j

Bii(x, y) = wizi,

For the computation of B we again use the fact that the Kummer surface K
is isomorphic to K ′ defined in the last section. The isomorphism τ : K −→
K ′ was also given there.

Let B′ denote the corresponding matrix of biquadratic forms on K ′ and
let x′ = τ(x), y′ = τ(y), z′ = τ(z), w′ = τ(w), so that we have

w′ ∗ z′ = B′(x′, y′). (3.12)

Notice that for i ∈ {1, 2, 3}, we have x′i = xi, y
′
i = yi, z

′
i = zi, w

′
i = wi. We

use this fact, our explicit expression of the isomorphism τ and (3.12) to find
the matrix B in terms of the entries of B′. We write b′ij for B

′
ij(x

′, y′).

For i, j ∈ {1, 2, 3} we have

Bij(x, y) = wizj + wjzi = w′
iz

′
j + w′

jz
′
i = b′ij .

and for i ∈ {1, 2, 3} we have

Bii(x, y) = wizi = w′
iz

′
i = b′ii.

To find an entry of the fourth column (or row) of B not equal to b′4,4 we
have to do some algebra. We get, for example,

B1,4(x, y) =
1

4
b′1,4 +

1

2

(
2h0h2b

′
1,1 + h0h3b

′
1,2 + h1h3b

′
1,3

)
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and analogous formulas for B2,4(x, y) and B3,4(x, y). Finally we compute

B4,4(x, y) =
1

4

(
h0h2b

′
1,4 + h0h3b

′
2,4 + h1h3b

′
3,4 + h20h

2
2b

′
1,1 + h20h

2
3b

′
2,2

)

+h21h
2
3b

′
3,3 +

1

8

(
h20h2h3b

′
1,2 + h0h1h2h3b

′
1,3 + h0h1h

2
3b

′
2,3

)

+
1

16
b′4,4.

Dividing all entries of the matrix thus computed by 16, we obtain a matrix
B whose entries are all defined and remain non-trivial modulo 2.

Proposition 3.17. We have

w ∗ z = B(x, y)

in any characteristic.

Proof. As in the previous section, we are required to verify that this matrix
actually contains the biquadratic forms we were looking for in case of a field
l of characteristic 2. Keeping the notation from Section 3.3.2, we let B̃ij
denote the reduction of the biquadratic form Bij on a Kummer surface K

over the fraction field l′ of the ring of Witt vectors reducing to K̃. Viewing
the Bij and the B̃ij as maps on P3

l′×P
3
l′ and P3

l ×P
3
l , respectively, we see that

for a given point (x, y) = ((x1 : x2 : x3 : x4), (y1 : y2 : y3 : y4)) ∈ K̃
3 × K̃3

either all B̃ij(x, y) vanish or they give the correct biquadratic forms.
The proof of the proposition is completed by the following lemma:

Lemma 3.18. If x = (x1, x2, x3, x4) ∈ l
4 and y = (y1, y2, y3, y4) ∈ l

4 satisfy

K̃(x) = K̃(y) = 0 and if all B̃ij(x, y) vanish, then xi = 0 for all i or yi = 0
for all i.

By the discussion in Section 3.3.2 we can reduce to the cases (a), (b) and
(c) introduced there. The proofs for these cases can be found in Appendix
A.2. Note that the methods are again similar to those employed in the
proof of [94, Proposition 2.1]; they consist of straightforward, but tedious,
algebraic manipulations.

3.3.4 Translation by a point of order 2

Let Q ∈ J be a point of order 2. Then we have P +Q = P −Q for all P ∈ J
and translation by κ(Q) is defined on the Kummer surface. In fact, it is a
linear map on P3, so it can be given as a matrix in terms of the coefficients of
the curve as described in Section 3.1. This matrix was found in the special
case H = 0 by Flynn in [41] and is given in terms of the coefficients of
polynomials s and t, where F (X, 1) = s(X)t(X), deg(s) = 2, deg(t) = 4 and
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the roots of s are the x-coordinates of the points Q1, Q2 on the curve C such
that Q can be represented by the unordered pair {Q1, Q2}. Furthermore,
the map is an involution and hence the square of the matrix representing it
is a scalar multiple of the identity matrix.

As before, we make use of the isomorphism τ : K −→ K ′ in the case
char(l) 6= 2. Let W ′

τ(Q) denote the matrix corresponding to translation by

τ(κ(Q)) on K ′. We want to find the matrix WQ that makes the following
diagram commute

K

τ

��

WQ
// K

τ
��

K ′
W ′

τ(Q)
// K ′,

where the horizontal maps denote multiplication by the respective matrix.
This means that we express the resulting matrix in terms of the coefficients
of polynomials s, t such that 4F (X, 1) + H(X, 1)2 = s(X)t(X). First we
compute

WQ := T−1W ′
τQT,

where T is the matrix corresponding to τ . Then WQ has the desired pro-
perties for char(l) 6= 2.

In order to generalize WQ to arbitrary characteristic, one could try to
manipulate the entries directly, or one could first express them in terms
of the Kummer coordinates of Q, as opposed to the coefficients of s and
t. Unfortunately, neither of these approaches has proved successful, see
the discussion below. Therefore, we have to use a different method. Our
approach is analogous to the one used by Flynn in the case where char(l) 6= 2
and H = 0. In addition, it is identical with the method used independently
by Duquesne in the case where char(l) = 2 and h has degree 2. However,
the matrix computed there only works when κ1(Q) 6= 0.

Suppose that C is a smooth projective curve of genus 2 given by an affine
equation

C : Y 2 +H(X, 1)Y = F (X, 1)

and defined over a field l of characteristic equal to 2. Let Q be a l-rational
point of order 2 on its Jacobian J . In order to find the matrix WQ corres-
ponding to translation by Q, we directly compute the image of P + Q on
the Kummer surface using the geometric group law on the Jacobian, where
P ∈ J(l) is generic. We then make it linear in the Kummer coordinates of
P by simplifying the resulting expression.

The point Q can be represented as {Q1, Q2} with points Qi ∈ C. First
we assume that Q1 and Q2 are affine points, so we have Qi = (xi, yi) and

H(x, 1) = (x− x1)(x− x2)t(x),

where t(x) = t0 + t1x.
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We keep the discussion of this case brief (see [33] or [41] for a more
detailed discussion). We first find the top three three rows of the matrix
WQ such that WQκ(P ) = κ(P + Q); the last row is computed using the
fact that W 2

Q must be a scalar multiple of the identity matrix. After a
little simplification the matrix can be expressed in terms of the Kummer
coordinates k1, k2, k3, k4 of Q and the coefficients of the polynomials f, t
and b, where y = b(x) = b1 + b0x is the line joining the points Q1 and Q2,
so

b0 =
y1 − y2
x1 − x2

, b1 =
x2y1 − x1y2
x1 − x2

.

Recall that a point on the Jacobian can be given in Mumford representation
as (a(x), y − b(x)), where a(x) = (x− x1)(x− x2) = x2 − k2

k1
x+ k3

k1
(see also

Section 5.2.2).

To complete the picture, we have to find the matrixWQ in the case where
Q1 = (x1, y1) is affine and Q2 is at infinity. Then b(x) is a cubic polynomial.
Its leading coefficient r6 plays the role of the y-coordinate of Q2 and we can
decide which point at infinity Q2 is using the value of r6. By going through
the same steps as before, we find WQ in terms of r6, y1, the coefficients of f
and t and the Kummer coordinates of Q.

In order to unify the two matrices, the following notation is convenient:
We set k′i := ki/k2 in both cases. If Q2 is affine we set

b′0 :=
y1 − y2

(x1 − x2)2
=

b0
x1 − x2

,

b′1 :=
y1x2 − y2x1
(x1 − x2)2

=
b1

x1 − x2
,

b′2 :=
y1x

2
2 − y2x

2
1

(x1 − x2)2
= b′1

k′2
k′1

+ b′0
k′3
k′1
,

b′3 :=
y1x

3
2 − y2x

3
1

(x1 − x2)2
= b′2

k′2
k′1

+ b′1
k′3
k′1

= b′1

(
k′2
k′1

)2

+ b′1
k′3
k′1

+ b′0
k′2k

′
3

k′21
,

c :=
y1y2

x1 − x2
= b′0b

′
1

(
k′2
k′1

)3

+
F (x1, 1)x2 + F (x2, 1)x1

x1 − x2
.

Now suppose that Q2 is at infinity. In this situation we set

b′i := r6k
′i
3 for i = 0, 1, 2,

b′3 := r6k
′3
3 + y1,

c := y1r6.

Here y1 satisfies y21 = F (x1, 1), hence it can be computed using the coeffi-
cients of F and the k′i, or as y1 = b(x1).
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The unified matrix is given by

WQ =




t1b
′
2 + k′4 t1b

′
1 + f5k

′
3 t1b

′
0 + f5k

′
2 k′1

t0b
′
2 + t1b

′
3 + f3k

′
3 t0b

′
1 + t1b

′
2 + k′4 t0b

′
0 + t1b

′
1 + f3k

′
1 k′2

t0b
′
3 + f1k

′
2 t0b

′
2 + f1k

′
1 t0b

′
1 + k′4 k′3

W4,1 W4,2 W4,3 k′4


 ,

where

W4,1 = t0f1b
′
0 + t0f3b

′
2 + t20c+ t1f1b

′
1 + f3f1k

′
1,

W4,2 = t0f5b
′
3 + t0t1c+ t1f1b

′
0 + f1f5k

′
2,

W4,3 = t0f5b
′
2 + t1f3b

′
1 + t1f5b

′
3 + t21c+ f3f5k

′
3.

It seems curious that our results in this section apparently cannot be com-
bined to form a matrix that works in arbitrary characteristic. One pos-
sible reason for this is the fact that if char(l) = 2, then an affine point
(x, y) invariant under the hyperelliptic involution satisfies H(x, 1) = 0 and
if char(l) 6= 2, then such a point satisfies y = 0. In general, we can only as-
sume that 2y+H(x, 1) = 0 and this is not a sufficient simplification to make
the method used above work. Moreover, if char(l) = 2, then, depending on
the number of distinct roots of H(x, 1), we have #J [2] ∈ {1, 2, 4}, whereas
otherwise #J [2] = 16. It would be interesting to find out whether there
is a matrix WQ representing translation by a point of order 2 in arbitrary
characteristic, either by finding such a matrix or by proving that it cannot
exist.

3.4 Local heights on Kummer coordinates for ge-

neral models

3.4.1 Definitions and first properties

Now we return to our setup of a number field or one-dimensional function
field k. Let v be a place of k and consider a smooth projective genus 2 curve
C over kv given as the smooth projective model of an equation

Y 2 +H(X, 1)Y = F (X, 1), (3.13)

where

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

and

H(X,Z) = h0Z
3 + h1XZ

2 + h2X
2Z + h3X

3
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are binary forms of degrees 6 and 3, respectively, such that the discriminant
∆(C) is nonzero. We can assume without loss of generality that F,H ∈
Ov[X,Z].

We now generalize the definitions of εv and µv (see (3.7) and Definition
3.5, respectively) to include the present case. Let J denote the Jacobian of
C and let K be its Kummer surface discussed in Section 3.3. We let δ and
B = (Bij)i,j denote the objects defined on K in that section and generalize
the notion of Kummer coordinates and of KA introduced in Section 3.1 to
the general case in the obvious way. The following definition is similar to
Definition 2.7.

Definition 3.19. Let x ∈ KA(kv) be a set of Kummer coordinates on K.
Then we set

εv(x) := v(δ(x)) − 4v(x)

and

µv(x) =

∞∑

n=0

1

4n+1
εv(δ

◦n(x)).

We recall some of the properties of these functions, since they continue
to hold in this more general setting. If x and x′ represent the same point
in K(kv), then we have εv(x) = εv(x

′) and µv(x) = µv(x
′), and so we can

define εv and µv on K(kv). If P ∈ J(kv), then we define

εv(P ) := εv(x) and µv(P ) := µv(x)

for any set of Kummer coordinates x for κ(P ) ∈ K(kv).
We will also have occasion to use the following function: Let x, y ∈

KA(kv) and define

εv(x, y) := v(B(x, y)) − 2v(x)− 2v(y).

If P,Q ∈ J(kv), then we have εv(x, y) = εv(x
′, y′) for any sets of Kummer

coordinates x, x′ for P and y, y′ for Q, respectively. Hence we can set

εv(P,Q) := εv(x, y) (3.14)

for any sets of Kummer coordinates x and y for P and Q, respectively. This
was first defined in [94].

Lemma 3.20. Let x, y, w, z ∈ KA(kv) be Kummer coordinates on K satis-
fying w ∗ z = B(x, y). Then we have

δ(w) ∗ δ(z) = B(δ(x), δ(y)).

Proof. The proof carries over verbatim from the proof of [94, Lemma 3.2].
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Corollary 3.21. Let x, y, w, z ∈ KA(kv) be Kummer coordinates on K sa-
tisfying w ∗ z = B(x, y). Then we have

εv(δ(x), δ(y)) + 2εv(x) + 2εv(y) = εv(w) + εv(z) + 4εv(x, y).

We now refine the notion of the canonical local height. The idea, which
is due to Stoll and was first introduced in the unpublished manuscript [95],
is to define canonical local heights not for points on the Jacobian or on the
Kummer surface as in Definition (3.5), but instead for Kummer coordinates
as in Definition 2.8.

Definition 3.22. Let x ∈ KA(kv) be a set of Kummer coordinates on K.
The naive local height of x is the quantity

λv(x) := −
Nv

nv
v(x)

and the canonical local height of x is given by

λ̂v(x) := −
Nv

nv
(v(x) + µv(x)).

Notice that if k is a number field or function field of dimension 1 and
P ∈ J(k) is a point lying on a Jacobian surface J defined over k, then we
have

h(P ) =
1

dk

∑

v∈Mk

nvλv(x)

and

ĥ(P ) =
1

dk

∑

v∈Mk

nvλ̂v(x)

for any choice x of Kummer coordinates for P because of the product formula
(1.1). However, our function λ̂v now depends on the choice of Kummer
coordinates and not on the choice of a divisor in the class [D1]. As in the
case of elliptic curves, the canonical local height λ̂v constructed as above
has somewhat nicer properties than the canonical local height defined in
Definition (3.5). Compare the following proposition, first stated and proved
in [95], to (1.2).

Proposition 3.23. (Stoll) Let x, y, z, w ∈ KA(kv). Then the following hold:

(i) λ̂v(δ(x)) = 4λ̂v(x).

(ii) If w ∗ z = B(x, y), then λ̂v(z) + λ̂v(w) = 2λ̂v(x) + 2λ̂v(y).

(iii) λ̂v(x) = −
Nv

nv
limn→∞ 4−nv(δ◦n(x)).

(iv) If k′/kv is a finite extension, and v′ is the extension of v to k′, then
we have λ̂v′(x) = λ̂v(x).
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Proof. The validity of (i) can be shown using a straightforward computation:

nv
Nv

λ̂v(δ(x)) = −v(δ(x)) −
∞∑

n=0

1

4n+1
εv(δ

◦(n+1)(x))

= −4v(x)− εv(x)−
∞∑

n=1

1

4n
εv(δ

◦n(x))

= 4
nv
Nv

λ̂v(x).

Property (ii) is also not hard to verify using Lemma 3.20 and Corollary 3.21:

nv
Nv

(
λ̂v(z) + λ̂v(w)

)

= −v(w) − v(z)−
∞∑

n=0

1

4n+1
(εv(δ

◦n(w)) + εv(δ
◦n(z)))

= −v(B(x, y)) + εv(x, y)− 2

∞∑

n=0

1

4n+1
(εv(δ

◦n(x)) + εv(δ
◦n(y)))

= −2

(
v(x) + v(y) +

∞∑

n=0

1

4n+1
(εv(δ

◦n(x)) + εv(δ
◦n(y)))

)

= 2
nv
Nv

(
λ̂v(x) + λ̂v(y)

)
.

(iii) follows from the fact that µv(x) is a bounded function, implying

λ̂v(δ
◦n(x)) = −

Nv

nv
v(δ◦n(x)) +O(1),

combined with property (i).

Part (iv) is obvious from the definition of λ̂v.

The canonical local height on Kummer coordinates also behaves well
under isogenies. Compare the following to Proposition 2.5.

Proposition 3.24. Let α : J → J ′ be an isogeny of Jacobians of di-
mension 2 defined over kv and let d = deg(α). Then α induces a map
α : K → K ′ between the corresponding Kummer surfaces. We also get
a well-defined induced map α : KA −→ K ′

A if we fix a ∈ k∗v and require
α(0, 0, 0, 1) = a(0, 0, 0, 1). Moreover, we have

λ̂v(α(x)) = dλ̂v(x) + log |a|v

for any x ∈ KA(kv).



66 CHAPTER 3. JACOBIAN SURFACES

Proof. All assertions except for the last one are trivial. Using part (iii) of
Proposition 3.23 it is enough to show

v(δ◦n(α(x))) = dv(δ◦n(x))− 4nv(a) +O(1).

However, we have v(α(x)) − dv(x) = O(1) by assumption, so it suffices to
show

v(δ◦n(α(x))) = v(α(δ◦n(x)))− (4n − 1)v(a). (3.15)

But since α : J −→ J ′ is an isogeny, it is a group homomorphism, so
δ◦n(α(x)) and α(δ◦n(x)) represent the same point on K ′, hence they are
projectively equal. Because they also have the same degree, the factor of
proportionality is independent of x. We may therefore check (3.15) for a
single x, so we take x = (0, 0, 0, 1) ∈ KA(kv). Because we have δ(x) = x
and, by assumption, α(x) = ax′, where x′ = (0, 0, 0, 1), we find

δ◦n(α(x)) = a4
n

x′ and α(δ◦n(x)) = ax′,

thereby proving (3.15) and hence the proposition.

The preceding proposition is particularly useful in order to analyze the
behavior of the canonical local height under a change of model, which we
also call a transformation, of the curve. Any such transformation τ is given

by data ([a, b, c, d], e, U), where

(
a b
c d

)
∈ GL2(kv), e ∈ k

∗
v and U(X,Z) ∈

kv[X,Z] is homogeneous of degree 3. If we apply such a transformation
τ = ([a, b, c, d], e, U) to an affine point (ξ, η) on the curve, then we get

τ(ξ, η) =

(
aξ + b

cξ + d
,
eη + U(ξ, 1)

(cξ + d)3

)
. (3.16)

A transformation also acts on the forms F and H by

τ∗F (X,Z) = (ad− bc)−6
(
e2F ′ + (eH ′ − U ′)U ′

)

τ∗H(X,Z) = (ad− bc)−3
(
eH ′ − 2U ′

)
,

where

S′ = S(dX − bZ,−cX + aZ)

for any binary form S(X,Z) ∈ kv[X,Z].

The map which a transformation τ = ([a, b, c, d], e, U) induces on KA

will play a crucial part later on. Therefore we give it here explicitly. Let
x = (x1, x2, x3, x4) ∈ KA and let

U(X,Z) = u0Z
3 + u1XZ

2 + u2X
2Z + u3X

3.
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Then τ(x) is equal to the following quadruple, where we have fixed the
constant factor to be (ad− bc)−1:

(ad− bc)−1
(
d2x1 + cdx2 + c2x3,

2bdx1 + (ad+ bc)x2 + 2acx3,

b2x1 + abx2 + a2x3,

(ad− bc)−2(e2x4 + (l1,1 + l1,2 + l1,3)x1 + (l2,1 + l2,2 + l2,3)x2

+ (l3,1 + l3,2 + l3,3)x3)
)
,

where for i = 1, 2, 3 we have

li,1 =
e2

(ad− bc)4
l′i,1 with l′i,1 ∈ Z[f0, . . . , f6, a, b, c, d],

li,2 =
e

(ad− bc)4
l′i,2 with l′i,2 ∈ Z[h0, . . . , h3, u0, . . . , u3, a, b, c, d],

li,3 =
1

(ad− bc)4
l′i,3 with l′i,3 ∈ Z[u0, . . . , u3, a, b, c, d].

All of the l′i,j are homogeneous of degree 8 in a, b, c, d and are homogeneous
in the other variables. More precisely, the l′i,1 are linear in the fj, the l

′
i,2

are linear in the uj and also linear in the hl, whereas the l
′
i,3 are quadratic

in the uj . So we see that τ acts on k4v as a linear map whose determinant
has valuation v(τ) = 2v(e) − 3v(ad − bc). The following corollary was first
proved as [95, Proposition 3.2]; in fact we generalized the proof given there
in order to prove our Proposition 3.24.

Corollary 3.25. Let τ = ([a, b, c, d], e, U) be a change of model of a genus 2
curve C with associated Kummer surface K. Then we have

λ̂v(τ(x)) = λ̂v(x)−
Nv

nv
v(τ).

for any x ∈ KA(kv)

Definition 3.26. Let C be a genus 2 curve over kv given by a model (3.13)
with discriminant ∆(C) and let K be the associated Kummer surface. We
call the function

λ̃v : KA(kv) −→ R

x 7→ λ̂v(x)−
1

10
log |∆(C)|v

the normalized canonical local height on KA(kv).
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Corollary 3.27. The normalized canonical local height is independent of
the given model of C.

Proof. Let τ be a change of model. Then we have

v(∆(τ(C))) = v(∆(C)) + 10v(τ).

Recall that for simplified models (that is models of the form Y 2 =
F (X, 1)) we defined four divisors

Di = {P ∈ J : κi(P ) = 0} ⊂ Div(J)(kv),

see (3.5), where in particular D1 = 2Θ or D1 = Θ+ + Θ−, according to
whether C has a unique rational point at infinity or not. We extend this
definition to the general case in the obvious way.

Let P ∈ J(kv)\ supp(Di) and let x = (x1, x2, x3, x4) be a set of Kummer
coordinates of P normalized by

xj =
κj(P )

κi(P )
, j ∈ {1, 2, 3, 4}.

We proved that
λi,v(P ) := λv(x)

is a Weil function and
λ̂i,v(P ) := λ̂v(x)

is the canonical local height on J associated with Di, v and gi(P ) = δi(x) in
the simplified case H = 0. Both the definitions and the proofs carry over to
the general case.

3.4.2 The “kernel” of εv revisited

We want to generalize Theorem 3.9, stating that if v is non-archimedean
and H = 0, then

Uv := {P ∈ J(kv) : εv(P ) = 0}

is a subgroup of J(kv), to the general case.
The proof of Theorem 3.9 presented in [94, §4] relies heavily on [94,

Proposition 3.1]. We want to generalize that proof and so we first generalize
[94, Proposition 3.1].

Let l be a field of characteristic 2; let CF,H be a curve in weighted
projective space with respective weights 1, 3, 1 assigned to the variables
X,Y,Z that is given by an equation

Y 2 +H(X,Z)Y = F (X,Z),
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where

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

and

H(X,Z) = h0Z
3 + h1XZ

2 + h2X
2Z + h3X

3

are binary forms in l[X,Z] of respective degrees 6 and 3. Let KF,H denote
the subscheme of P3 given by the vanishing of (3.11) as in Lemma 3.13.
Then the constructions of the objects δ = (δ1, . . . , δ4) and Bij still make
sense in this context, but we may now have δi(x) = 0 for all 1 ≤ i ≤ 4
(which we abbreviate by δ(x) = 0) or Bij(x, y) = 0 for all 1 ≤ i, j ≤ 4
(which we abbreviate by B(x, y) = 0) for sets x, y of Kummer coordinates
on KF,H . Proposition [94, 3.1] says more about these phenomena in the
classical case char l 6= 2, H = 0.

Lemma 3.28. Let x, y ∈ KF,H(l).

(1) If δ(δ(x)) = 0, then we already have δ(x) = 0.

(2) If B(x, y) = 0, then we must have δ(x) = δ(y) = 0.

Proof. We may assume without loss of generality that l is algebraically
closed. If the given curve is smooth, then the result is obvious, because the
situations described in the statement can never occur. If it is not smooth,
note that since we can act on F and H using transformations of the form
(3.16), it is enough to consider only one representative of each orbit under
such transformations. This is similar to the strategy in the proof of [94,
Proposition 3.2], except that we now have two forms to deal with, but also a
larger group of transformations acting on them. We can, for example, pick
the following representatives:

(i) H = 0, F = 0,

(ii) H = Z3, F = 0,

(iii) H = Z3, F = aXZ5, a 6= 0,

(iv) H = XZ2, F = aXZ5, a 6= 0,

(v) H = XZ2, F = bXZ3, b 6= 0,

(vi) H = Z3, F = aXZ5 + bX3Z3, b 6= 0,

(vii) H = XZ2, F = 0,

(viii) H = X2Z +XZ2, F = bX3Z3, b(b+ 1) = 0,

(ix) H = X2Z +XZ2, F = bX3Z3, b(b+ 1) 6= 0,
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(x) H = X2Z +XZ2, F = aXZ5 + bX3Z3, a(a2 + a+ b+ b2) 6= 0,

(xi) H = XZ2, F = aXZ5 + bX3Z3, ab 6= 0,

(xii) H = 0, F = XZ5,

(xiii) H = 0, F = X3Z3.

We prove the statement of the Proposition for each representative using
elementary methods similar to the proof of [94, Proposition 3.1] in Appendix
A.3.

Using Lemma 3.28 we can show:

Theorem 3.29. Suppose that v is non-archimedean and that J is a Jacobian
surface over kv. Let Uv := {P ∈ J(kv) : εv(P ) = 0}. Then Uv is a subgroup
of finite index in J(kv) and εv factors through the quotient J(kv)/Uv. More-
over we have that εv(−P ) = εv(P ) and Uv contains the kernel of reduction
with respect to the given model.

Proof. If char(kv) 6= 2, then we can use the usual isomorphism τ : (x, y) 7→
(x, 2y +H(x, 1)) and Theorem 3.9.

So suppose that v(2) > 0. The theorem follows from Corollary 3.21 and
Lemma 3.28 exactly as in the proof of Theorem 3.9 given in [94, §4].

3.4.3 Relation to Néron models

In the case of elliptic curves a crucial point in the determination of explicit
formulas for the function µv in case of non-archimedean v is the fact that
εv and µv factor through the group of components Φv of the Néron model
whenever the given model is v-minimal, see Proposition 2.14 and Remark
2.15. This basically follows from Lemma 2.12, stating that the given Weier-
strass equation is v-minimal if and only if it is geometrically minimal, that
is, if the minimal proper regular model is a desingularization of the closure
of the Weierstrass model.

In the present situation it is unfortunately not true any longer that v-
minimality of the given model is sufficient for εv and µv to factor through Φv
and we will see examples of this phenomenon later on. Instead, recall from
Remark 2.13 that another criterion for v-minimality of Weierstrass models
is that their closures have rational singularities. This turns out to be the
correct condition for a suitable analog of Proposition 2.14.

Recall the definitions and results from Section 1.5, in particular the
definition of proper regular models and the results on the relative Picard
functor.
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Theorem 3.30. Let C be a smooth projective geometrically connected curve
of genus 2, given by a model of the form (3.13), whose closure C over
Spec(Ov) is normal and flat and has rational singularities. Then εv and
µv factor through the component group Φv of the Néron model of the Jaco-
bian J of C.

Proof. Because of Theorem 3.29 it suffices to show that εv vanishes for
points lying in J0(kv), where J0(kv) is the set of points of J(kv) mapping to
J 0
v (kv). If P ∈ J(kv), then we denote by x(P ) a set of v-integral Kummer

coordinates such that one of the entries has valuation equal to 0.

First note that C must satisfy condition (†), since it is of genus 2. One
easy way to check this is to look at the classification [76] of Namikawa-Ueno.
Indeed, every possible minimal proper regular model of a genus 2 curve has
a component of simple multiplicity. Hence we have an interpretation of the
identity component J 0 (the scheme with generic fiber Jkv and special fiber
J 0
v ) in terms of data on the curve; namely, Proposition 1.36 says that we

have an isomorphism

J 0 ∼= Pic0C/Spec(Ov)
, (3.17)

where the latter is the identity component of the relative Picard functor
PicC/Spec(Ov), which in this case can be represented by a separated scheme.

Let P ′ ∈ J 0
v (kv) be of the form P ′ = σP (v), where P ∈ J0(kv) and

σP : Spec(Ov) −→ J denotes the section associated to P . Then P ′ lies in
the support of the closureDi,J of Di on J if and only if v(x(P )i) > 0, or, put
differently, if the reduction of x(P )i vanishes, because of the isomorphism
(3.17). Here we have to remember multiplicities when taking the closure,
see the discussion following (1.3).

But this means that if v(xj(P )) = 0 for some j ∈ {1, 2, 3, 4}, then Di,J

is represented by κi(P )
κj(P ) around P . Therefore (1.4) implies that we have

i(Di, P ) = v

(
κi(P )

κj(P )

)
.

We first consider i = 4. By Theorem 1.17 we obtain

λ̂4,v(P ) =
Nv

nv
(i(D4, P ) + γ0(D4))

for any point P ∈ J0(kv) \ suppD4.

But the image of the origin on the Kummer surface is represented in
normalized form by x = x(O) = (0, 0, 0, 1), it certainly maps to J 0

v and
furthermore we have λv(x) = 0 = v(x). Because we also have λ̂v(x) =
λ̂4,v(x), we deduce

γ0(D4) =
nv
Nv

λ̂4,v(0)− i(D4, 0) = 0,



72 CHAPTER 3. JACOBIAN SURFACES

as i(D4, O) = 0.
Since the Néron model does not change under unramified extensions of

the ground field, we can make such an extension for each i < 4 to ensure that
we have some P ∈ J0(kv) such that we can find a set of Kummer coordinates
x = x(P ) = (x1, x2, x3, x4) for P that satisfies v(xi(P )) = v(x4(P )) = 0.
Then

λ̂v(x) = λ̂4,v(P ) =
Nv

nv
(i(D4, P ) + γ0(D4)) = 0,

but on the other hand we see

λ̂v(x) = λ̂i,v(P ) =
Nv

nv
(i(Di, P ) + γ0(Di)) =

Nv

nv
γ0(Di);

thus γ0(Di) = 0 follows for all i.
For any P ∈ J0(kv) we can find some i ∈ {1, 2, 3, 4} satisfying v(xi) = 0,

where x = x(P ). Therefore we find

λ̂v(x) = λ̂i,v(P ) =
Nv

nv
(i(Di, P ) + γ0(Di)) = 0,

but also

λ̂v(x) = −
Nv

nv
(v(x) + µv(P )) = −

Nv

nv
µv(P ),

hence µv(P ) = 0 and εv(P ) = 0 follow for any P ∈ J0(kv).

Remark 3.31. Liu has extended the theory of v-minimal Weierstrass models
to arbitrary hyperelliptic curves, see [63]. In fact he proves, in analogy with
elliptic curves, that if the given model of the form (3.13) is v-minimal and
there is an Ov-rational point on C, then the given model is geometrically
minimal (see [63, Corollaire 5]).

See Example 3.61 for a genus 2 curve given by geometrically minimal
models whose closure over Spec(Ov) does not have rational singularities,
where εv and µv do not factor through Φv. In fact this already holds for the
curve from Example 1.33, continued in Example 3.68.

Recall that apart from the computation of canonical heights we are also
interested in finding upper bounds for

βv = sup {|µv(P )| : P ∈ J(kv)} .

In some situations, we can use Theorem 3.30 for this purpose.

Corollary 3.32. Suppose that the given model of C satisfies the hypotheses
of Theorem 3.30. Also suppose that the Tamagawa number cv = #Φv(kv) is
at most 3 and that, in case cv > 1, we have computed εv(P ) 6= 0 for some
P ∈ J(kv).

(i) If cv = 1, then βv = 0.
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(ii) If cv = 2, then βv =
εv(P )

4 .

(iii) If cv = 3, then βv =
εv(P )

3 .

Remark 3.33. We may have cv ≤ 3 even when #Φv is much larger. We can
compute cv using [10, Theorem 1.17]; see also the discussion in [44, §3.4].
This is especially useful when we have #Φv > 3, but suspect that cv < 4.
Another possible application is the situation where we have #Φv = 3, but
no point P ∈ J(kv) of small naive height satisfies εv(P ) 6= 0. Here it is
sometimes possible to show cv = 1 and thus βv = 0.

Remark 3.34. Often we can even improve the bounds obtained by checking
all v-adic points on the Kummer surface, because such a search will usually
only be an optimal bound γv on |εv | and not on |µv|. If, for example, we
know that the closure of our model has rational singularities and #Φv = 2,
then we can improve the bound γv/3 to γv/4. When the residue charac-
teristic is large, even this tiny improvement can make a difference, because
improvements in the bound on the height constant show up exponentially
in the computation of generators of the Mordell-Weil group.

3.4.4 Simplifying the model

We continue to consider non-archimedean v and let π = πv denote a uni-
formiser. In the case of elliptic curves it is possible to find explicit formulas
for µv depending on the reduction type of the minimal proper regular model
of the curve over Spec(Ov) in all cases. This relies on two observations:

1. There are essentially only ten different reduction types and they are
well understood and easily distinguishable using Tate’s algorithm.

2. Each elliptic curve has a model such that εv and µv factor through Φv.

In contrast to this, there are more than 100 different reduction types for mi-
nimal proper regular models of genus 2 curves, classified in [76] and there are
curves that have no model satisfying the hypotheses of Theorem 3.30, that
is, having rational singularities. Therefore we must look for simplifications.

Because the canonical local height λ̂v behaves so nicely under isogenies,
in particular under isomorphisms induced by transformations of the under-
lying curve, we can simplify the computation of the canonical local height
significantly as follows. The idea is to apply transformations until either
εv(P ) becomes trivial or we cannot simplify the model any further. We
show that in the latter case we always end up in one of five different si-
tuations and we prove simple formulas for µv(P ) or for µv(nP ), where n is
small – we always have n ≤ 4 except for one rather exotic reduction type.

If necessary, we first apply a transformation to make sure that the reduc-
tion of C is reduced. This is easy, if we allow field extensions of ramification
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index 2, see the proof of Proposition 3.36 below. We may do so because
of part (iv) of Proposition 3.23, telling us that the canonical local height is
invariant under extensions.

However, we must first discuss how one can define and compute the
multiplicity of a point P lying on the reduction of C.

Definition 3.35. Let l be a field and let CF,H be a reduced curve in weighted
projective space with respective weights 1, 3, 1 assigned to the variables
X,Y,Z that is given by an equation

Y 2 +H(X,Z)Y = F (X,Z),

where F,H ∈ l[X,Z] are homogeneous of degrees 6 and 3, respectively. The
multiplicity δ(P,CF,H) of P = (X0 : Y0 : Z0) ∈ CF,H is defined as follows:

• If P is a singular point of type An, then δ(P,CF,H) = n+ 1.

• If P is fixed by the involution (X : Y : Z) 7→ (X : Y −H(X,Z) : Z),
then δ(P,CF,H) = 1.

• Otherwise δ(P,CF,H) = 0.

We say that P is a node of CF,H if δ(P,CF,H) = 2 and we call P a cusp of
CF,H if δ(P,CF,H) = 3. If S(X,Z) is any binary form, then we also define
δ(P, S) to be n if we can write

S(X,Z) = (Z0X −X0Z)
nS′(X,Z),

where S′(X0, Z0) 6= 0.

If the characteristic of l is not equal to 2, then it is easy to compute the
multiplicity. Namely, we have

δ(P,CF,H) = δ(τ(P ), 4F (X,Z) +H(X,Z)2),

where

τ((X : Y : Z)) = (X : 2Y +H(X,Z) : Z).

In particular, if H = 0, then the multiplicity of P = (X0 : Y0 : Z0) is simply
the multiplicity of (Z0X −X0Z) in F .

If the residue characteristic is 2, we can use a method due to Liu to
compute the multiplicity δ(P,CF,H). So suppose we are in this situation.

If P = (X0 : Y0 : Z0) ∈ CF,H , then we see that P must be nonsingular
and hence δ(P,CF,H) ≤ 1 unless H(X0, Z0) = 0. So we assume that the
latter holds and let G(X,Z) denote the linear form dividing H and satisfy-
ing G(X0, Z0) = 0. For any binary form S(X,Z) we write δ(P, S) for the
multiplicity of G in S.
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If we have 2δ(P,H) ≤ δ(P,F ) or if δ(P,F ) is odd, then we get

δ(P,CF,H) = min{2δ(P,H), δ(P,F )}. (3.18)

Otherwise, let 2n = δ(P,F ) and write

F (X,Z) =
∑

i≥2n

Di(X,Z)G(X,Z)
i.

There is some U(X,Z) ∈ l[X,Z] such that G(X,Z) divides U(X,Z)2 −
D2n(X,Z). We change our equation using the transformation τ : Y 7→
Y + U(X,Z)G(X,Z)n. Then we have δ(τ(P ), τ(CF,H )) = δ(P,CF,H) and
δ(τ(P ), τ∗H) = δ(P,H); however, it is clear that

δ(τ(P ), τ∗F ) > δ(P,F ) (3.19)

holds. Hence we can read off the multiplicity δ(P,CF,H) after applying a
finite number of these steps.

This method works for the computation of the multiplicity of a point
lying on a reduced curve defined by an equation of the form

CF,H : Y 2 +H(X,Z)Y = F (X,Z),

in weighted projective space P2
l (1, g + 1, 1), where we have g ≥ 1 and

H(X,Z), F (X,Z) ∈ l[X,Z] are binary forms of degrees g + 1 and 2g + 2,
respectively, defined over a field l of characteristic 2.

We assume that l is algebraically closed and that char(l) = 2, for the mo-
ment. As in the case char(l) 6= 2, the multiplicity does not change if we act
on CF,H by a transformation of the form (3.16). Recall the list of represen-
tatives (i)–(xiii) for each orbit under the action induced by transformations
of the form (3.16) given in the proof of Lemma 3.28.

Table 3.2 contains the following information, in parts retrieved from Ap-
pendix A.3: For each representative we have listed for a point x = (x1 : x2 :
x3 : x4) ∈ K the condition (cond.) that must be satisfied in order for all
δi(x) to vanish. Moreover, we have listed under (add.) the condition, if any,
that a point x = (x1 : x2 : x3 : x4) ∈ P3 satisfying (cond.) must satisfy in
order to lie on K. Finally we have listed the multiplicities (mults.) that the
curve defined by (3.13) has at the points (X : Z) = (1 : 0), (X : Z) = (0 : 1)
and (X : Z) = (1 : 1), in case the multiplicities there are greater than 1.
For example, for type (vii) the entry is (4, 2), which means that it has mul-
tiplicity 4 at (1 : 0 : 0) and multiplicity 2 at (0 : 0 : 1).

Now let us return to our original setup of a genus 2 curve defined over
kv, where v ∈ M0

k . We want to show that we can always reduce to a
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Type cond. add. mults.

(i) x4 = 0
(ii) x4 = 0 (6)
(iii) x4 = 0 x1 = 0 (5)
(iv) x4 = 0 x1 = 0 (4)
(v) x4 = 0 x1x3 = 0 (3,2)
(vi) x1 = x4 = 0 (3)
(vii) x4 = 0 (4,2)
(viii) x4 = 0 (2,2,2)
(ix) x4 = 0 x1x3 = 0 (2,2)
(x) x1 = x4 = 0 (2)
(xi) x1 = x4 = 0 (3)
(xii) x4 = 0 (5)
(xiii) x4 = 0 x1x3 = 0 (3,3)

Table 3.2: Conditions for the vanishing of δ(x) and multiplicities of C

small number of cases for which we can find simple formulas to compute
the canonical local height and then use Corollary 3.25 to find the canonical
local height of our original point. The drawback of this approach is that we
might have to extend the ground field and this extension may be ramified.
However, the next proposition asserts that at least the primes dividing the
ramification index are small and typically the ramification index itself is as
well. It is taken from [95] where it was proved for residue characteristic not
equal to 2; the proof remains the same in the general case.

Proposition 3.36. (Stoll) There is an extension k′/kv of ramification index
not divisible by a prime p > 5 such that C has a model over k′ of the form
Y 2 + H(X, 1)Y = F (X, 1) whose special fiber has no point of multiplicity
greater than three and at most one point of multiplicity exactly three. Here
multiplicity means multiplicity on the special fiber, introduced in Definition
3.35.

Proof. If the given model of C is not reduced, we can transform it until we
have H̃ = F̃ = 0. Now we simply scale Y by a suitable power of π; we may
be required to use a ramified field extension of degree 2 in order to do this.

Hence we may assume that at least one of F̃ and H̃ does not vanish.
There are exactly six ramification points of C over P1

kv
, namely the Weier-

strass points of C. They reduce to six points, counted with multiplicity,
on P1

kv
, which we view as the special fiber of a model of P1 over Spec(Ov).

Whenever several ramification points reduce to the same point on this special
fiber, then we can blow up that point. Repeated application of this yields
another model W of P1 over Spec(Ov) such that the ramification points of
C map to distinct points on the special fiber Wv of W .
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If necessary, we can contract components of Wv in order to get a unique
model W ′ such that the last condition still holds, but we also have the pro-
perty that every component of the special fiber of W ′ of self-intersection -1
contains the image of at least 2 of the ramification points. For combina-
torial reasons it is always possible to pick one component such that after
contracting all other components we get a model W ′′ of P1 whose special
fiber consists of a single component and such that at most three ramification
points map to the same point on this special fiber, and this can happen at
most once.

However, the generic fiber of W ′′ may not be defined over kv. Hence
we have to analyze the ramification index of the smallest extension k′/kv
such that W ′′ is defined over the spectrum of the ring of integers of k′. This
will also provide us with a more explicit description of the process outlined
above.

We try to minimise the valuation of the discriminant of the model of C
while allowing ramified field extensions with some restriction on the ramifi-
cation index. Suppose we have a point, say at (0 : 0 : 1), on the reduction C̃
of C of multiplicity n ≥ 3. We can find the largest d > 0, where d ∈ Q is not
necessarily integral, such that both π−dF (πd/nX,Z) and π−dH(πd/nX,Z)
are integral over the ring of integers of a suitable field extension of ramifi-
cation index e, where e is the least common multiple of the denominators
of d and d

n , written as quotients of coprime integers. Obviously e cannot be
divisible by a prime other than 2, 3 or 5. Let τ denote the transformation
corresponding to this; then an application of τ corresponds to moving from
one component of W ′

v to another.

The effect of the transformation τ on the discriminant ∆(C) is given by

v(∆(τ(C))) = v(∆(C))− 10d

(
1−

3

n

)
.

In case n ≥ 4 the transformation τ thus reduces the valuation of the dis-
criminant and hence iterating this process leads to a model whose points
all have multiplicity < 4 in a finite number of steps. If we have n = 3 and
C̃ has another point Q of multiplicity 3, then τ keeps the valuation of the
discriminant constant and does not change the multiplicity of Q, but the
selected singularity may split up into several points of lower multiplicity. If
it does not, we iterate the process; the selected singularity must split up
after a finite number of steps.

Remark 3.37. Suppose that n ≥ 4 in the notation of the above proof. If
v(2) = 0, then we can assume H = 0 and the effect of τ on the Newton
polygon of F indicates that the only way we can have a root of multipli-
city n after applying τ is if the roots are very close v-adically. In general,
the number of steps depends on how close the ramification points are v-
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adically, since extending the field as above corresponds to “zooming in” on
the ramification points.

If n = 3, then considering the Newton polygon of F̃ in case v(2) = 0 and
H = 0 also shows why the method outlined in the proof of Proposition 3.36
only works if there are two points of multiplicity 3.

Now we distinguish between char(kv) 6= 2 and char(kv) = 2. If the
residue characteristic is not 2, then we can apply a transformation to ensure
H = 0. Proposition 3.36 says that over a suitable extension of kv the
reduction of F has no root of multiplicity greater than 3 and at most one
root of exact multiplicity 3. This means that we can assume, using Table
3.1, that, possibly after making an unramified field extension, the reduction
of F belongs to one of the five cases given below. We leave out the case
of square-free reduction, because then εv is trivial. Let x = (x1, x2, x3, x4)
denote a set of integral Kummer coordinates for P such that one of the
entries is a unit and let x̃ = (x̃1, x̃2, x̃3, x̃4) be its reduction.

(1) F̃ = X(X − Z)(X − aZ)(X − bZ)Z2, a 6= b, a, b 6= 0, 1, x̃1 =
x̃4 = 0.

(2) F̃ = X2(X − Z)(X − aZ)Z2, a 6= 0, 1, x̃1x̃3 = x̃4 = 0.

(3) F̃ = X2(X − Z)2Z2, x̃4 = 0.

(4) F̃ = X3(X − Z)(X − aZ)Z, a 6= 0, 1, x̃3 = x̃4 = 0.

(5) F̃ = X3(X − Z)Z2, x̃1x̃3 = x̃4 = 0.

In case the residue characteristic is 2, we look at Table 3.2 and find that
we can always reduce to one of the following situations, possibly after an
unramified extension of the base field.

(1) H̃ = X2Z + XZ2, F̃ = aXZ5 + bX3Z3, a(a2 + a + b + b2) 6=
0, x̃1 = x̃4 = 0.

(2) H̃ = X2Z +XZ2, F̃ = bX3Z3, b(b+ 1) 6= 0, x̃1x̃3 = x̃4 = 0.

(3) H̃ = X2Z +XZ2, F̃ = bX3Z3, b(b+ 1) = 0, x̃4 = 0.

(4) (i) H̃ = X3, F̃ = bX3Z3 + aX5Z, b 6= 0, x̃3 = x̃4 = 0.

(ii) H̃ = X2Z, F̃ = bX3Z3 + aX5Z, ab 6= 0, x̃3 = x̃4 = 0.

(5) H̃ = X2Z, F̃ = bX3Z3, b 6= 0, x̃1x̃3 = x̃4 = 0 .

Explicit formulas for all cases will be determined in Section 3.6. Note
that for the sake of a consistent normalization, we always move the first
node we encounter to ∞ and a cusp (unique by construction) to (0 : 0 : 1).
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3.5 Igusa invariants

In this section we discuss how we can distinguish between different types
of reduction using certain invariants of genus 2 curves. These are classical
objects that were introduced by Igusa in [55] in order to construct the moduli
scheme of genus 2 curves up to isomorphism. It turns out that this is an
affine scheme of dimension 3. More precisely, it is the spectrum of a ring
that can be generated by 10 elements over Z, see for instance [70] for an
explicit set of generators.

Let l be a field of characteristic not equal to 2 and consider the invariants
J2, J4, J6, J8, J10 defined in [55], commonly called Igusa invariants. Then
J2i(F ) is an invariant of binary sextics of degree 2i and if

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

is a binary sextic, then J2i(F ) ∈ Z[12 , f0, . . . , f6]. In particular we have
J10(F ) = 2−12 disc(F ). It is shown in [55] that the invariants J2, J4, J6, J10
generate the even degree part of the ring of invariants of binary sextics.
Since the characteristic of l is not equal to 2 we can find a model of C of
the form Y 2 = F (X, 1), where F ∈ l[X,Z] is a binary sextic, so it makes
sense that these invariants can be used in the theory of such curves. But it
is rather surprising that they are also useful in case char(l) = 2.

The following is taken essentially from [64]:

Definition 3.38. Let l be a field and consider the curve given by the equa-
tion

CF,H : Y 2 +H(X,Z)Y = F (X,Z),

in weighted projective space P2
l (1, 3, 1) with weights 1, 3 and 1 for the vari-

ables X,Y and Z, respectively, whereH(X,Z), F (X,Z) ∈ l[X,Z] are binary
forms of degrees 3 and 6, respectively. If char(l) 6= 2, we define the Igusa
invariants of CF,H as

J2i(CF,H) := J2i
(
4F (X,Z) +H(X,Z)2

)
.

If char(l) = 2, then let W (l) be the ring of Witt vectors of l and let
H ′(X,Z), F ′(X,Z) ∈W (l)[X,Z] be lifts of H and F , respectively, to W (l).
We define the Igusa invariants of CF,H as

J2i(CF,H) := J2i
(
4F ′(X,Z) +H ′(X,Z)2

)
(mod 2W (l)).

We need to define two additional invariants, namely

I4(CF,H) := J2(CF,H)
2 − 233J4(CF,H)
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and

I12(CF,H) := −23J4(CF,H)
3 + 32J2(CF,H)J4(CF,H)J6(CF,H)

−33J6(CF,H)
2 − J2(CF,H)

2J8(CF,H).

Parts of the following theorem were proved by Igusa in [55], by Mestre in
[70] and by Liu in [64]. Since no published proof of the entire result can
be found in the literature (especially for the case of characteristic 2, where
apparently nothing has been written down except for part (i) due to Liu),
we provide a complete proof.

Theorem 3.39. Let l be a field and let CF,H be the curve given by the
equation

Y 2 +H(X,Z)Y = F (X,Z),

in P2
l (1, 3, 1) where H(X,Z), F (X,Z) ∈ l[X,Z] are binary forms of degree 3

and 6, respectively. Let J2i := J2i(CF,H) and Ij := Ij(CF,H), where i ∈
{1, . . . , 5} and j ∈ {4, 12}.

(i) CF,H is smooth ⇐⇒ J10 6= 0.

(ii) CF,H has a unique node and no point of higher multiplicity ⇐⇒ J10 =
0 and I12 6= 0.

(iii) CF,H has exactly two nodes ⇐⇒ J10 = I12 = 0 and I4J4J6 6= 0.

(iv) CF,H has three nodes ⇐⇒ J10 = I12 = J4J6 = 0 and I4 6= 0.

(v) CF,H has a cusp ⇐⇒ J10 = I12 = I4 = 0 and J2i 6= 0 for some i ≤ 4.

(vi) CF,H has a point of multiplicity at least 4 ⇐⇒ J2i = 0 for all i.

Proof. In order to prove (i) it is enough to notice that we have J10 =
∆(CF,H), see [64]. So from now on we suppose that there is a point of
multiplicity at least 2 and that J10 vanishes. Because of the geometric na-
ture of the statement we may assume that l is algebraically closed.

First suppose char(l) 6= 2. We may assume that H = 0 and it follows
from the general theory of invariants of binary forms of degree d that all
invariants vanish, that is J2i = 0 for all i, if and only if F is unstable in the
sense of [57]. This happens if and only if there is a root of order greater
than d/2, which is 4 in our case, thus proving (vi). See [57] for the relevant
theory; of course this statement can also be proved directly and this is done
in [55].

So now we have to look at the case J10 = 0, but J2i 6= 0 for some i ≤ 4.
After a transformation, the sextic F may be written as

F (X,Z) = X2A(X,Z),
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where
A(X,Z) = (a0Z

3 + a1XZ
2 + a2X

2Z + a3X
3)Z

It follows that we have

I4 = −2
4a20I

′
4, I12 = 212a60a

2
3I

′
12, (3.20)

where I ′4, I
′
12 ∈ l[a0, a1, a2, a3]. More precisely, we have I ′4 = 3a1a3 − a

2
2 and

if a3 6= 0, then we get

a23I
′
12 = ∆(A), I ′4 = c4(A),

where ∆ and c4 are invariants of binary quartics defined in [39].
We next prove (v). If F has a triple root, then we may assume it is

at X = 0, so a0 vanishes and hence I4 = I12 = 0. If, conversely, we have
I4 = I12 = 0, then according to (3.20) we either have a0 = 0, in which case
F has a triple root at X = 0, or we have a0 6= 0, but I ′4 = 3a1a3 − a

2
2 = 0

and a3I
′
12 = 0. But if a3 = 0 holds, then we must also have a2 = 0, whereby

we have a triple root at Z = 0, and if a3 is nonzero, then ∆(A) = c4(A) = 0,
implying that A must have a triple root. This proves (v).

So now we may assume that I4 6= 0 or I12 6= 0 and moreover a0 6= 0 and
at least one of a2 or a3 is nonzero.

For the proof of (ii), notice that we have

I12 6= 0 ⇐⇒ a3 6= 0 and ∆(A) 6= 0;

but the last condition means that there is no double root except for the one
at X = 0.

We still have to prove (iii) and (iv), so we suppose that a3 = 0 = I12,
but a0a2 6= 0. The relevant invariants are

J4 = 2−7(4a0a2 − a
2
1)(4a0a2 − 3a21)

and
J6 = 2−10(4a0a2 − a

2
1)a

2
1

and the result follows, since F has 3 double roots if and only if 4a0a2 = a21.
Now we deal with the case of characteristic 2. We have J10 = 0 and

there is a point P ∈ CF,H(l) of multiplicity δ(P,CF,H) ≥ 2. We move it to
P0 = (0 : 0 : 1) and apply a suitable transformation to ensure that all the fi
vanish for even i, so F and H are of the form

H(X,Z) = X(h1Z
2 + h2XZ + h3X

2),

F (X,Z) = X3Z(f3Z
2 + f5X

2).

Hence we have δ(P0,H) ≥ 1 and δ(P0, F ) ≥ 3 by (3.18) and we shall use
that in this case J2 is equal to h21h

2
2.
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We first prove (vi). If there is some P ∈ CF,H(l) such that δ(P,CF,H) ≥
4, we may move it to P0 and transform F and H so that δ(P0,H) ≥ 2 and
δ(P0, F ) ≥ 4, which means that h1 = f3 = 0. One checks easily that this
implies J2i = 0 for all i.

If, on the other hand, all J2i vanish, then in particular J2 vanishes, so we
either have h1 = 0 or h2 = 0 6= h1. Assuming h1 = 0 we deduce J4 = J6 = 0
and J8 = f83 , so we find f3 = 0 and hence P0 has multiplicity at least 4.

The situation h2 = 0 6= h1 is more difficult, since we have δ(P0, CF,H) = 2
and hence the point of multiplicity 4 we are looking for is not P0; here
we have J6 = h61(f5h1 + f3h3)

2, and thus f3h3 = f5h1. Hence we find
J8 = f43 (f

2
3 + h31h3)

2, so either f3 = 0 or f23 = h31h3 6= 0. Notice that
H = X(h1Z

2 + h3X
2) = XH ′(X,Z), where H ′ is a square, say H ′(X,Z) =

G(X,Z)2.

If f3 vanishes, then f5 also vanishes and we find F = 0. But according
to (3.18) this means that the point (X0 : 0 : Z0) has multiplicity 4, where
G(X0, Z0) = 0.

Conversely, if f23 = h31h3 6= 0 holds, then h3 6= 0, so there is some x0 ∈ l
∗

satisfying

G(x0, 1) = 0. (3.21)

Without loss of generality we may assume h3 = 1 and thus h1 = x20, implying
f3 = f5x

2
0 and f23 = x60. Therefore we deduce f3 = x30 and f5 = x0, whereby

F can be written as

F (X,Z) = x0X
3Z(X + x0Z)

2.

Hence the pointQ = (x0 : 0 : 1) lies in CF,H(l) and satisfies both δ(Q,H) = 2
and δ(Q,F ) = 2. So we have δ(Q,CF,H) > 2 (see (3.19)) and in order to
compute δ(Q,CF,H) we need to apply a transformation, in the course of
which we may move Q to P0. But this means that the new H satisfies h0 =
h1 = 0 and we can proceed as before to show f3 = 0 and thus δ(Q,CF,H) = 4.
This proves (vi).

From now on it suffices to look at CF,H satisfying δ(P,CF,H) ≤ 3 for all
P ∈ CF,H(l) and J2i 6= 0 for some i < 5. We observe that we have

I4 = h41h
4
2 and I12 = h81I

′
12,

where I ′12 lies in l[h1, h2, h3, f3, f5].

We follow the same strategy employed in the case char(l) 6= 2, so we
proceed by proving part (v). Suppose there is a point of multiplicity 3 which
we can assume to be P0. Then we have h1 = 0 and hence I4 = I12 = 0.

Conversely, suppose both I4 and I12 vanish. Then either h1 = 0 holds,
which implies δ(P0, CF,H) = 3, or h2 = 0 6= h1 and I12 = h121 (f5h1+f3h3)

4 =
0, and thus

f5h1 + f3h3 = 0. (3.22)
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Moreover, h2 = 0 and (3.22) imply J2 = J4 = J6 = 0 and J8 = f43 (h
3
1h3+f

2
3 ),

so in particular f3 must be nonzero. It follows from (3.22) that either f5 =
h3 = 0 and δ(∞, CF,H) = 0, where ∞ = (1 : 0 : 0), or f5 6= 0 6= h3. In the
latter situation, let us assume without loss of generality that we have h3 = 1
and let x0 be defined as in (3.21). Then (3.22) implies f3 = f5h1 and hence
we get

F (X,Z) = f5X
3Z(X + x0Z)

2.

As in the proof of (vi) this means that we have δ(Q,H) = δ(Q,F ) = 2,
where Q = (x0 : 0 : 1) ∈ CF,H(l). Thus we must have δ(Q,CF,H) > 2
because of (3.19), so δ(Q,CF,H) = 3 and part (v) is proved.

For the rest of the proof we deal with CF,H such that δ(P,CF,H) ≤ 2 for
all P ∈ CF,H(l) and either I4 6= 0 or I12 6= 0. Because of δ(P0, F ) ≥ 3, H
is not of the form h3X

3, so we may move one of the other roots to ∞. As
before, we have h1 6= 0, so we may assume

H(X,Z) = XZ(Z + h2X).

We know δ(P0, CF,H) = 2 and we want to check whether there are any
other points P ∈ CF,H(l) satisfying δ(P,CF,H) = 2. Using the substitution
Y = XY ′, we see that this is the case if and only if the projective cubic
curve defined by the affine equation

C ′
F ′,H′ : Y ′2 + (1 + h2X)Y ′ = X(f3 + f5X

2)

has a node. Now an easy computation reveals I ′12 = h42∆(CF ′,H′), proving
part (ii).

For the final part of the proof we assume that I12 = 0 6= I4 and there
are at least two points of multiplicity 2. We can move one of them to ∞
and act on CF,H using an element of GL2(l) to get

H(X,Z) = XZ(X + Z),

F (X,Z) = f3X
3Z3.

It suffices to compute J4 and J6 which turn out to satisfy

J4 = f3(1 + f3),

J6 = f23 (1 + f3)
2,

so if f3 6= 0, 1, we are in case (iii); if f3 = 0, then obviously δ(R,CF,H) = 2
for R = (1 : 0 : 1) ∈ CF,H(l) and if f3 = 1, we move R to P0 to complete the
proof.

Remark 3.40. The second part of the proof of Theorem 3.39 gives some
partial justification for some of our choices of representatives in Section
3.4.4.
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Remark 3.41. Igusa invariants are implemented in Magma. Because the for-
mulas defining Igusa invariants are quite complicated, it is usually better
to use a quicker method called Überschiebung to compute certain related
invariants defined by Clebsch in [22]; the Igusa invariants can be expressed
as simple polynomials in the Clebsch invariants. This is all described in [70].
However, if the characteristic of the ground field is equal to 2, 3 or 5, then
the Clebsch invariants all vanish and we must use explicit formulas for the
Igusa invariants themselves.

Remark 3.42. Let k be a number field. We can use Theorem 3.39 to analyze
the reduction of a genus 2 curve modulo non-archimedean places v. However,
this is not so helpful if we only deal with one place v at a time, because either
Igusa invariants have to be computed anew over each relevant kv which is not
very efficient or we can compute them over each relevant residue field kv - but
then we cannot use Überschiebungen unless v(30) equals zero. Hence it is
usually better to compute the invariants once over k using Überschiebungen
and reduce them for several places. This is usually faster than factorization
over each residue field.

Remark 3.43. Another application of Igusa invariants is a sufficient criterion
for v-minimality: If C is a genus 2 curve given by an equation of the form
(3.13) over kv as above, then C is a v-minimal equation of this form if there
is some i such that v(J2i(C)) < 2i, see [70]. Yet all models that we consider
from now on are v-minimal in the sense of [62], since we can restrict to
models that have no point of multiplicity ≥ 4 using Proposition 3.36.

3.6 Formulas for local error functions

In this section we consider a non-archimedean place v. We try to find
explicit formulas for εv(P ) and µv(P ) for the five cases introduced at the end
of Section 3.4.4. Our main tool is the explicit description of the respective
Néron models that we can compute easily in all cases.

So let C be a smooth projective curve of genus 2 defined over kv and
given as the smooth projective model of an equation of the form 3.13, where
F and H are as in one of the 5 cases from Section 3.4.4. These models are
v-minimal models in the sense of [63]; this follows easily from Remark 3.43.
Moreover, their closures are always normal; this can be verified using Serre’s
“R1 + S2”–criterion proved in [65, Chapter 8, Theorem 2.23].

In order to compute the component groups Φv, we use Proposition 1.37.
For the relevant computations we need to be able to compute the intersection
matrix of the special fiber Cv of a proper regular model of C over Spec(Ov);
algorithmically this can be done using Magma. In fact we determine the
minimal proper regular model Cmin

v in all cases; it always satisfies condition
(†) (see Remark 1.35).
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We prove very little in this section, the complete proofs can be found
in Appendix A. Our main reference for the different reduction types we
encounter is the article of Namikawa and Ueno [76]. Some of the results
of this section yield improvements to Stoll’s height constant bound from
Proposition 3.11 and we mention these in passing.

In cases (1), (2) and (3) the proofs in the appendix are given only for
v(2) = 0, since the complementary case is very similar and follows easily from
changing a few of the explicit congruences used in the proofs. In these cases
the given model is clearly semistable and hence has rational singularities (see
Example 1.23), whereby εv and µv factor through Φv because of Theorem
3.30.

However, in the proofs of Theorems 3.62 and 3.74 for cases (4) and (5)
there are some more essential differences, so we give at least some parts of
the proofs of these theorems for both char(kv) = 2 and char(kv) 6= 2. Here we
do not always have rational singularities on the closure of the given model,
but we can characterize when this is the case. In general we find formulas
for µv(P ), where P lies in a subgroup of J(kv) whose index is always at
most 4, except for one special reduction type. The quadraticity of λ̂v (see
Proposition 3.23) can then be used to compute µv(P ) for any P ∈ J(kv).

For the remainder of this section we assume that x = (x1, x2, x3, x4) is
a set of v-integral Kummer coordinates for a point P ∈ J(kv) such that one
of the xi has valuation equal to zero and that εv(P ) > 0. Let π denote a
uniformizer of Ov.

3.6.1 Case (1)

We let m = v(∆). If m = 1, then the reduction of C, a curve A of genus 1
with a node, is regular. In general, there is a unique component, which we
denote by A, of genus one in the special fiber of Cmin

v . As in the case of
multiplicative reduction of elliptic curves (see for example [89]) the singular
point on the special fiber is replaced by a string of m − 1 components of
Cmin
v , all of genus zero and multiplicity one.

We define a map φ : C(kv)→ Z/mZ by setting φ(Q) = j if Qmaps to the
jth component Bj of the special fiber C

min
v , where, in the notation introduced

above, A = B0 is the 0th component, B1 and Bm−1 are the components
intersecting A and the other components are numbered consecutively, see
Figure 3.1. In the notation of Namikawa and Ueno this is reduction type
[Im−0−0] (cf. [76]).

Then, using Proposition 1.37, it is easy to see that the component group
Φv of the Néron model is generated by [B1 − A] or by [Bm−1 − A] and is
isomorphic to Z/mZ. We fix one of these generators, say [B1 −A].
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b b b

A

B1

B2

Bm−2

Bm−1

Figure 3.1: The special fiber of reduction type [Im − 0− 0]

We define the map χ : J(kv)→ Z/mZ by

χ(P ) = i if P maps to [Bi −A].

If we have v(2) = 0 and H = 0, we can apply a suitable transformation of
the form ([1, 0, c, 1], 1, 0), where c ∈ kv , so that we are in the situation

m = min{v(f6), 2v(f5)}. (3.23)

Remark 3.44. If (3.23) does not hold, then we have

m = v(f4f6 − f
2
5 ) > min{v(f6), 2v(f5)}

and so v(f6) = 2v(f5) =: i, because v(f4) = 0. We can find c as follows: Let
f6 = f ′6π

2i and f5 = f ′5π
i, where v(f ′5) = v(f ′6) = 0. If there is a solution

to the congruence f4c
′2 − f ′5c

′ + f ′6 ≡ 0 (mod π), then we lift c′ to kv in
such a way that v(f4c

2 − f5c + f6) = 2i + 1, which is odd. If there is no

such solution, then we simply lift c′ =
f ′5
2f4

to kv. In both cases we apply the
transformation τ = ([1, 0, c, 1], 1, 0) and it is easy to see that this ensures
that the model of C given by Y 2 = τ∗F (X, 1) satisfies our assumption.

Remark 3.45. In case of residue characteristic 2 we have to work a bit harder.
Our goal is, however, the same; we want to make sure that we have m =
min{v(f6), 2v(f5)}. Looking at the formula for the discriminant, we see that
if 2v(h3) is larger than m, then m = v(f6h

2
2 − f

2
5 ), so we have to make sure

that
v(f6h

2
2 − f

2
5 ) = min{v(f6), 2v(f5)}

holds.
It is not hard to see that both can be achieved simultaneously using a

transformation ([1, 0, c, 1], 1, u3X
3), where c and u3 are chosen so that they

satisfy

H(X, cZ) + 2u3X
3 ≡ 0 (mod π⌊m/2⌋+1)

∂F

∂Z
(X, cZ) + u3

∂H

∂Z
(X, cZ) ≡ 0 (mod π⌈m/2⌉).
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These congruences are not difficult to solve in practice, since we may take
an unramified extension, if necessary.

Having ensured that we have m = min{v(f6), 2v(f5)}, we define

w(P ) := min{v(x1), v(x4),m/2}. (3.24)

Notice that Q ∈ C(kv) maps to A = B0 if and only if v(z(Q)) ≤ 0, where
z(Q) = Z(Q)/X(Q). Furthermore, tracing the blow-ups required to build
the special fiber Cmin

v , we see that if 0 < v(z(Q)) < m/2, then a point Q ∈
C(kv) maps to one of the components Bi or Bm−i if and only if v(z(Q)) = i
and that if m is even, Q maps to Bm/2 if and only if v(z(Q)) ≥ m/2. If m
is odd, then necessarily v(z(Q)) < m/2.

Because the model is semistable, we can extend the field and then the
only difference is that m is multiplied by the ramification index of the ex-
tension. Hence we may assume that any given P ∈ J(kv) is of the form
P = [(P1)− (P2)] with Pi ∈ C(kv). The proofs of the next two lemmas are
provided in Appendices A.4 and A.5.

Lemma 3.46. We have

εv(P ) = 2min{χ(P ),m− χ(P )}.

Now we want to relate w(P ) to χ(P ) and εv(P ).

Lemma 3.47. We have
εv(P ) = 2w(P ),

and in particular
w(P ) = min{χ(P ),m− χ(P )}.

The next lemma enables us to deduce a formula for µv(P ).

Lemma 3.48. Let G be an abelian group and let ε : G −→ R be a function.
Then there exists at most one bounded function µ : G −→ R satisfying

4µ(g) − µ(2g) = ε(g). (3.25)

for all g ∈ G.

Proof. Suppose that we have two bounded functions µ and µ′ satisfying
(3.25) and that there is some g0 ∈ G such that µ(g0) 6= µ′(g0), say

µ(g0)− µ
′(g0) = d0 6= 0.

The function ν := µ− µ′ satisfies

4ν(g)− ν(2g) = 0

for all g ∈ G. Hence we have

ν(2ng0) = 4nν(g0) = 4nd0

for any n ≥ 0, contradicting the assumption that µ and µ′ are bounded.
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Proposition 3.49. We have

µv(P ) =
w(P )(m − w(P ))

m
.

Proof. Let µ′v(P ) =
w(P )(m−w(P ))

m . Then we find

4µ′v(P )− µ
′
v(2P ) = 2w(P ) = εv(P )

for all P ∈ J(kv). But we also have, by definition of µv,

4µv(P )− µv(2P ) = εv(P )

for all P ∈ J(kv). Since both µv and µ′v are bounded, we can use Lemma
3.48 to finish the proof.

The discussion of this section shows that we get the following bounds on
the height constant βv.

Corollary 3.50. Suppose that C/kv is a smooth projective genus 2 curve
such that there is a unique node in the reduction of C. Then we have

m even ⇒ βv ≤
m

4
,

m odd ⇒ βv ≤
m2 − 1

4m
.

Proof. The bounds are clear for curves of the form considered in Proposi-
tion 3.49. For other curves one has to analyze the behavior of µv under
transformations, see Corollary 3.25. We find

βv(C) ≤ βv(τ(C)) + ρv(τ)− v(τ),

where
ρv(τ) = sup{v(τ(x)) : x ∈ KA, v(x) = 0}.

However, all transformations required to transform a model whose reduction
has a unique node into a model for which Proposition 3.49 is applicable
satisfy v(τ) = ρv(τ) = 0.

Remark 3.51. If the residue characteristic is not 2, then the bounds from
Corollary 3.50 are better than the bound βv ≤

m
3 predicted by Proposition

3.11. If v(2) > 0, then it is not so easy to compare the bounds, because
Proposition 3.11 requires a model of the form H = 0. However, if we have
a model that violates this, then we can compare our result to the bound
predicted by Proposition 3.11 for the model

τ(C) : Y 2 = 4F (X, 1) +H(X, 1)2,

see Section 3.3. Then we have v(τ−1) = −2v(2) and ρv(τ
−1) = 0, implying

βv(τ(C)) ≤ βv(C) + 2v(2).

So if m is even, say, then we get m
4 + 2v(2), which is certainly smaller than

the bound m+16v(2)
3 that we obtain from 3.50.
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B1

B2

Bm1−2

Bm1−1

b b b

C1

C2

Cm2−2

Cm2−1

Figure 3.2: The special fiber of reduction type [Im1−m2−0]

3.6.2 Case (2)

In this case there are two nodes in the reduction. If the residue characteristic
is not 2, then, using Hensel’s Lemma, we can factor F into a product of
quadratic forms

F (X,Z) = F1(X,Z)G(X,Z)F2(X,Z),

where
F1 ≡ Z

2, G ≡ (X − Z)(X − aZ), F2 ≡ X
2 (mod π)

such that

v(disc(F1)) = m1, v(disc(G)) = 0, v(disc(F2)) = m2

and the resultants between the quadratic forms have valuation equal to zero.
Hence we have v(∆) = m1 +m2.

If char(kv) = 2, then we also have v(∆) = m1 +m2, where m1 and m2

correspond to the respective singular points. In order to compute the mi,
we can use a transformation to ensure v(h0) ≫ 0 and v(h3) ≫ 0; then we
get m1 = v(f6h

2
2 − f

2
5 ) and m2 = v(f0h

2
1 − f

2
1 ). Of course, if we know the

valuation of the discriminant already, we only need to compute one of the
mi.

In this situation we find that the special fiber of Cmin is obtained by
blowing up the two singular points of the special fiber of the closure of C
repeatedly and replacing them with a chain of m1 − 1 and m2 − 1 curves
of genus 0, respectively; see the discussion of case (1). We call these com-
ponents B1, . . . , Bm1−1, C1, . . . , Cm2−1, numbered as in Figure 3.2, where A
contains all images of points reducing to a regular point modulo π. The
component group Φv of the Néron model of J over Spec(Ov) can be shown
to be isomorphic to Z/m1Z×Z/m2Z and generated by [B1−A] and [C1−A]
using Proposition 1.37. The reduction type is [Im1−m2−0] in the notation of
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[76]. If we have m1 = 1 or m2 = 1, then the corresponding singular point
on the closure of C is regular and therefore is not blown up.

We consider the map

χ(P ) = (χ1(P ), χ2(P )) : J(kv) −→ Z/m1Z× Z/m2Z ∼= Φv

defined by

χ(P ) = (i, j) if P maps to [Bi − Cm2−j ],

χ(P ) = (i, 0) if P maps to [Bi −A],

χ(P ) = (0, j) if P maps to [Cj −A],

χ(P ) = (0, 0) if P maps to 0.

Remark 3.52. For the computation of µv and εv, we want to assume, si-
milarly to case 1, that we are in the situation m1 = min{v(f6), 2v(f5)} and
m2 = min{v(f0), 2v(f1)}. If v(2) = 0, we can always use a transformation
of the form ([1, b, c, 1], 1, 0) in order to reduce to this situation. We can find
b and c as in Remark 3.44.

If the residue characteristic is 2, we can use a transformation of the form
τ = ([1, b, c, 1], 1, u0Z

3+u3X
3), see Remark 3.45. We can also use the same

method employed there, because we can compute m1 and m2 a priori.

As we only care about points for which εv does not vanish, we suppose
that v(x4) > 0 and in addition v(x1) > 0 or v(x3) > 0. We can now define,
similarly to (3.24):

w1(P ) := min{v(x1), v(x4),m1/2}, w2(P ) := min{v(x3), v(x4),m2/2}.

Lemma 3.53. Under the given conditions we have

εv(x) = 2(min{χ1(P ),m1 − χ1(P )}+min{χ2(P ),m2 − χ2(P )})

= w1(P ) + w2(P ).

See Appendix A.6 for the proof. Using Lemma 3.53, we can compute
µv(P ).

Proposition 3.54. We have

µv(P ) =
w1(P )(m1 − w1(P ))

m1
+
w2(P )(m2 − w2(P ))

m2
.

Proof. The proof is the same as the proof of Proposition (3.49) if we consider
the summands separately.

The height constant βv can be bounded as follows:



3.6. FORMULAS FOR LOCAL ERROR FUNCTIONS 91

Corollary 3.55. Suppose that C/kv is a smooth projective genus 2 curve
such that there are exactly two nodes in the reduction of C. Then we have

m1,m2 even ⇒ βv ≤
m1 +m2

4
,

m1 even ,m2 odd ⇒ βv ≤
m1

4
+
m2

2 − 1

4m2
,

m1,m2 odd ⇒ βv ≤
m2

1 − 1

4m1
+
m2

2 − 1

4m2
.

Proof. See the proof of Corollary 3.50.

Corollary 3.55 gives a nontrivial improvement of the bound

βv ≤
m1 +m2

3

for the height constant predicted by Proposition 3.11 when v(2) = 0. We
also get an improvement for the case of residue characteristic 2 as in Remark
3.51.

3.6.3 Case (3)

Although we also have semistable reduction in this case, it is quite different
from the two cases discussed above, because the reduction of the curve
modulo π has two components to start with. We call these components A
and E, and we assume that an affine point (ξ, η) on A satisfies η = ξ(ξ− 1).

If v(2) = 0, then we can use Hensel’s Lemma to factor F (X,Z) as

F (X,Z) = F1(X,Z)F2(X,Z)F3(X,Z)

such that
F1 ≡ Z

2, F2 ≡ (X − Z)2, F3 ≡ X
2 (mod π)

and the resultants between distinct Fi have valuation equal to zero. Let
mi denote the valuation of the discriminant of Fi, so v(∆) decomposes as
v(∆) = m1 +m2 +m3.

If we are in the situation v(2) > 0, then also v(∆) = m1+m2+m3, where
m1 and m3 correspond to the singular points at infinity and at (0 : 0 : 1),
respectively. A method for the computation of m1 and m3 is described in
the discussion of case (2) and we computem2 either as m2 = v(∆)−m1−m3

if we know v(∆) or using a transformation that moves the singular point at
(1 : 0 : 1) to ∞, say.

The special fiber of the minimal proper regular model is obtained using
a sequence of blow-ups of the singular points; they are replaced by a chain
of mi − 1 curves of genus 0 and simple multiplicity, respectively. Hence
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Bm1−1 Cm2−1 Dm3−1

Figure 3.3: The special fiber of reduction type [Im1−m2−m3 ]

the special fiber Cmin
v contains the two components A and E, connected by

three chains of curves of genus 0 that we call B1, . . . , Bm1−1, C1, . . . , Cm2−1

and D1, . . . ,Dm3−1, respectively, where B1, C1 and D1 intersect A and all
intersections are transversal, as shown in Figure 3.3.
Looking for the group Φv of connected components of the Néron model of
J , we first assume that mi > 1 holds for all i. Then Proposition 1.37 says
that Φv is isomorphic to the degree zero part of the following group

L := 〈A,B1, . . . , Bm1−1, C1, . . . , Cm2−1,D1, . . . ,Dm3−1, E :

3A = B1 + C1 +D1 , 3E = Bm1−1 + Cm2−1 +Dm3−1,

2B1 = A+B2 , 2B2 = B1 +B3, . . . , 2Bm1−1 = Bm1−2 + E,

2C1 = A+ C2 , 2C2 = C1 + C3, . . . , 2Cm2−1 = Cm2−2 + E,

2D1 = A+D2 , 2D2 = D1 +D3, . . . , 2Dm3−1 = Dm3−2 +E 〉.

As before, a singular point on the original special fiber corresponding tomi =
1 for some i is regular and therefore not blown up. So if mi = 1 for some i,
say m1 = 1, then there is no Bi and instead A and E intersect at the regular
point ∞. Hence there are no relations in the third line, and the relations in
the second line become 3A = E + C1 +D1 and 3E = A+ Cm2−1 +Dm3−1.
This, however, does not affect what we do in the following.

Projecting away from A we find, using elementary group theory:

Φv ∼= 〈B1, C1 : m1B1 = m2C1 , (m1 +m3)B1 = −m3C1〉

Now let d denote the greatest common divisor of m1,m2 and m3 and set
n = (m1m2 + m1m3 + m2m3)/d. Then we can conclude from the above-
mentioned isomorphism that

Φv ∼= Z/dZ× Z/nZ.

As in case (2) we would like to assume m1 = min{v(f6), 2v(f5)} and m3 =
min{v(f0), 2v(f1)}. We use the same transformation as in case (2) (see
Remark 3.52) to ensure that we can always reduce to this situation.
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One peculiarity of the present reduction type lies in the nontriviality
of εv on points on the Jacobian that map to regular points not lying on
the connected component of the identity. These are precisely the points
P = [(P1) − (P2)] such that P1 and P2 map to distinct components of the
reduction of C. This phenomenon has already been discussed in the proof
of Proposition 3.12.

Proposition 3.56. Suppose P = [(P1)− (P2)] ∈ J(kv) such that εv(P ) > 0,
let 0 < i < m3/2 and 0 < j < m1 and let ξ(Pl) denote the component of the
special fiber of Cmin that Pl maps to. Moreover, let

v0 = v(f23 + f3h1h2 − 4f2f4 − f2h
2
2 − f4h

2
1),

let m4 be defined by

min{i+ v0, i+ v(f1), i+ v(f0), v(f5), v(f6)− i,m1 − i}

and let m5 be defined by

min{2i+ 2j + v0, 2i+ v(f0), 2j + v(f6), 2i+ 2j + v(f1), 2i + 2j + v(f5)}.

Then, possibly after applying a suitable transformation, Table 3.3 gives for-
mulas for εv(P ) in all cases.

Proof. See Appendix A.7.

Remark 3.57. Tracing through the proof of Proposition 3.56 given in Ap-
pendix A.7 we can determine which component our point P maps to quite
easily. We first assume that neither P1 nor P2 map to a component Ci. Let
v1 := min{v(x1),m1/2} and v3 := min{v(x3),m3/2}.

• If v1 = v3 = 0, then P maps to ±[A− E].

• If v1 = 0, v3 = i > 0 and v(x4) = v3, then P maps to ±[Di −A].

• If v1 = 0, v3 = i > 0 and v(x4) > v3, then P maps to ±[Di − E].

• If v1 = j > 0, v3 = 0 and v(x4) = v1, then P maps to ±[Bj −A].

• If v1 = j > 0, v3 = 0 and v(x4) > v1, then P maps to ±[Bj − E].

• If v1 = j > 0, v3 = i > 0 and v(x4) = v1 + v3, then P maps to
±[Bi −Dj ].

• If v1 = j > 0, v3 = i > 0 and v(x4) > v1 + v3, then P maps to
±[Bi −Dm1−j ].

If one of the Pl maps to some Ci, then we can use the same case distinction
after applying an appropriate transformation.
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ξ(P1) ξ(P2) εv(P )

A E min{m1,m2,m3}
Di A 2i
Di E i+m4

Di Bj , j ≤ m1/2 i+ j
Di Bj , j > m1/2 m5

Table 3.3: Formulas for εv in case (3)

Unfortunately we have not been able to find a simple formula for µv from
our formulas for εv as in cases (1) or (2), although such a formula presumably
exists. In practice we first compute all possible values of εv(P ). Using our
explicit description of the component group Φv given in the beginning of
this section, we can then compute the value of µv on any component once
and for all as a finite sum plus a finite sum of geometric series, see [94, §6].
Given a point P ∈ J(kv) it therefore suffices to determine which component
our point lies on to find µv(P ).

Remark 3.58. Because we do not have formulas for µv(P ), we cannot say
anything about the height constant in general. Given a specific curve whose
reduction contains 3 nodes we can, however, compute all µv(P ) that can
possibly occur using the results of this section.

3.6.4 Case (4)

Up to this point Theorem 3.30 has applied to all models we have had to
consider. This is about to change and indeed we shall see that new compli-
cations arise at once.

Let E denote the elliptic curve given by the Weierstrass equation

Y 2Z + h0f3Y + h1XY = X3 + f2X
2 + f1f3X + f0f

2
3 (3.26)

and let E′ denote the elliptic curve given by the Weierstrass equation

Y 2Z + h3f3Y + h2XY = X3 + f4X
2 + f5f3X + f6f

2
3 . (3.27)

According to Tate’s algorithm reproduced in [89, §IV.9] the reduction type
of E′ is I0, since the reduction of the given equation is nonsingular, so
in particular the valuation of its discriminant vanishes. Let K denote the
Kodaira symbol for the reduction type of E.

The curve C has reduction type [I0 − K − l] for some l ≥ 0 and ∆(C)
equals the discriminant of the given model of E.

If we have l = 0, then the special fiber Cmin
v is the same as the special

fiber of reduction type K, but one of the rational curves of multiplicity 1
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A

C1

C2

C3

2

Figure 3.4: The special fiber of reduction type [I0 − I
∗
0 − 0]

b b b

A

B

I1 Il−1

C1

C2

Figure 3.5: The special fiber of reduction type [I0 − IV − l]

is replaced by a curve A of genus 1. We denote the other components of
multiplicity 1 in the special fiber of type K, if any exist, by C1, . . . , Ct,
where t+1 ∈ {1, . . . , 4} is the number of components of K that have simple
multiplicity. The case K = I∗0 is shown in Figure 3.4.

If l > 0, then Cmin
v consists of the components making up the special

fiber of type K, connected with a genus 1 component A of multiplicity 1
by a chain of l − 1 curves I1, . . . , Il−1 of genus 0. Here I1 intersects A and
Il−1 intersects a component B of K of simple multiplicity and the other
components of simple multiplicity are denoted C1, . . . , Ct as above. See
Figure 3.5 for the case K = IV .

Lemma 3.59. The curve C has a model of the form (3.13) whose closure
C has rational singularities if and only if l = 0. If l = 0, then this holds for
the given model of C.

Proof. We have that the given model of E is v-minimal if and only if l = 0. If
C′ −→ C is a desingularization of C, then it corresponds to a desingularization
of the closure of the given model of E, where the strict transform of the
nonsingular part is replaced by a curve of genus 1. Now we use Lemma
1.26 which tells us that having rational singularities only depends on the
preimage of the singular locus. From Lemma 2.13 we get the second part of
the lemma, since the given model is v-minimal if l = 0.

If, on the other hand, l > 0, then the given equation of E is not v-
minimal. In order to make it v-minimal, we need to apply the transformation
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τ to the given model of C that acts on affine points (ξ, η) by

τ((ξ, η)) = (π−2lξ, π−3lη).

However, applying this transformation to the given equation of E′ results
in a model of E′ that is not v-minimal and so we can again use Lemma
2.13.

If we have l = 0, then Theorem 3.30 and Lemma 3.59 imply that εv and
µv factor through the component group Φv of the Néron model. Moreover,
it is easy to see that E cannot have multiplicative reduction, so the order of
Φv is at most 4 and therefore the computation of µv becomes particularly
easy.

There are several possible ways to do this computation. The most
straightforward one consists in computing εv(P ), εv(2P ), εv(3P ), εv(4P ) un-
til one of them equals zero and then using the definition of µv. However,
the following approach, resembling the procedure used for elliptic curves
first introduced in [87] (see Theorem 2.17) is faster. We use the multiplica-
tion polynomials given by Uchida in [103] for models satisfying H = 0 and
generalized easily; more precisely the triplication function which we call

ψ3(x) = (ψ3,1(x), . . . , ψ3,4(x)) , (3.28)

satisfying:

• If x is a set of Kummer coordinates for P ∈ J(kv), then ψ3(x) is a set
of Kummer coordinates for 3P .

• ψ3((0, 0, 0, 1)) = (0, 0, 0, 1).

• ψ3(x) has coefficients in Z[f0, . . . , f6, h0, . . . , h3].

Note that our ψ3,i is µ3,i in Uchida’s notation. For x ∈ KA(kv) we set

ωv(x) := v(ψ3(x))− 9v(x)

and notice that, similarly to εv , this function is well defined on K(kv) and
moreover, if we compose it with the usual surjection from J onto K, on
J(kv).

Furthermore, Proposition 3.24 implies

µv(3P ) = 9µv(P )− ωv(P ). (3.29)

Let us assume that we are given a point P ∈ J(kv) and we know that the
reduction type of C over Ov is of the form [I0 − K − 0], where K is some
Kodaira type. We also assume εv(P ) 6= 0.

If 2P ∈ J0(kv), then

µv(P ) =
1

4
εv(P ),
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but on the other hand we have µv(3P ) = µv(P ). Therefore (3.29) implies

µv(P ) =
1

8
ωv(P )

and

ωv(P ) = 2εv(P ).

If 3P ∈ J0(kv), then we find

µv(P ) =
1

3
εv(P ) =

1

9
ωv(P )

so that the relation

ωv(P ) = 3εv(P ) (3.30)

holds.

The final case is 2P, 3P /∈ J0(kv). We have 4P ∈ J0(kv) and hence

µv(P ) =
1

8
ωv(P ) =

1

4
εv(P ) +

1

16
εv(2P ).

We cannot compute µv(P ) directly if we find that (3.30) holds. But if we
take a closer look which reduction types are possible in this case, we see that
we must have K ∈ {IV, IV ∗} if 3P ∈ J0(kv), whereas the complementary
case can only occur if K = I∗n and n is odd. This means that, at least if
v(6) = 0, we can tell which case we are in by checking the valuation of the
discriminant: For IV, IV ∗ it is even, whereas for K = I∗n it is odd if and
only if n is. If the residue characteristic is equal to 2, then we know at least
that if v(∆) is odd, then we have type I∗n and hence 3P /∈ J0(kv). Similarly,
if the residue characteristic is 3, then we must have reduction type IV or
IV ∗ and hence 3P ∈ J0(kv) if v(∆) is even. If none of these conditions are
satisfied, we simply check εv(2P ) and εv(P ) for equality.

This leads to Algorithm 2, where P ∈ J(kv) and we assume that the
reduction of J over Ov is of the form [I0 −K − 0].

Remark 3.60. What about the height constant βv? If #Φv < 4, then we
can use Corollary 3.32 because of Lemma 3.59. If we are in case K = IV
or K = IV ∗, then we have #Φv = 3 and if a search for P ∈ J(kv) of small
height produces no nontrivial εv(P ), then we may have cv = #Φv(kv) = 1
and thus βv = 0. See the discussion following Corollary 3.32.

If we have #Φv = 4, then we can proceed as follows: If we find cv < 4,
then we are in the situation discussed already. If this does not hold, then
we can compute εv(P ) for P of small naive height. However, we can only be
certain that we have determined all possible values if we find three different
values if Φv ∼= Z/2Z ⊕ Z/2Z (in fact, if εv(P ) 6= 0 6= εv(Q), then εv(P +Q)
will yield the third value), respectively two if Φv ∼= Z/4Z, taken on by εv
– unless we can also show somehow that we have found at least one point



98 CHAPTER 3. JACOBIAN SURFACES

Algorithm 2 Computation of µv(P ) for reduction type [I0 −K− 0]

if ωv(P ) = 2εv(P ) then
return 1

8ωv(P )
else if ωv(P ) 6= 3εv(P ) then

return 1
8ωv(P )

else if v(6) = 0 then

return 1
9−(v(∆) (mod 2))ωv(P )

else if v(2) > 0 and 2 ∤ v(∆) then
return 1

9ωv(P )
else if v(3) > 0 and 2 | v(∆) then

return 1
8ωv(P )

else if εv(2P ) = εv(P ) then
return 1

9ωv(P )
else

return 1
8ωv(P )

end if

for each component. But we can get a small improvement even without
computing cv or any εv just from knowing the exponent of Φv. In case
Φv ∼= Z/2Z ⊕ Z/2Z we have µv(P ) =

1
4εv(P ), so that any bound B for the

maximum value γv of |εv| yields a bound βv ≤
B
4 (as opposed to B

3 ). In
particular we could use the bound v(24 disc(F )) from Proposition 3.11 or
one of its improvements discussed in [92, §7]. If we have Φv ∼= Z/4Z, then a
similar argument shows that βv ≤

5
16B, where B is any upper bound for γv.

If l is positive and E has additive reduction, the order of the component
group is still at most 4. However, according to Lemma 3.59 the closure of
the given model of C does not have rational singularities and there is no
way to repair this. But because the implication of Theorem 3.30 has not
been shown to be an equivalence, this does not necessarily mean that εv and
µv cannot factor through Φv and there is some hope left. Yet consider the
following example.

Example 3.61. Let p be an odd prime and let C be the smooth projective
model of y2 = (x2 + 1)(x3 + p5x + p8) over Qp. Let P1 = (0, p4) ∈ C and
P2 = −P1. We have reduction type [I0 − III − 1] and hence #Φv = 2. It
turns out that both P1 and P2 map to the component C1 (see the beginning
of this section) and so we have P ∈ J0(kv). The image on the Kummer
surface is of the form (x1, 0, 0, x4), where v(x4) − v(x1) = 2 = 2l. We
get εv(P ) = εv(2P ) = 6 and, in accordance with Theorem 3.62 below,
µv(P ) = µv(2P ) = 2 = 2l.

Hence the computation of µv(P ) becomes more involved. Still, below we
prove a simple formula for µv(P ) when P ∈ J0(kv) under some additional
conditions which can always be ensured to hold after a simple transforma-
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tion.

Theorem 3.62. Suppose C has reduction type [I0 − K − l], where K is
not a multiplicative Kodaira type and l ≥ 0. Furthermore, suppose that
v(h0) ≥ 3l, v(h1) ≥ l, v(f0) ≥ 6l, v(f1) ≥ 4l, v(f2) ≥ 2l and that the only
transformation required when applying Tate’s algorithm to E is (ξ, η) 7→
(π−2lξ, π−3lη). Let x = (x1, x2, x3, x4) be a set of v-integral Kummer coor-
dinates for P ∈ J0(kv) with v(x3) > 0, v(x4) > 0 and either v(x1) = 0 or
v(x2) = 0. Then we have

µv(P ) = min{v(x3), v(x4), 2l}.

Proof. See Appendix A.8.

Remark 3.63. The condition on Tate’s algorithm basically amounts to re-
quiring the coefficients h0, h1, f0, f1, f2 to have valuation as large as possible
simultaneously. In order to satisfy it, we simply apply Tate’s algorithm to
the given model of E, record the transformations needed and apply them to
C. Having done so, we can apply Theorem 3.62 to the resulting Jacobian.

Remark 3.64. We can safely leave out the case K = In, n ≥ 1, because
if we have such a curve, then we can apply a transformation producing a
model that falls into case (5) and this will be dealt with in Section 3.6.5.
This reduction type is easily distinguishable, for example by applying Tate’s
algorithm to the model of E.

Remark 3.65. The preceding theorem enables us to compute µv(P ) for arbi-
trary P using the fact that we can always find some n ∈ {1, . . . , 4} such that
nP ∈ J0(kv). The number n can be determined quite easily once we have
applied the transformations necessary to use the theorem. Finally we note
that the case n = 4 is generally not very common, so mostly an application
of δ or ψ3 (see (3.28)) suffices. This is in contrast with the fact that we may
have to go up to quite large multiples of our point if we want to ensure that
εv vanishes for this multiple, see the conjecture below.

The proof of Theorem 3.62 given in Appendix A.8 is very elementary
but also lengthy. The simplicity of the formulas hints at the existence of
a more clever or at least more enlightening proof, possibly using Néron’s
interpretation of canonical local height pairings and Lang’s interpretation
of Néron functions as intersection multiplicities that we have already used
in the proof of Theorem 3.30.

Recall that if H = 0 and char(kv) 6= 2, then J0(kv) consists of the
elements of J(kv) that are nonsingular (when viewed as elements of the given
model of J that is defined by 72 quadrics in P15 and that is determined by
F ) and map to the connected component of the identity of the special fiber
of the given model. The group J0(kv) depends on the given model and
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by Proposition 3.12 equals the group Uv of points on which εv vanishes, at
least for residue characteristic not equal to 2. Therefore we see that in the
present case J0(kv) strictly contains J0(kv). This phenomenon has also been
discussed in a different context by Bruin and Stoll in [13, Remark 5.16]. On
a side note, it should be possible to prove Proposition 3.12 in the situation
where char(kv) = 2 using the explicit embedding of the Jacobian in P15 for
fields of characteristic 2 (and h3 = 0) from [33], but we have not attempted
this.

It is natural to ask about the index of J0(kv) in J0(kv). Experimental
data suggests the following:

Conjecture 3.66. Suppose that k is a global field and that the given model
of C is v-minimal with reduction type [I0 − K − l], where K is an additive
Kodaira type. Furthermore, suppose that v(h0) ≥ 3l, v(h1) ≥ l, v(f0) ≥
6l, v(f1) ≥ 4l, v(f2) ≥ 2l and that applying Tate’s algorithm to the given
equation of E yields no transformations except for (ξ, η) 7→ (π−2lξ, π−3lη).
Then we have εv(p

lP ) = 0 for all P ∈ J0(kv).

Note that having reduction type [I0−K− l] means that there is a chain
of l projective lines connecting the genus 1 curve coming from E′ and the
Kodaira type. Each of these P1s contributes p new points to the special
fiber of the minimal proper regular model of C when compared to a curve of
reduction type [I0 −K− (l− 1)]. We need the field to be global because for
non-global one-dimensional function fields the quotient might not be finite.
We have not been able to give a proof in the general case, but we can show
the following:

Proposition 3.67. If the residue characteristic is equal to 2, then Conjec-
ture 3.66 holds.

Proof. The proof follows from the proof of Lemma A.3, see Appendix A.8.
The lemma is stated there for the situation

v(x1) = 0, v(x2) > 0, 0 ≤ v(x3) ≤ 4l,

which implies v(x4) ≤
1
2v(x3). For every Q ∈ J(kv) let x(Q) denote a set of

integral Kummer coordinates forQ such that one of the x(Q)i is a unit. Then
the proof of Lemma A.3 shows that we have v(x(2n+1P )4)− v(x(2

nP )4) ≥
2v(2) as long as v(x(2nP )4) ≥ 2v(2). The upper bound 2l for v(x4) implies
that v(x(2lP )4) = 0 and thus εv(2

lP ) vanishes.
Using Appendix A.8 it is easy to see that the same principle applies as

long as we have v(x3)v(x4) > 0 and K 6= I0. But if v(x3)v(x4) = 0, then we
have εv(P ) = 0 already, and so we are done.

The proof suggests that if k is a number field and l is divisible by the
ramification index e of kv over Qv, then we might have εv(p

l/eP ) = 0 for any



3.6. FORMULAS FOR LOCAL ERROR FUNCTIONS 101

P ∈ J0(kv) and indeed this was the case in our examples. However, since
most of our experiments dealt with either Qv or unramified extensions, we
have not dared to include this into the statement of the conjecture. Anyway,
for practical purposes – at least for our intended applications – Conjecture
3.66 does not seem to have much relevance. If K = I0, then there are several
counterexamples to the statement of the conjecture.

Example 3.68. Let C be given by

y2 = (x2 + 1)(x3 + p6),

where p > 2 is a prime less than 100, and let P = [(0, p3) −∞]. Then we
have εv(nP ) 6= 0 for n ∈ {1, . . . , 5}, but εv(6P ) = 0.

Remark 3.69. According to Lemma 3.59 we cannot use Corollary 3.32 to
bound the height constant. Yet if we can show that there are no P ∈
J(kv) \ J0(kv), then we get the bound

βv ≤ 2l,

which is certainly a significant improvement over the bound we get by ap-
plying Proposition 3.11. This condition is satisfied when K ∈ {I0, II, II

∗}
and more generally when the Tamagawa number cv is equal to 1.

3.6.5 Case (5)

In this case there is a cusp and a node in the reduction of C. If we explicitly
construct the minimal proper regular model, we find that in the notation of
Namikawa and Ueno it is of the form [Im1 −K− l], where K is the Kodaira
type of the elliptic curve E given by (3.26) and we have l ≥ 0 and m1 > 0.
Note that the Kodaira type Im1 is the reduction type of the elliptic curve
E′ with equation (3.27).

If char(kv) 6= 2, then we can find, using Hensel’s Lemma, a factorisation

F (X,Z) = F1(X,Z)G(X,Z)F2(X,Z),

where
F̃1(X,Z) = Z2, F̃2(X,Z) = X3, G̃(X,Z) = X − Z,

and the valuation of the discriminant of G as well as the valuations of the
resultants between the different forms vanish. In this case

v(disc(F1)) = m1, v(disc(F2)) = m2 > 0,

so that we have v(∆) = m1 +m2. Note that m1 is the discriminant of the
given equation of E′ and m2 is the discriminant of the given equation of E
and this continues to hold for even residue characteristic.
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Figure 3.6: The special fiber of reduction type [Im1 − IV
∗ − l]

We first suppose, similar to cases (1), (2) and (3) that we have

m1 = min{v(f6), 2v(f5)}.

In Remarks 3.44 and 3.45 it is explained in some detail how to find a transfor-
mation to reduce to this case; there is no additional difficulty in the present
case as soon as we have computed m1.

For now we assume that K is not multiplicative, which always holds
when l = 0. Then we get from Proposition 1.37

Φv ∼= Z/m1Z× G,

where

G ∈ {{0},Z/2Z,Z/3Z,Z/2Z ⊕ Z/2Z,Z/4Z}.

If m1 = 1, then the special fiber is similar to the special fiber of type
[I0 − K −m], but now A is a genus 0 curve with a node. If m1 > 1, then
the special fiber Cmin

v again resembles the special fiber of type [I0 −K−m],
but now there is also an m1-gon, with components A = D0,D1, . . . ,Dm1−1.
See Figure 3.6 for the case K = IV ∗.

As before, we denote the other components of multiplicity 1 in the part
of the special fiber corresponding to K, if any exist, by C1, . . . , Ct, where
t + 1 ∈ {1, . . . , 4} is the number of components of K that have simple
multiplicity.

We let

χ = (χ1, χ2) : J(kv) −→ Z/m1Z× G

P 7→ (i, j)

denote the map induced by these numberings.
Similar to case (4) we have:
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Lemma 3.70. The curve C has a model of the form (3.13) whose closure C
has rational singularities if and only if l = 0. If l = 0, then the given model
already satisfies this condition.

Proof. See the proof of Lemma 3.59.

Thus we conclude that if l > 0, then εv does not factor through Φv in
general, for the same reason as in case (4). Therefore we first deal with
the case l = 0, which is of course the most common case in practice. This
ensures that εv and µv factor through Φv. By the above discussion we know
that for any point P ∈ J(kv) there is a multiple nP mapping to [Di − A],
that is χ(nP ) = (i, 0), where 1 ≤ n ≤ 4 and 0 ≤ i ≤ m1 − 1.

It suffices to find a formula for µv(nP ), since then we can compute λ̂v(P )
from λ̂v(nP ) using Proposition 3.23. We find such a formula upon noticing
that points satisfying χ(P ) = (i, 0) where i 6= 0 (the other case is trivial),
are characterised by

v(x1) > 0, v(x2) ≥ 0, v(x3) = 0, v(x4) > 0.

As in (3.24) we define

w(P ) := min{v(x1), v(x4),m1/2}

and the following lemma is proved similarly to Lemma 3.46. In fact, most
of the difficulties in that proof disappear, so the proof is even easier and is
omitted.

Lemma 3.71. If χ2(P ) = 0, then we have

εv(P ) = 2min{χ1(P ),m1 − χ1(P )}.

The proof of the next lemma is also a simpler version of the proof of
Lemma 3.47.

Lemma 3.72. Suppose χ2(P ) = 0. Then we have

εv(P ) = 2w(P ),

so in particular
w(P ) = min{χ1(P ),m1 − χ1(P )}.

The last two results can be combined into a proof of the following propo-
sition, which is the same as the proof of Proposition 3.49.

Proposition 3.73. If χ2(P ) = 0, then we have the formula

µv(P ) =
w(P )(m1 − w(P ))

m1
.
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As in case (4), the situation l > 0 is considerably more complicated. We
prove a formula for points satisfying χ(P ) = (i, 0), where 0 ≤ i ≤ m1− 1. If
K is not multiplicative, then we can find some n ≤ 4 such that nP satisfies
this for all P ∈ J(kv); otherwise, n might be larger. For a point P ∈ J(kv)
we define

w1(P ) := min{v(x1), v(x4),m1/2}

and

w2(P ) := min{v(x3), v(x4), 2l}.

Theorem 3.74. Suppose C has reduction type [Im1 − K − l], where K is
a Kodaira type, m1, l ≥ 0. Suppose that v(f0) ≥ 6l, v(f1) ≥ 4l, v(f2) ≥ 2l,
v(f6) 6= 2v(f5) and that applying Tate’s algorithm to E yields no transfor-
mations except for (ξ, η) 7→ (π−2lξ, π−3lη). Let x = (x1, x2, x3, x4) be a set
of v-integral Kummer coordinates for P ∈ J(kv) satisfying χ2(P ) = 0 such
that v(xj) = 0 for some j. Then we have

µv(P ) =
w1(P )(m1 − w1(P ))

m1
+ w2(P ).

Proof. See Appendix A.9.

Using the preceding theorem, we can compute µv(nP ) for all possible
reduction types K, where either n ∈ {1, . . . , 4} or n = m2 ≥ 1 when K is
multiplicative. We might have to apply some transformations, but using the
behavior of the canonical local height under changes of the model we can
compute µv(nP ) on the original model. It is not hard to find n from the
valuations of the discriminant ∆ and the valuations of the coefficients of F
and H. We could also state an analog of Conjecture 3.66 in case (5) and
prove it for residue characteristic 2 as in Proposition 3.67.

It is unfortunate that we have n > 4 for [Im1−Im2−l] andm1,m2 > 4. At
least we can always use a transformation to ensure that m2 ≤ m1. However,
this reduction type should hardly ever occur in practice, because if it does,
the valuation of ∆(C) must be at least 22.

Remark 3.75. Let k be a one-dimensional function field that is not a global
field and let v ∈ Mk. Then the formulas for cases (1) to (5) show that in
cases (1), (2) and (3), that is in the semistable cases, the group Uv of points
which εv vanishes on has finite index in J(kv), see Remark 3.10. In cases (4)
and (5) this may not be true and we have not dared to extend Conjecture
3.66 to Jacobians defined over such fields. However, our methods for the
computation of µv work perfectly well in such cases, in contrast with the
original method due to Flynn and Smart which is not guaranteed to work
even theoretically.

Remark 3.76. In case (5) we can only use Corollary 3.32 to bound the height
constant βv in special situations, even if we assume l = 0. For instance, if
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m1 = 1, we can proceed as in Remark 3.60. However, the results of this
section are most useful for bounding βv when we have cv(E) = 1, see Remark
3.69. Whenever this is satisfied (so for instance when K ∈ {I0, II, II

∗}) we
can conclude

m1 even ⇒ βv ≤
m1

4
+ 2l,

m1 odd ⇒ βv ≤
m2

1 − 1

4m1
+ 2l.

3.7 Archimedean places

Recall from Section 2.4 that in the case of elliptic curves there are essen-
tially three methods available for the computation of archimedean canonical
local heights, namely Tate’s series, theta (more precisely, Weierstrass σ-)
functions and the isogeny trick due to Bost and Mestre. We exhibit analogs
of all three of these methods in the case of Jacobian surfaces. Surprisingly,
the analog of Tate’s series turns out to be the most efficient.

The setup is a smooth projective curve C of genus 2, given by an equation
of the form (3.13) with Jacobian J and Kummer surface K, defined over a
number field k. We want to compute the canonical local height λ̂v(x) for an
archimedean place v and a set of Kummer coordinates x on K.

3.7.1 Approximating µv using a truncated series

The first method was already introduced in Section 3.2.2 and is due to Flynn
and Smart, see [43]. It uses the definition (3.22) of λ̂v: For a given desired
accuracy, we need a bound on the number of summands of µv needed to
compute λ̂v to that accuracy; such a bound can be found using a bound on
the local height constant γv, see the discussions at the end of Section 3.2.2
and Section 3.2.3. Because we can use floating point arithmetic, the repeated
applications of δ are not so expensive. Moreover, we can renormalize our
set of Kummer coordinates at each step, thus guaranteeing convergence. In
order to use the height constant, we transform the model of C to get a
simplified model satisfying H = 0 and then use Corollary 3.25.

However, the height constant bound at an archimedean place may not be
sharp, see the discussion in [92, §9], so there is room for improvement if one
could improve on this bound. Some results in this direction were obtained
by Uchida in [103, §6] who uses an optimization approach with constraints.
One has to be careful though, because his algorithm is similar to a method
already used by Flynn and Smart which yielded some bounds that were
much too small, see the discussion in [92, §9]. Of course any improvement,
such as Uchida’s, is of independent interest.
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Furthermore, there are numerical problems, namely one has the usual
problem of rounding errors. In addition, applying δ to a (floating point
approximation of a) set of coordinates x may result in δ(x) not representing
a point on K anymore, so one has to adjust the coordinates, for example
by fixing any three of the coordinates and choosing the fourth coordinate to
satisfy the Kummer surface equation up to a prescribed accuracy. Since the
equation is quadratic in x4 and quartic in the other xi, fixing the first three
coordinates is usually the best choice.

Another conceivable method would be the following: First compute a
bound for the absolute value of the gradient of εv(P ) and hence of µv(P ),
then find a torsion point Q sufficiently close to P such that we can compute
µv(Q) in order to approximate µv(P ) to the desired accuracy. The problem
is how to find such a Q. This is easy if we use complex uniformisation, but
this approach is not very efficient, see below. We could restrict to 2m-torsion
and use repeated halving of the image of the point on K (as in [92, §5]), but
this is slower than the algorithm that we have already discussed.

3.7.2 Theta functions

The second method discussed in Section 2.4 uses the original description of
archimedean Néron functions due to Néron given in Proposition 1.39. Sup-
pose that our curve C is embedded into P2

C using v. By virtue of Corollary
3.25 we can assume that C is given by a model of the form Y 2 = F (X, 1),
where deg(F (X, 1)) = 5. Let J be the Jacobian of C and Θ the theta di-
visor corresponding to the Abel-Jacobi map embedding C into J with base
point ∞, so the divisor D1 that our embedding of the Kummer surface cor-
responds to is equal to 2Θ. Recall the notation from Section 1.6: We let
τv ∈ h2 such that J(C) is isomorphic to C2/Λv, where Λv = Z2 ⊕ τvZ2. We
define the map j by

j : C2 // // C2/Λv
∼=

// J(C).

Finally, let a = (1/2, 1/2), b = (1, 1/2) ∈ C2 and let θa,b denote the theta
function with characteristic [a; b] defined in Section 1.6.

Proposition 3.77. (Pazuki) The function θa,b has divisor j
∗(Θ). Moreover,

the following function is a Néron function associated with Θ and v

λ̂′Θ,v(P ) = − log |θa,b(z(P ))|v + π Im(z(P ))T (Im(τv))
−1 Im(z(P )),

where j(z(P )) = P .

Proof. This was stated without proof by Pazuki in [80, Proposition 3.1],
but it is in fact rather easy to verify: It is a classical theorem (see [59,
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Chapter 13, Theorem 4.1]) that the divisor of the Riemann theta function
θ = θ0,0 is a translate by a point w of the usual theta divisor and that 2w
is the image on J of the canonical class on C. Using this it is not hard to
see that the odd function θa,b has divisor j

∗(Θ). Then one uses Proposition
1.39 and Remark 1.41 to find an expression of a Néron function in terms of
the normalized theta function θ′a,b; the right hand side in Proposition 3.77
is equal to this expression after a straightforward manipulation.

Alternatively one can show directly that λ̂′Θ,v satisfies the properties of
a Néron function.

We can use this proposition to compute the function λ̂v(x), where x is a
set of Kummer coordinates for a point P ∈ J(k). Suppose that P /∈ supp(Θ),
that is κ1(P ) 6= 0. We actually compute λ̂1,v(P ) = λ̂v(x

′(P )), where

x′(P )i = κ(P )i/κ(P )1. Because both 2λ̂′Θ,v and λ̂1,v are Néron functions
associated with 2Θ and v, there exists some constant dv satisfying

λ̂1,v(P ) = 2λ̂′Θ,v(P ) + dv

for all P ∈ J(C) \ supp(Θ) (see also [80, Proposition 4.1]). This constant
can be calculated easily as follows: We first find z ∈ C2 such that 3z ∈ Λ.
Then there is some Q ∈ J(C)[3] such that j(z) = Q. We find this Q and by
[80, Proposition 4.2] we have Q /∈ supp(Θ). Hence we obtain

dv = λ̂1,v(Q)− 2λ̂′Θ,v(Q) = v(x′(Q))− εv(Q)/3− 2λ̂′Θ,v(Q). (3.31)

Once we have found dv, we can compute λ̂v(x) for any set of Kummer
coordinates for a point P ∈ J(k) satisfying κ1(P ) 6= 0. If this condition
is not satisfied, we can either apply transformations in order to move the
point or we can use the canonical local height for a suitable different divisor
in the class of 2Θ; the constant dv is different in this case and has to be
recomputed.

Recall that for real places v the corresponding method for elliptic curves
is quite efficient, because there are several computational tricks available. It
is possible – and implemented for example in Magma by van Wamelen – to go
back and forth between the algebraic Jacobian J and the analytic Jacobian
C2/Λv and to compute theta functions. One can use Richelot isogenies to
construct a very quick algorithm to compute the period matrix, cf. [11] and
it should also be possible to speed up the computation of theta functions
using computational tricks similar to [23, Algorithm 7.5.7].

The problem is that we do not have a fast method for computing com-
plex coordinates of points on Jacobian surfaces. For elliptic curves we have
already mentioned a method commonly called Landen’s transformation (see
[23, Algorithm 7.4.8]) that gives a rapid algorithm for this problem, but it
seems to have no 2-dimensional analog. If such an analog were found, then
the approach described in this section could become quite competitive, but
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at the moment it is inferior in practice to the series approximation of µv.
Its advantage is that it can be generalized quite easily to the higher genus
situation, because Proposition 3.77 generalizes, see Proposition 4.15 below.

Finally it should be mentioned that Silverman has found a bound on
the local height constant for archimedean valuations in the case of elliptic
curves in [88] using the complex uniformisation and Proposition 2.18. This
bound is sometimes better than the bound one gets from applying other
techniques, see [28]. In the present situation one could try to emulate this
and bound the difference between the archimedean canonical local height
λ̂v(P ) and 2λ̂′Θ,v(P )+ dv , possibly using techniques similar to [80], where a

lower bound for λ̂′Θ,v is found. We have not attempted this, but it appears
to be a promising direction for future research.

3.7.3 Richelot isogenies

Suppose that the embedding corresponding to v is real and view C as em-
bedded into the real projective plane using v, given by an equation satisfying
H = 0. Moreover suppose that all the roots of F (X, 1) are real. Bost and
Mestre show in [11] how to construct a sequence of maps φn−1 : Cn −→ Cn−1

on genus 2 curves Cn : Y 2 = fn(X), where C0 = C and f0(X) = F (X, 1),
that deform C into a singular curve with 3 nodes. The roots of the poly-
nomials fn converge quadratically to the x-coordinates of these points and
this approach provides a quick method for the computation of the period
matrix τv.

The maps φn induce isogenies on the corresponding Jacobians, which
are called Richelot isogenies. See [20, Chapter 9] for a more general account
of these classical maps. Flynn has found explicit formulas for the induced
maps on the Kummer surface in [42], so it seems quite promising to use these
formulas for an analog of the isogeny method of Bost and Mestre described
in Section 2.4, since we know from Proposition 3.24 how the canonical local
height changes under isogenies.

Suppose that P0 ∈ J(R) lies on the connected component of the identity
(otherwise there might be no real preimage of P0 under φ0) and (Pn)n is the
sequence of points defined by Pn−1 = φn(Pn). We suppose κi(Pn) 6= 0 for all
n, so that we can use λ̂i,v, since we need a canonical local height associated
with some divisor – the sequence of canonical local heights on Kummer
coordinates does not converge, unless we use a consistent normalization.

This is problematic, but what is worse is that the sequence of canonical
local heights (λ̂Di,v(Pn))n only converges linearly with convergence factor 2,
coming from Proposition 3.24 and the fact that the roots of the fn con-
verge quadratically. So this is slower than the series approach which has
convergence factor 4; moreover finding the preimage of a set of Kummer co-
ordinate using Flynn’s formulas involves computing inverses of 4×4 matrices
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and several square roots and is thus slower in general than an application
of δ.
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4.1 Embedding the Kummer variety

Let l denote a field of characteristic char(l) 6= 2. In order to generalize
the results from the previous chapter we need to find an embedding of the
Kummer variety associated to the Jacobian of a smooth projective curve
of genus 3 into projective space of dimension 2g − 1 = 7. Since not all
those curves are hyperelliptic, we first restrict to those which are. This is
reasonable because all genus 2 curves are hyperelliptic and so we expect that
the results for Jacobian surfaces generalize more easily to Jacobians of other
hyperelliptic curves.

Since the genus is odd there is another complication that we have not
encountered so far. Recall that in Sections 3.1 and 3.3 we constructed the
Kummer surface by finding an embedding using the fact that generic points
of the Jacobian J of a smooth projective genus 2 curve C are represented
by divisors of the form

(P1) + (P2)− 2(∞)

or
(P1) + (P2)− ((∞+) + (∞−)),

where P1, P2 ∈ C, depending on whether there exists a unique point at
infinity or not. Therefore generic points on the Jacobian can be represented
using unordered pairs of points on the curve.

In the present situation, we have an analogous result if C is a smooth
projective genus 3 curve over l with Jacobian J and an l-rational Weier-
strass point, which we can assume to be at infinity. Then we can find a
representative of the form

(P1) + (P2) + (P3)− 3(∞), (4.1)

where P1, P2, P3 ∈ C and this representation is unique for generic points on
J . Here generic means that if we have a representation (4.1), then Pi 6= ∞
and we have Pi 6= P−

j for all distinct i, j ∈ {1, 2, 3}, where Q 7→ Q− denotes
the hyperelliptic involution on C.

However, in the complementary case we have to consider representatives
of the form

(P1) + (P2) + (P3) + (P4)− 2((∞+) + (∞−)),

and these are not unique, even for generic points. In this more general
situation there exists a different approach due to Stoll, see [99], which also
contains some ideas for the embedding of the Kummer threefold in the non-
hyperelliptic case.

Therefore we first restrict to curves having an l-rational Weierstrass point
at infinity. Consider an affine equation of the form

Y 2 = F (X, 1) (4.2)
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where

F (X,Z) =

f0Z
8+f1XZ

7+f2X
2Z6+f3X

3Z5+f4X
4Z4+f5X

5Z3+f6X
6Z2+f7X

7Z
(4.3)

is a binary octic form in l[X,Z] without multiple factors with deg(F (X, 1)) =
7. Let C denote the hyperelliptic curve of genus 3 given by the smooth pro-
jective model of (4.2). Let J be the Jacobian of C. An embedding of
the Kummer variety K = J/{±1} of J can be given by a basis of L(2Θ);
such a basis has been found by Stubbs in [100] and we reproduce it here.
Suppose we have a generic point, where for the remainder of this section
generic means that P is represented by an unordered triple of affine points
(x1, y1), (x2, y2), (x3, y3) ∈ C, where all xi are pairwise distinct. An embed-
ding of the Kummer threefold is given by

κ(P ) = (κ1(P ), . . . , κ8(P )),

where the functions κ1, . . . , κ8 are given by

κ1 = 1,

κ2 = x1 + x2 + x3,

κ3 = x1x2 + x1x3 + x2x3,

κ4 = x1x2x3,

κ5 = b20 − f7κ
3
2 + f7κ3κ2 − f6κ

2
2 + 3f7κ4 + 2f6κ3,

κ6 = κ2b
2
0 + 2b0b1 − f7κ

4
2 + 3f7κ3κ

2
2 − f6κ

3
2 − f7κ

2
3 − f7κ4κ2 + 2f6κ3κ2

−f5κ
2
2 + 2f5κ3,

κ7 = b21 − κ3b
2
0 + f7κ3κ

3
2 − 2f7κ

2
3κ2 + f6κ3κ

2
2 + f7κ4κ3 − f6κ

2
3 + f5κ3κ2

−3f5κ4,

κ8 = κ2b
2
1 + 2κ3b0b1 + κ4b

2
0 + f7κ

2
3κ

2
2 − f7κ

3
2κ4 + f7κ2κ3κ4 − f7κ

3
3

+f6κ
2
3κ2 − f6κ4κ

2
2 + f5κ

2
3 − f5κ4κ2.

Here we have

b0 = (x1y2 − x2y1 − x3y2 + x3y1 − x1y3 + x2y3)/d,

b1 = (x23y2 − x
2
3y1 + x22y1 + y3x

2
1 − y2x

2
1 − y3x

2
2)/d,

d = (x1 − x2)(x1 − x3)(x2 − x3).

We also provide formulas for the values of κ(P ) when P is not of the form
considered above, because apparently they do not exist in the literature. For
this we first notice that in the generic case b0 and b1 satisfy that

B(X,Z) = b2Z
4 + b1XZ

3 + b0X
2Z2 (4.4)
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for some b2 ∈ l, where the Mumford representation of P is

(A(X,Z), Y −B(X,Z)),

see the discussion in Section 5.2.2. We can use this observation for our
generalization of κ. If P still has a unique representative of the form (4.1),
where now at least two of the xi are equal, then the formulas for κ remain
valid if b0 and b1 are not given by the explicit formulas above, but rather as
coefficients of B(X,Z) as in (4.4).

In order to find formulas when P has a unique representative of the form

((x1, y1)) + ((x2, y2))− 2(∞)

we first assume that P is generic and satisfies x1x2x3 6= 0 and write the
κi in terms of (w1, z1), (w2, z2), (w3, z3), where zj = 1/xj and wj = yj/xj .
We then multiply by the common denominator and set w3 = 0. Assuming
x1 6= x2 we find

κ1 = 0,

κ2 = 1,

κ3 = x1 + x2,

κ4 = x1x2,

κ5 = f5 + 2f6κ3 + f7κ
2
3 + 2κ4f7,

κ6 = f4 + f5κ3 − κ4f7κ3,

κ7 = −f4κ3 − 3κ4f5 + κ24f7,

κ8 = (f3κ
3
3 + f1κ3 + f2κ

2
3 + 2f0 − 2y1y2 + κ4f4κ

2
3 − 3κ4f3κ3 − 2κ4f2

+κ24f5κ3 − 2κ24f4 + κ34f7κ3 + 2κ34f6)/(x1 − x2)
2.

For the case x1 = x2 it suffices to use the same κ1, . . . , κ7 and

κ8 = b21 − (κ4 − κ
2
3)(−2κ4f7κ3 − κ4f6 + f7κ

3
3 + κ23f6 + f5κ3 + f4),

where b1 is as in (4.4).
Now consider points represented by

((x1, y1))− (∞).

We first look at quotients of the form κi(P )/κ5(P ), where P is again assumed
generic, and then take the limit (x2, y2)→ (x3,−y3).The result is

κ(P ) = (0, 0, 0, 0, 1,−x1 , x
2
1, x

3
1).

A similar argument shows that we have

κ(0) = (0, 0, 0, 0, 0, 0, 0, 1).
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4.2 Defining equations for the Kummer variety

As we have seen in the previous chapter, the Kummer surface associated to
a Jacobian surface can be embedded as a quartic hypersurface into P3. It
turns out that the defining equations for the Kummer threefold are far more
complicated, but at least we can still describe them explicitly.

Proposition 4.1. Let K denote the Kummer variety of a Jacobian of di-
mension g ≥ 2, with embedding κ = (κ1, . . . , κ2g ) into P2g−1. Then the
image of K under κ can be described as an intersection of quartics.

Proof. This proof was suggested to me by Tzanko Matev. Let Q denote
the set of monic quadratic monomials in the κi and let d ≤ m denote the
dimension of the space they generate, where m =

(2g+1
2

)
is the cardinality

of Q. Let S = {s1, . . . , sd} be a subset of Q that is linearly independent
in Q(f0, . . . , f7)[q1, . . . , qm], where the elements of Q are ordered so that we
have Q = {q1, . . . , qm} with qi = si for i = 1, . . . , d.

Let α denote the 2-uple embedding of P2g−1 into Pm−1 such that if P ∈ J ,
then we have

αi(κ(P )) = qi(P ) for all i ∈ {1, . . . ,m}.

Then there are m − d linear relations on the image of K = κ(J) under
α. Now consider an embedding β : J →֒ P4g−1 given by a basis of L(4Θ)
whose first d elements are equal to s1, . . . , sd. Then we have a commutative
diagram

J

κ

��

�

� β
// P4g−1

γ

��

P2g−1 �

�

α
// Pm−1

where γ is a rational map defined as follows: If z = (z1, . . . , z4g ), then
γ(z) = y, where yi = zi for i = 1, . . . , d and the other yi are determined
by the linear relations of Q. By construction, we have that β(J) lies in the
domain of γ and in fact

γ(β(J)) ∼= α(κ(J)).

But it follows from [6, Theorem 7.4.1] that the image of J under β is defined
by an intersection of quadrics, which then must hold for γ(β(J)) as well,
since γ has degree 1. As the pullback under α of γ(β(J)) is isomorphic to
K, the result follows.

Hence it suffices to find a basis for the space of quartic relations on K to
describe K. We first compute a lower bound on the dimension of this space.
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n m(n) e(n) d(n)

1 4 4 4
2 10 10 10
3 20 20 20
4 35 34 34

Table 4.1: Dimensions in genus 2

n m(n) e(n) d(n)

1 8 8 8
2 36 36 35
3 120 112 ≤ 112
4 330 260 ≤ 260

Table 4.2: Dimensions in genus 3

For n ≥ 1 let m(n) denote the number of monic monomials of degree n in
κ1, . . . , κ2g and let d(n) denote the dimension of the space spanned by them.
Then we have m(n) =

(
2g+n−1

n

)
. Moreover, let e(n) denote the dimension of

the space of even functions in L(2nΘ). By [6, Corollary 4.7.7] this is equal
to (2n)g/2 + 2g−1. Since a monomial of degree n in the κi induces an even
function in L(2nΘ), we always have d(n) ≤ e(n).

In genus 2, the dimension count is given in Table 4.1. We know that d(4)
can be at most e(4) = 34, and indeed the space of quadratic relations in the
κi is one-dimensional, spanned by the Kummer surface equation (3.11).

Now we return to the case of genus 3. Stubbs has found the following
quadratic relation between the κi and shown that it is unique up to scalars:

R1 : κ1κ8−κ2κ7−κ3κ6−κ4κ5−2f5κ2κ4+f5κ
2
3+2f6κ3κ4+3f7κ

2
4 = 0 (4.5)

The dimensions for genus 3 are presented in Table 4.2. The existence and
uniqueness of R1 implies that d(2) = 35, but since e(2) = 36, this means
that there is an element of L(4Θ) not coming from a quadratic monomial in
the κi, which does not happen in genus 2. Accordingly, we can at this point
only bound d(3) and d(4) from above. It follows that in genus 3 there must
be at least 70 = 330− 260 quartic relations on the Kummer variety. But 36
of these are multiples of the quadratic relation R1, so there must be at least
34 genuine quartic relations.

In [100, Chapter 5] Stubbs lists, in addition to R1, 26 quartic relations
and conjectures that these 27 relations are independent and form a basis of
the space of all relations on the Kummer variety. These are the relations that
are at most quadratic in κ5, . . . , κ8. He was not able to prove either of these
conjectures. Using current computing facilities we can verify the former
conjecture quite easily, but because of our dimension counting argument,
we know that the latter conjecture cannot be correct.
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x y

xi 1 0
yi 0 1
fi −i 2

κi, i ≤ 4 i− 1 0
κi, i > 4 i− 9 2

Table 4.3: x- and y-weight

How can such relations be derived? We employ the technique used al-
ready by Stubbs to find his relations to obtain a complete system of defin-
ing equations. Because of the enormous size of the algebra involved in
these computations, we cannot simply search for relations among all mono-
mials. Instead we split the monomials into parts of equal x-weight and
y-weight. These are homogeneous weights discussed in [100, §3.5] that were
already used by Flynn in [40] in order to derive quadratic relations defining
a Jacobian surface in P15. See Table 4.3, reproduced essentially from [100,
Figure 3.4].

On monomials of equal x- and y-weight we can use linear algebra to find
relations; we continue this process with increasing weights until we have
found enough quartic relations to generate a space of dimension 70. The
difficulty of this increases mostly with the y-weight, the x-weight is not so
important.

Theorem 4.2. There are relations R2, . . . , R35 which can be downloaded
from the author’s homepage [74] such that the space of relations of degree at
most 4 in (κ1, . . . , κ8) is generated by R1, . . . R35 and the largest y-weight of
the Ri is 8.

Proof. Using a computer algebra system, for instance Magma, one can check
that R1, . . . , R35 are indeed relations on K and that they are independent.
For the latter it suffices to check that the space

W = {R2, . . . , R35} ∪ {κiκjR1 : 1 ≤ i ≤ j ≤ 8}

has dimension equal to 70 for one example, say for F (X,Z) = Z8 + X7Z.
For this example, we can also compute all quartic relations and check that
the space they generate has dimension 70 and equals W . It now follows that
the space of all quartic relations has dimension exactly 70 in general and we
are done.

Corollary 4.3. The relations on the Kummer threefold are generated by the
relations R1, . . . , R35.

Proof. Combine Proposition 4.1 with Theorem 4.2.
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Next we generalize a useful notion from Chapter 3, namely that of Kum-
mer coordinates.

Definition 4.4. Let l be a field of characteristic different from 2 with al-
gebraic closure l̄ and let x = (x1, . . . , x8) ∈ A8

l̄
\ {(0, . . . , 0)}. Let K ⊂ P7

l

be the Kummer variety associated with the Jacobian J of a smooth pro-
jective genus 3 curve defined over l. We say that x is a set of Kummer
coordinates on K if the image of x in P7

l̄
lies on K. If P ∈ J , then we say

that x is a set of Kummer coordinates for P if x represents κ(P ), that is, if
κ(P ) = (x1 : . . . : x8). The set of all sets of Kummer coordinates on K is
defined by

KA := {(x1, . . . , x8) ∈ A8 : ∃P ∈ K such that P = (x1 : . . . : x8)}.

4.3 Remnants of the group law

In Chapter 3 we used the Kummer surface in order to define and compute
canonical heights. In the process we repeatedly used the fact that the group
law on the Jacobian is reflected on the Kummer surface. Theoretically the
same holds in genus 3, but some new problems arise as we shall see in this
section.

We let l denote a field of characteristic char(l) 6= 2. As before, we let
J be the Jacobian of a smooth projective curve C of genus 3 defined over
l, given by a model (4.2). Let K be the Kummer threefold associated to
J that we have constructed in the previous sections. Let T ∈ J [2]; then
Duquesne has found a matrix WT in [32] such that projectively the identity

κ(P + T ) =WTκ(P )

holds for all P ∈ J . It follows from general theory that such a matrix must
exist as in the genus 2 case and Duquesne’s method of finding it is analogous
to the method employed by Flynn in [41] and used by us in Section 3.3.4
in the case of genus 2 and char(l) = 2, although there are a few additional
technical difficulties. We also have that if T ∈ J(l)[2], then the entries of
WT are l-rational.

Now let P,Q ∈ J . Then we know that in general κ(P +Q) and κ(P −
Q) cannot be found from κ(P ) and κ(Q), but the unordered pair {κ(P +
Q), κ(P − Q)} can be. In fact, in the analogous situation in genus 2 there
are biquadratic forms Bij ∈ l[x1, . . . , x4; y1, . . . , y4]2,2 such that if x and y
are Kummer coordinates for P and Q, respectively, then there are Kummer
coordinates w, z for κ(P +Q), κ(P −Q), respectively, such that

w ∗ z = B(x, y) (4.6)
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holds for all i, j and these were found in the general case in Section 3.3.3.
Recall that (4.6) is an abbreviation for

Bij(x, y) = wizj + wjzi for i 6= j

Bii(x, y) = wizi.

We want to find such forms for g = 3. Unfortunately the following result
says that they cannot exist in general.

Proposition 4.5. Let J be the Jacobian of a smooth projective hyperellip-
tic curve C of genus 3, given by a model (4.2), and let K be the Kummer
threefold associated to J . There are no biquadratic forms Bij(x, y), where
1 ≤ i, j ≤ 8, satisfying the following: If x and y are sets of Kummer coor-
dinates for P,Q ∈ J , respectively, then there are Kummer coordinates w, z
for P +Q,P −Q, respectively, such that (4.6) holds.

Proof. We can work geometrically, so we assume l is algebraically closed.
Suppose such forms Bij(x, y) exist. Let us fix Kummer coordinates x(T ) =
(x(T )1, . . . , x(T )8) for all T ∈ J [2].

For each T ∈ J [2] we get a map

πT : l[x1, . . . , x8; y1, . . . , y8] −→ l[y1, . . . , y8],

given by evaluating the tuple x at x(T ). This induces a map

πT :
l[x1, . . . , x8; y1, . . . , y8]2,2

(R1(x), R1(y))
−→

l[y1, . . . , y8]2
(R1(y))

.

Now consider

R1(B) := B18−B27−B36−B45−2f5B24+2f5B33+2f6B34+6f7B44 (4.7)

and let R1(B) denote the image of R1(B) in
l[x1,...,x8;y1,...,y8]2,2

(R1(x),R1(y))
. Then we

must have

πT (R1(B)) = 0 for all T ∈ J [2]. (4.8)

This follows from (4.5), since if B(x(T ), y) = w ∗ z, where y is a set of
Kummer coordinates for some P ∈ J , then w and z are both Kummer
coordinates for P + T = P − T and thus we have Bi,j(x(T ), y) = 2zizj for
1 ≤ i 6= j ≤ 8 and Bi,i(x(T ), y) = z2i for i ∈ {1, . . . , 8}, if x(T and y the
coordinates are scaled suitably so that z = w. But z must satisfy (4.5).

We claim that R1(B) itself vanishes. In order to show this we fix T ∈ J [2]
and let

S(T ) = {s1(T ), . . . , s36(T )} = {x(T )ix(T )j : 1 ≤ i ≤ j ≤ 8}.
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We also fix a representative

8∑

j=1

8∑

l=1

λT,j,lyjyl

of πT (R1(B)), where

λT,j,l =

36∑

m=1

µT,j,l,msm(T )

is linear in the sm(T ) and we require that λT,1,8 = 0, which uniquely deter-
mines our representative.

From (4.8) we know that we must have

λT,j,l = 0

for all j, l and for all T ∈ J [2] and thus we get linear equations

36∑

m

µT,j,l,msm(T ) = 0

.

Let S = (sij)1≤i≤36,1≤j≤64 denote the matrix defined by sij := si(Tj),
where J [2] = {T1, . . . , T64}. It can be shown that this matrix has generic
rank equal to 35, so any linear relation between the si(T ) satisfied by all
T ∈ J [2] must be a multiple of R1(x(T )1, . . . , x(T )8). Hence R1(B) must
vanish.

The upshot of this is that if we require our Bij(x, y) to contain no mul-
tiples of, say, x1x8 or y1y8 as summands (which we can always arrange by
applying (4.5)), then R1(B) = 0 follows. But this cannot hold in general:
For example, take P ∈ J \ J [2] and x a set of Kummer coordinates for
P . We must have that Bij(x, x) lies in the ideal generated by the relations
R1, . . . , R35 for all 1 ≤ i, j ≤ 7, but B18(x, x) does not. This already im-
plies that R1(B) cannot vanish in general and so not all of the Bij can be
correct.

This result implies that the situation is much more complicated than in
genus 2. We now analyze where this difficulty comes from.

Recall Flynn’s strategy to compute the biquadratic forms in genus 2 (see
[41] or [20]): If T ∈ J [2], then we can compute

κi(P + T )κj(P − T ) + κj(P + T )κi(P − T ) = 2κi(P + T )κj(P + T )

projectively for all i, j by multiplying the matrixWT by the vector κ(P ) ∈ l4.
Using some algebraic manipulations, Flynn ensures that the resulting B′

ij
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are biquadratic in the κi(P ) and the κj(T ) and satisfy some additional nor-
malization conditions. One can then check that the space of all κi(T )κj(T ),
where i ≤ j, is linearly independent of dimension 10. Hence for each pair
(i, j) at most one biquadratic form that satisfies the same normalization
conditions can specialize to B′

ij .

The crucial point is that from classical theory of theta functions we al-
ready know that such biquadratic forms Bij must exist – at least in the
complex case (see Hudson’s book [54]) and thus, using the Lefshetz prin-
ciple, for any algebraically closed field of characteristic 0. Therefore Flynn
concludes that Bij = B′

ij for all i, j.

We can try to use the same strategy in the genus 3 case. Indeed, in [32],
Duquesne computes the correct B′

ij(x, y) in the special case that x is a set
of Kummer coordinates for T ∈ J [2]. They can be downloaded from [35].
Because of the relation (4.5), we know that the space of all κi(T )κj(T ),
where i ≤ j, is not linearly independent. But we also know that it has
dimension 35, that is R1 is the only quadratic relation up to a constant
factor. We have already used this fact in the proof of Proposition 4.5.

Now we can apply R1(x) and R1(y) to the B′
ij(x, y) to make sure that

no terms containing, say x1x8 or y1y8 appear and this is done by Duquesne.
Thus we can draw the same conclusion as in the genus 2 situation, namely
that for each pair (i, j) at most one biquadratic form that satisfies the same
normalization conditions can specialize to B′

ij .

However, in the present situation it is not true that we know a priori
that such biquadratic forms exist. Duquesne assumes this and claims that
the B′

ij are the correct biquadratic forms for general x, y, but this must be
false according to Proposition 4.5. The problem is that, in more modern
language, the theta function formulas given by Hudson for Kummer sur-
faces are obtained by pushing points back and forth through (2, 2)-isogenies
of abelian surfaces, see [45]. While every abelian surface over C is a hyper-
elliptic Jacobian surface, this is no longer the case for abelian threefolds,
which suggests that it will at least be very difficult to generalize Hudson’s
formulas.

Yet at this point not all is lost: It could be the case that there are no
biquadratic forms with the desired properties globally, but that we can find
such forms locally, or it might still be possible to compute the Bij, locally,
or globally, even if they are of higher degree.

Let us first show that such forms must exist. We can embed Sym2K
into P35 using the embedding

ι : {(x1, . . . , x8), (y1, . . . , y8)} 7→ (z1, . . . , z35),
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where

z1 = x1y1,

z2 = x1y2 + x2y1,

z3 = x1y3 + x3y1,
...

z36 = x8y8.

Consider the morphism

φJ : J × J −→ J × J

(P,Q) 7→ (P +Q,P −Q).

This morphism has degree 64 = 4g, since a pair (P,Q) ∈ J × J lies in the
kernel of φJ if and only if P = Q ∈ J [2]. We have

#J [2] = dim(L(4Θ)) = 4g

by Riemann-Roch.
Now φJ induces a morphism

φK : Sym2K −→ Sym2K

{κ(P ), κ(Q)} 7→ {κ(P +Q), κ(P −Q)}

and so there is another morphism ψ : P35 −→ P35 such that the diagram

J × J

κ
��

φJ
// J × J

κ
��

Sym2K

ι

��

φK
// Sym2K

ι

��

P35
ψ

// P35

is commutative. Hence there are, at least locally, forms

Bij(x, y) : Sym
2K −→ Sym2K

where

B11(x, y) = ψ1(ι(x, y)),

B12(x, y) = ψ2(ι(x, y)),

B13(x, y) = ψ3(ι(x, y)),

...

B88(x, y) = ψ36(ι(x, y))
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such that if x and y are Kummer coordinates of P,Q ∈ J , respectively, then
there are Kummer coordinates w and z for P +Q and P −Q, respectively,
satisfying

w ∗ z = B(x, y),

where we set Bij = Bji for j < i.
A natural approach to the problem of finding the Bij is to use the ge-

ometric group law on J . If P,Q ∈ J are generic, that is P is represented
by

((x1, y1)) + ((x2, y2)) + ((x3, y3))− 3(∞),

where x1, x2 and x3 are pairwise distinct, Q is represented by

((x4, y4)) + ((x5, y5)) + ((x6, y6))− 3(∞),

where x4, x5 and x6 are pairwise distinct and −(P +Q) is represented by

((x7, y7)) + ((x8, y8)) + ((x9, y9))− 3(∞),

where x7, x8 and x9 are pairwise distinct, then there is a quartic M(x) and
a scalar γ such that the intersection of C with

(x− γ)y =M(x)

consists of the points (xi, yi) for i = 1, . . . , 9. This was already used by
Duquesne in [32] to find the matrix WT representing translation by a 2-
torsion point T .

It is quite easy to compute γ and M(x) from x1, . . . , x6 and y1, . . . , y6.
Thus we can express the points (x7, y7), (x8, y8) and (x9, y9) – and of course
also their images under the hyperelliptic involution – in terms of x1, . . . , x6
and y1, . . . , y6, which then gives us an expression of all

κi(P +Q)κj(P −Q) + κj(P +Q)κi(P −Q), i 6= j

and
κi(P +Q)κi(P −Q).

However, in general these expressions are too large to handle with current
computing facilities. But one can consider specific curves C (or a family of
curves depending on one parameter) and fix one of the points Q, say.

The next step is to write the results in terms of κ1(P ), . . . , κ8(P ) and
κ1(Q), . . . , κ8(Q). We have attempted this in a joint effort with Sylvain
Duquesne and it is possible in this way to recover the B′

ij for 1 ≤ i, j ≤ 4,
so in these examples we have that at least locally the desired forms Bij are
indeed biquadratic for all 1 ≤ i, j ≤ 4, giving some partial justification for
part (a) of Conjecture 4.7 below.

However, Duquesne has proved the following by explicit algebraic ma-
nipulation.
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Example 4.6. (Duquesne) Let

F (X, 1) = 4 +X2 +X3 + 4X4 + 2X5 − 4X6 +X7

and consider the points

Q = [((0, 2)) + ((1, 3)) + ((−1, 1)) − 3(∞)]

and
P = [((x1, y1)) + ((4, y2)) + ((2, 4)) − 3(∞)],

where y2 is determined up to sign and y1 is determined up to sign by x1 which
is arbitrary. Then κ4(P )κ5(Q) + κ5(P )κ4(Q) is not quadratic or quartic in
κ1(P ), . . . , κ8(P ).

But it may still be possible to learn something from explicit examples.
Let x and y denote Kummer coordinates for some fixed P,Q ∈ J , respec-
tively. Because we can add points on the Jacobian easily in specific situ-
ations, we can compute the images of P + Q and P − Q on the Kummer
threefold. As a next step, we analyze the biquadratic forms B′

ij(x, y) com-
puted by Duquesne.

We define two index sets

I := {(i, j) : 1 ≤ i ≤ j ≤ 8},

and
E := {(1, 8), (2, 7), (3, 6), (4, 5), (5, 5), (5, 6), (5, 7), (6, 6)}.

For now we assume that B′
i0j0

(x, y) 6= 0 for some (i0, j0) ∈ I \E. Let w and
z denote Kummer coordinates for P+Q and P−Q, respectively, normalized
such that wi0zj0 = B′

i0j0
(x, y).

We can check how far the B′
ij(x, y) are away from the correct forms as

follows. Let

αij(x, y) := wizj + wjzi −B
′
ij(x, y) for 1 ≤ i, j ≤ 8. (4.9)

Building on a large number of numerical experiments we state a list of
conjectures regarding the relations between B′

ij(x, y) and wizj + wjzi:

Conjecture 4.7. The functions αij satisfy the following properties, where
x, y ∈ KA:

(a) We have αij(x, y) = 0 for (i, j) ∈ I \ E.

(b) The identities

−α1,8(x, y) = α2,7(x, y) = α3,6(x, y) = α4,5(x, y)

and
α5,7(x, y) = −2α6,6(x, y)

hold.
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(c) If αi1j1(x, y) = 0 for some (i1, j1) ∈ E, then all αij(x, y) vanish.

(d) If αi1j1(x, y) 6= 0 for some (i1, j1) ∈ E, then we have αij(x, y) 6= 0 for
all (i, j) ∈ E. If (i, j), (i′j′) ∈ E, then the ratios

αi′j′(x, y)

αij(x, y)
,

only depend on C and on (i, j), (i′ , j′), but not on x and y.

In large parts of Chapter 3 we were not required to work with the bi-
quadratic forms Bij, but rather with the quartic duplication polynomials
δ which, however, were originally derived from the Bij . If we assume the
validity of the first two parts of Conjecture 4.7, then we can find analogs of
these polynomials which again turn out to be quartic, although the Bij are
not all biquadratic.

More precisely, we temporarily assume that the characteristic of l is not
equal to 3 and define

δi(x) := B′
i8(x, x) for i = 2, . . . , 8,

and

δ1(x) :=
4

3
B′

18(x, x).

Let δ(x) := (δ1(x), . . . , δ8(x)).

Conjecture 4.8. Suppose that char(l) 6= 3. Then we have

δ(κ(P )) = κ(2P )

for all P ∈ J .

We can relate this conjecture to our earlier Conjecture 4.7.

Lemma 4.9. Suppose that parts (a) and (b) of Conjecture 4.7 are satisfied
for C. Then Conjecture 4.8 follows.

Proof. Let P ∈ J and let x be a set of Kummer coordinates for P . Assu-
ming part (a) of Conjecture 4.7, we can find a set z ∈ KA of Kummer
coordinates for 2P such that zi = δi(x) for i = 2, . . . , 8, because we have
κ(0) = (0, 0, 0, 0, 0, 0, 0, 1). Therefore it suffices to show that part (b) of
Conjecture 4.7 implies that

z1 =
4

3
B′

18(x, x). (4.10)

Let y ∈ KA, fix Kummer coordinates z and w for P + Q and P − Q,
respectively, as above, and let αij be defined as in (4.9). For simplicity, let
bij denote wizj+wjzi for 1 ≤ i 6= j ≤ 8 and let bii denote wizi for 1 ≤ i ≤ 8.
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By construction, the B′
ij satisfy R1(B

′) = 0 (see (4.7)) and so we have

B′
18 −B

′
27 −B

′
36 −B

′
45 = 2f5B

′
24 + 2f5B

′
33 + 2f6B

′
34 + 6f7B

′
44.

But applying the B′
ij to the pair (x, y) and using Conjecture 4.7 (b), we get

that the left hand side is equal to

b18 − b27 − b36 − b45 − 4α,

where α = α1,8(x, y), and that the right hand side is equal to

2f5b24 + 2f5b33 + 2f6b34 + 6f7b44.

Setting y = x, we find that all bij must vanish unless i = 8 or j = 8 and so
we obtain

b18 = 4α.

Hence we conclude

z1 = b18 = 4(b18 −B
′
18(x, x)),

which proves (4.10) and thus the Lemma.

Of course the δi are only well-defined up to the defining equations of
K. But if Conjecture 4.8 holds, then at least the duplication law on the
Kummer threefold can be expressed using quartic polynomials, in analogy
with the situation in genus 2.

If we want to use the δi to define and compute canonical local heights,
there is an additional problem; namely, in order to define local error func-
tions εv as in (3.7) we need that

1) δi ∈ Z[f0, . . . , f7][x1, . . . , x8] for all i = 1, . . . , 8;

2) δ(0, 0, 0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0, 0, 0, 1).

Neither of these is satisfied here. The only δi violating 1) is δ1, some of whose
coefficients have 3 as denominator. In order to repair this, we find a linear
combination of quartic relations on K which added to 3δ1 results in a quartic
form whose coefficients are all divisible by 3. Dividing this polynomial by 3
and leaving the other δi unchanged, we get a tuple of homogeneous quartic
polynomials satisfing 1). In particular we can drop the requirement that
char(l) 6= 3.

Concerning requirement 2), we have

δ(0, 0, 0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0, 0, 0, f27 ).

But this can be repaired easily. Namely, we use the following transformation
of models of K:

τ : K −→ K ′

(x1, . . . , x8) 7→ (x1, . . . , x7, f7x8)



4.4. CANONICAL LOCAL HEIGHTS ON JACOBIANS 127

and let δ′ : K ′ −→ K ′ be the map of degree 4 that makes the following
diagram commute:

K

τ

��

δ
// K

τ

��

K ′ δ′
// K ′

.

The map δ′ is given explicitly by

δ′(x1, . . . , x8) =

(
δ1(x

′)

f7
, . . . ,

δ7(x
′)

f7
, δ8(x

′)

)
,

where x′ = (f7x1, . . . , f7x7, x8). Upon dividing all coefficients of the δ′i by f
2
7

we find duplication polynomials on K ′ satisfying 2) under the assumption
that Conjecture 4.8 is satisfied. Since most of what we do in the following
relies on the validity of this conjecture, it is crucial for the future develop-
ment of the present approach to prove it, for instance by proving parts (a)
and (b) of Conjecture 4.7. In the next chapter we shall discuss a different
approach which does not rely on any conjecture.

4.4 Canonical local heights on Jacobians

In this section we try to generalize our construction of canonical local heights
from Section 3.4. The discussion is kept brief, because such results are not
directly applicable in practice at the moment, since even in the hyperelliptic
genus 3 case the results depend on the validity of Conjecture 4.8. Therefore
we might as well work in a more general setting. Let C denote a smooth
projective curve defined over the completion kv of a number field or one-
dimensional function field k at a place v ∈Mk. Let J be the Jacobian of C
and let K be its Kummer variety, embedded into projective space using a
map

κ : J −→ K →֒ P2g−1

such that κ(O) = (0, . . . , 0, 1). Let g1, . . . , gN ∈ kv denote the coefficients
appearing in the given model of C. Suppose we have homogeneous quartic
polynomials

δi(x1, . . . , x2g ) ∈ Z[g1, . . . , gN , x1, . . . , x2g ]

such that
δ := (δ1, . . . , δ2g ) : K −→ K

makes the diagram

J

κ

��

[2]
// J

κ

��

K
δ

// K
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commute and such that

δ(0, . . . , 0, 1) = (0, . . . , 0, 1).

Example 4.10. These conditions are, of course, satisfied in our constructions
in Chapters 2 and 3. They are also satisfied in the situation of a hyperelliptic
curve of genus 3 given by a model of the form (4.2) when char(kv) 6= 2,
provided Conjecture 4.8 holds; namely, we can pick K ′ and δ′ constructed
at the end of the previous section as K and δ.

In this situation essentially all our definitions from Chapter 3 carry over.
We define Kummer coordinates on K and the set KA as in Definition 4.4.

Definition 4.11. Let x ∈ KA(kv) be a set of Kummer coordinates on K.
Then we set

εv(x) := v(δ(x)) − 4v(x)

and

µv(x) =
∞∑

n=0

1

4n+1
εv(δ

◦n(x)).

For the next definition recall the definitions of the local normalization
constants Nv and nv and of the global normalization constant dk introduced
in Section 1.1. Their purpose is to make the product formula (1.1) work for
k.

Definition 4.12. Let x ∈ KA(kv) be a set of Kummer coordinates on K.
The naive local height of x is the quantity

λv(x) := −
Nv

nv
v(x)

and the canonical local height of x is given by

λ̂v(x) := −
Nv

nv
(v(x) + µv(x)).

It follows that if k is a number field or function field of dimension 1 and
we assume that C is in fact defined over k, then we have

h(P ) =
1

dk

∑

v∈Mk

nvλv(x)

and

ĥ(P ) =
1

dk

∑

v∈Mk

nvλ̂v(x)

for any choice x of Kummer coordinates for P ∈ J(k), where

h(P ) = h(κ(P ))
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is the naive height of P and

ĥ(P ) = lim
n→∞

1

4n
h (2nP )

is the canonical height of P . If k is a global field, then we can in principle
compute the canonical height using the algorithm due to Flynn and Smart
as introduced in Section 3.2.2 if we can compute µv(P ) for v ∈ M∞

k and
P ∈ J(k). But the method outlined in that section requires a bound on
the archimedean local height constant for each v ∈ M∞

k and we have no
such bounds available at the moment, even for our rather special hyper-
elliptic genus 3 curves. One possible method for the calculation of height
constant bounds – the decomposition of the duplication map into Richelot
isogenies as in [42] – is probably difficult to generalize and only leads to
rather crude bounds even in genus 2. It seems more promising to use Stoll’s
representation-theoretic approach introduced in [92], but we have not at-
tempted to do this.

Fortunately we can always compute archimedean canonical local heights
using theta functions; we discuss this approach in 4.4.2.

One result from Chapter 3 which generalizes immediately is the follow-
ing.

Proposition 4.13. Let α : J → J ′ be an isogeny of Jacobians defined over
kv and let d = deg(α). Then α induces a map α : K → K ′ between the
corresponding Kummer varieties. We also get a well-defined induced map
α : KA −→ K ′

A if we fix a ∈ k∗v and require α(0, 0, 0, 1) = a(0, 0, 0, 1).
Moreover, we have

λ̂v(α(x)) = dλ̂v(x) + log |a|v

for any x ∈ KA(kv).

Proof. See the proof of Proposition 3.24.

In particular we can control how the canonical local height changes when
we change the model of C. For instance, suppose that C is hyperelliptic and

τ = ([a, b, c, d], e, U)

is a change of model of C as in (3.16). Then τ induces a transformation
τ on KA that is a linear map on A2g . Let v(τ) denote the valuation of its
determinant; then we get

λ̂v(τ(x)) = λ̂v(x)−
Nv

nv
v(τ)

in analogy with Corollary 3.25.
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4.4.1 Non-archimedean places

Suppose now that v ∈Mk is non-archimedean. A particularly useful obser-
vation in Chapter 3 was Theorem 3.29, stating that the set

Uv := {P ∈ J(kv) : εv(P ) = 0}

is a subgroup of J(kv) if g = 2. Unfortunately, it is not possible to imitate
the proof given by Stoll in [94] in the higher genus situation, because we need
to have the forms Bij available explicitly. Once these are found, it should
not be hard to prove an analog of Theorem 3.29 for hyperelliptic curves of
genus 3 when char(k) 6= 2.

In any event, the following conditional statement is immediate:

Theorem 4.14. Suppose C is given by an Ov-integral model whose closure
C over Spec(Ov) is normal and flat and has rational singularities. Suppose
that the set Uv is a subgroup of J(kv). Then εv and µv factor through the
component group Φv of the Néron model of J .

Proof. This is the same as the proof of Theorem 3.30, since we can de-
fine canonical local heights with respect to certain divisors Di, where i ∈
{1, . . . , 2g} as in the previous chapter.

The previous result may also be useful for theoretical investigations. For
practical purposes, we first have to find the forms Bij or at least prove
Conjecture 4.7, parts (a) and (b). In principle it should also be possible
to generalize the simplification procedure introduced in Section 3.4.4 and
then find formulas for a small number of models that we can always, using
Proposition 4.13, reduce to; yet the difficulties we have encountered handling
the much easier genus 2 situation suggest that this should be a very tedious
task.

4.4.2 Archimedean places

In order to compute archimedean canonical local height we introduced seve-
ral methods in the previous chapters, one of which turns out to generalize
immediately. Let v ∈Mk be archimedean and consider C(C) as a Riemann
surface embedded into complex projective space using v.

Because we can change the model, we suppose that the embedding κ
corresponds to L(2Θ), where Θ is the theta divisor corresponding to the
Abel-Jacobi map embedding C into J using some fixed base point. Let
τv ∈ hg such that J(C) is isomorphic to Cg/Λv , where Λv = Zg ⊕ τvZg and
define j by

j : Cg // // Cg/Λv
∼=

// J(C).
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Let a = (1/2, . . . , 1/2), b = (g/2, (g − 1)/2 . . . , 1, 1/2) ∈ Cg and let θa,b
denote the theta function with characteristic [a; b] defined in Section 1.6.

Proposition 4.15. (Pazuki) The function θa,b has divisor j
∗(Θ). Moreover,

the following function is a Néron function associated with Θ and v:

λ̂′Θ,v(P ) = − log |θa,b(z(P ))|v + π Im(z(P ))T (Im(τv))
−1 Im(z(P )),

where j(z(P )) = P .

Proof. See the proof of Proposition 3.77.

Hence we can use λ̂′Θ,v to compute λv, because as in Section 3.7.2, there
must be a constant dv such that

λ̂v(P ) = 2λ̂′Θ,v(P ) + dv

for all P ∈ J(C) \ supp(Θ), where

λ̂v(P ) = λ̂v(κ(P )/κ1(P )).

We can find the constant dv using a 3-torsion point as in (3.31) and compute
λv(P ) for all P ∈ J(C) \ supp(Θ); other points can be treated similarly. For
this we can use the existing implementation of theta functions in Magma

mentioned in Section 3.7.2.
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We have seen in the previous chapter that the computation of canonical
heights using the decomposition into canonical local heights becomes quite
complicated as we increase the genus. It proved to be rather successful in
Chapters 2 and 3, but it runs into problems even in the case of Jacobians of
hyperelliptic curves of genus 3 with a rational Weierstrass point. Since the
main problems lie in the complexity of the associated Kummer variety and
how the group law on the Jacobian is reflected on it, it is not very likely
that this situation will improve for other curves of genus at least 3.

In the present chapter we use a different approach to develop a practical
algorithm for the computation of canonical heights on Jacobians. However,
in contrast to the previous chapters, it does not come with a naive height
combining the properties that we can list all points of naive height up to
some bound and that the difference between the two heights can be bounded
effectively. In the hyperelliptic genus 3 case, it might be possible to com-
bine the method that we are about to discuss with the Kummer threefold
approach.

5.1 Local Néron symbols

In this section we discuss the theory of local Néron symbols whose existence
was first proved by Néron in [78]. We shall present an interpretation that
is suitable for explicit computations, following essentially Gross [46] and
Hriljac [53]. The content of the latter work is also discussed by Lang in
[60]. In order to present these results, we need the definitions and results of
Section 1.5, especially the intersection theory on arithmetic surfaces.

Let R be a discrete valuation ring with valuation v, let l be the field
of fractions of R and let S = Spec(R). Let C be a smooth projective
geometrically connected curve of positive genus g defined over l and let
χ : C → S denote a regular model of C over S.

Consider divisors on C ∼= Cl. Recall that we denote the group of l-
rational divisors on C by Div(C)(l). For each n ∈ Z the group Divn(C) is
defined to be the group of divisors of degree equal to n and we set

Divn(C)(l) := Divn(C) ∩Div(C)(l).

We are particularly interested in the case n = 0.

If D ∈ Div(C)(l) is prime, then we write DC for the closure of D on C
as in Section 1.4. This is a prime horizontal divisor on C and we extend the
operation D 7→ DC to Div(C)(l) by linearity.

For the remainder of this section, we fix a regular model C′ of C over S.
In order to define local Néron symbols we need to deal with fibral Q-divisors.
Let QDivv(C

′) denote the Q-vector spaces generated by the irreducible com-



5.1. LOCAL NÉRON SYMBOLS 135

ponents of C′v and let QC′v denote the Q-vector space generated by the whole
fiber C′v.

Lemma 5.1. There exists a unique linear map

Φv,C′ : Div0(C)(l)→ QDivv(C
′)/QC′v ,

such that for all D ∈ Div0(C)(l) the Q-divisor DC′ +Φv,C′(D) is orthogonal
to Divv(C

′) with respect to iv(·, ·).

Proof. Let C′v =
∑r

i=0 niΓ
i
v be the decomposition of C′v as a divisor, where

Γ0
v, . . . ,Γ

r
v are the irreducible components of C′v. Let Mv be the intersection

matrix
(
iv(niΓ

i
v, njΓ

j
v)
)
0≤i,j≤r

of C′v and let

M : QDivv(C
′) −→ Qr+1

be the linear map defined by

E 7→
(
n0iv(E,Γ

0
v), . . . , nriv(E,Γ

r
v)
)T
.

Lemma 1.30 implies that the kernel of M is QC′v, hence we get an induced

map M̃ : QDivv(C
′))/QC′v −→ Qr+1 and there is a unique solution of

M̃(Φv,C′(D)) = −s(D),

where s(D) =
(
n0iv(DC′ ,Γ0

v), . . . , nriv(DC′ ,Γrv)
)T

.

By abuse of notation we denote a representative of Φv,C′(D) also by
Φv,C′(D), since in our intended application it does not matter which repre-
sentative we choose. Now we have assembled all ingredients necessary to
define the central objects of this chapter in the non-archimedean case.

Definition 5.2. The local Néron symbol on C over l is the pairing

〈D,E〉v := iv(DC′ +Φv,C′(D), EC′) log qv,

defined on divisors D,E ∈ Div0(C)(l) with disjoint support.

Remark 5.3. The proper regular model C′ that is crucial for the construction
of the local Néron symbol does not show up in this notation. This is justified
by part (e) of Proposition 5.7 below. Also note that from the definitions and
Lemma 1.30 we immediately get

iv(DC′ +Φv,C′(D), EC′) = iv(DC′ +Φv,C′(D), EC′ +Φv,C′(E))

= iv(DC′ , EC′ +Φv,C′(E)).
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Next we consider an archimedean local field l and we want to define local
Néron symbols over l. We can assume l = C (see part (g) of Proposition
5.7 below), so that C(l) is actually a compact Riemann surface. For the
construction of local Néron symbols we need the notion of Green’s functions
on Riemann surfaces.

Proposition 5.4. Let X be a compact Riemann surface and let dµ be a
positive volume form on X, normalized such that

∫
X dµ = 1. For each

D ∈ Div(X) there exists a unique function

gD : X \ supp(D)→ R,

called the Green’s function with respect to D and dµ, such that the following
properties are satisfied:

(i) The function gD is C∞ outside of supp(D) and has a logarithmic sin-
gularity along D, that is, if D is represented by a function f on an
open subset U of X, then there is some α ∈ C∞(U) such that

gD(P ) = − log |f(P )|+ α(P )

holds for all P ∈ U \ supp(D).

(ii)

deg(D)dµ =
i

π
∂∂gD

(iii) ∫

X
gDdµ = 0

Proof. See [60] for a proof of existence due to Coleman that uses differentials
of third kind. In Section 5.3.6 we use a proof due to Hriljac (see [52]) and
reproduced in [59] for the case where dµ is the canonical volume form on
X, because it is rather constructive, at least for non-special divisors. For
uniqueness, note that gD is determined uniquely up to an additive constant
by (i) and (ii), because the difference of two functions satisfying (i) and
(ii) is harmonic everywhere and hence constant. Property (iii) fixes the
constant.

Remark 5.5. We call a function satisfying (i) and (ii) an almost-Green’s
function with respect to D and dµ.

Let v be the absolute value on l, normalized as in Section 1.1 and fix
a volume form dµv on C(l), normalized as in the theorem above. For two
divisors D,E ∈ Div(C)(l) with disjoint support we define the intersection
multiplicity of D and E by

iv(D,E) := gD(E) :=
∑

j

mjgD(Qj),

where E =
∑

jmj(Qj).
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Definition 5.6. We call the pairing 〈·, ·〉v that associates to all D,E ∈
Div0(C)(l) with disjoint support the number iv(D,E) the local Néron symbol
on C over l.

Notice that in order to compute 〈D,E〉v for given D,E ∈ Div0(C)(l)
with disjoint support, we only need to find an almost-Green’s function with
respect to D and that property (ii) reduces to the requirement that gD is
harmonic. In particular, this restriction eliminates the dependency of the
intersection multiplicity on the choice of dµv.

We list the most important properties of the local Néron symbol, both
archimedean and non-archimedean, in the following proposition. But first
we need to introduce further notation. If f ∈ l(C)∗ and E =

∑
jmj(Qj) ∈

Div0(C)(l), then we set

f(E) :=
∏

j

f(Qj)
mj .

Proposition 5.7. (Néron, Gross, Hriljac) Let l be a field that is complete
with respect to an absolute value v. The local Néron symbol satisfies the
following properties, where D,E ∈ Div0(C)(l) have disjoint support.

(a) The symbol is bilinear.

(b) The symbol is symmetric.

(c) If f ∈ l(C)∗, then we have 〈D,div(f)〉v = v(f(D)).

(d) Fix D ∈ Div0(l) and P0 ∈ C(l) \ supp(D). Then the map C(l) \
supp(D) −→ R defined by

P 7→ 〈D, (P ) − (P0)〉v

is continuous and locally bounded with respect to the v-adic topology.

(e) If v is non-archimedean, then 〈D,E〉v is independent of the choice of
the proper regular model C′ and of the choice of Φv,C′(D).

(f) If v is archimedean, then 〈D,E〉v is independent of the choice of the
volume form dµv.

(g) If l′ is an extension of l with valuation v′ extending v, then we have
〈D,E〉v = 〈D,E〉v′ .

Moreover, the pairing is uniquely determined by properties (a)–(d).

Proof. Existence and uniqueness of a pairing satisfying (a)–(d) was shown by
Néron in [78] when C(l) is Zariski dense in C. The construction of the pairing
using arithmetic intersection theory that is presented in this section and the
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proof that the pairing thus constructed coincides with Néron’s abstractly
defined pairing is due to Gross [46] and Hriljac [53].

When C(l) is not Zariski dense in C, then Néron’s proof does not apply.
In this more general situation Néron shows that any pairing satisfying (a)–
(c) and another condition (d’) similar to (d) must be the local Néron symbol.
Finally, Hriljac proves that the pairing constructed above satisfies (a)–(c)
and (d’). We get (e), (f) and (g) for free because of the uniqueness property.

Remark 5.8. One can define local Néron symbols for divisors with common
support at the loss of some functoriality, see [46, §5].

5.2 Global Néron symbols and canonical heights

Recall our notation from Section 1.1: Let k denote a number field or a
one-dimensional function field with ring of integers Ok. Let C be a smooth
projective geometrically connected curve of genus g ≥ 1 defined over k. We
assume that it is given by an Ok-integral model.

If D ∈ Div(C)(k) and v ∈ Mk, then we denote by Dv the localization
D ⊗k kv of D at v. If D,E ∈ Div0(C)(k), then we can add up all the local
Néron symbols defined in the previous section, because only finitely many
of them are nonzero. To see this, note that over all places of good reduction
the closure C of the given model of C over Spec(Ov) is a proper regular
model over Spec(Ov); using these closures for our computations we have
Φv,C(Dv) = 0 for all such v and iv(Dv,C , Ev,C) 6= 0 for only finitely many
such v.

Definition 5.9. If D,E ∈ Div0(C)(k) have disjoint support and v ∈ Mk,
then we define

〈D,E〉v := 〈Dv , Ev〉v.

We call the pairing associating to D,E the sum

〈D,E〉 :=
∑

v∈Mk

〈D,E〉v

the global Néron symbol.

From parts (a) and (b) of Proposition 5.7 we get that this pairing is
bilinear and symmetric. Because of (c) and the product formula it is also
invariant under linear equivalence, so the global Néron symbol is actually
defined on pairs of elements of Pic0(C)(k) that are represented by k-rational
divisors. Hence we can drop the assumption that D and E have disjoint
support.
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Theorem 5.11 below connects Néron symbols with canonical heights. In
order to state it, we need to fix an ample symmetric k-rational divisor class
on the Jacobian J of C, as the canonical height with respect to a divisor
only depends on the linear equivalence class of the divisor.

Let K denote the Kummer variety J/{±1} of J . In analogy with our
previous constructions we want to find a divisor T such that a basis of L(T )
gives an embedding of K into P2g−1. This can be accomplished as follows,
see [46, §4]: Let W denote the image of Symg−1(C) in Picg−1(C) and let
c ∈ Picg−1(C) be a divisor class such that 2c is equal to the canonical class
of C. Then W − c is a theta-divisor and the class of

T := 2(W − c) ∈ Div(J)

is symmetric, ample and k-rational and hence satisfies all conditions that we
need in order to define a canonical height. Furthermore it is independent of
c and a basis of L(T ) can be used to embed K into P2g−1 as in Chapters 3
and 4.

Note that if C is an elliptic curve, then the linear equivalence class of T is
equal to the class of 2(O), where O is the origin of C. More generally, if C is
a hyperelliptic curve given as the smooth projective model of a hyperelliptic
equation

Y 2 +H(X, 1)Y = F (X, 1)

with nonzero discriminant, then we have [T ] = 2[Θ] if C has a k-rational
Weierstrass point and Θ is the theta-divisor with respect to that point. If
no such point exists, then [T ] = [Θ+ +Θ−] as in Section 3.1.

Recall the Definitions 1.2 and 1.42 of the canonical height and the asso-
ciated height pairing.

Definition 5.10. Let C, J and T be as above. The canonical height (or
Néron-Tate height) on J is the function

ĥ(·) := ĥT (·)

and the canonical height pairing (or Néron-Tate height pairing) on J is
defined by

(·, ·) := (·, ·)T .

Theorem 5.11. (Faltings, Hriljac, Néron) Suppose C is a smooth projective
geometrically connected curve of positive genus g defined over a number field
or one-dimensional function field k. Suppose that D,E ∈ Div0(C)(k) and
denote their images on J by J(D) and J(E), respectively. Then we have

〈D,E〉 = −(J(D), J(E))

and in particular
〈D,D〉 = −ĥ(J(D)).
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Proof. Néron [78] first proved the theorem using existence and uniqueness
of abstractly defined local Néron symbols (see Proposition 5.7). The proofs
of Faltings [37] and Hriljac [52] use the interpretation of the local Néron
symbol in terms of arithmetic intersection theory presented in Section 5.1.
All of these proofs are stated for the number field case, but continue to hold
in the case of one-dimensional function fields. In the latter situation, the
first proof of the case g = 1 is due to Manin (cf. [89, Chapter III]).

The practical importance of this result lies in the fact that we can, at
least in principle, compute the canonical height on the Jacobian using data
associated to the curve. We do not impose any further conditions on C
(yet). Suppose that we are given a point P ∈ J(k) and we want to compute
its canonical height ĥ(P ). In order to use Theorem 5.11 for this purpose,
we proceed as follows:

(1) Find divisors D,E ∈ Div0(C)(k) such that J(D) = J(E) = P and
supp(D) ∩ supp(E) = ∅.

(2) Determine the set U of places v ∈M0
k such that 〈D,E〉v 6= 0 is possible.

(3) Find a proper regular model C′ of C over Spec(Ov) for all v ∈ U of
bad reduction.

(4) Compute iv(Dv,C′ , Ev,C′) for all v ∈ U .

(5) Compute a representative of Φv,C′(Dv) and iv(Φv,C′(Dv,C′), Ev,C′) for
all v ∈ U of bad reduction.

(6) Find an almost-Green’s function gDv and compute gDv (Ev) for all
v ∈M∞

k .

(7) Sum up all local Néron symbols.

We deal with these steps in the following sections. After a few remarks we
must, however, first discuss how divisors can be represented in practice.

Remark 5.12. We shall tacitly assume from now on that step (1) is always
possible in principle, that is every P we encounter can be represented using
a k-rational divisor. If, for instance, k is a global field, then [82, Proposi-
tion 3.3] implies that this is guaranteed whenever the curve has a kv-rational
divisor of degree 1 for all v ∈Mk. If we are not in this situation, that is we
have P ∈ J(k) which cannot be represented using a k-rational divisor, then
we have two options:

• Work over a field extension k′/k such that there exists some D ∈
Div0(C)(k′) satisfying [D] = P .

• Compute a multiple nP such that there exists D ∈ Div0(C)(k) satis-
fying [D] = nP and use the quadraticity of the canonical height.
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The existence of n as in the latter approach follows from [82, Proposition
3.2]; we can take for n the period of C over k, that is the greatest common
divisor of the degrees of all k-rational divisor classes.

Remark 5.13. We have only defined the global Néron symbol in terms of
intersection multiplicities on Div0(C)(k) × Div0(C)(k), since that is all we
need. However, the concepts introduced so far are in fact sufficient to define
the notion of Arakelov intersection multiplicities for D,E ∈ Div(C)(k) with
disjoint support as

(D,E)Ar :=
∑

v∈M0
k

iv(Dv,C′ , Ev,C′) log qv +
∑

v∈M∞

k

iv(Dv, Ev) (5.1)

after fixing a volume form dµv for each v ∈M∞
k . However, this intersection

pairing does not respect linear equivalence. In order to remedy this it can
be extended to a generalized divisor group on a regular model of C over
Spec(Ok), called the Arakelov divisor group, such that it is invariant under
(a suitably modified definition of) linear equivalence. See any expository
work on Arakelov theory, such as [60] or [53]. The results of this chapter
can also be viewed as a contribution to the problem of explicit computations
of Arakelov intersection multiplicities.

Remark 5.14. For some of our intended applications we need more than
merely the computation of the canonical height: According to Section 1.7
we also need to be able to list points up to bounded canonical height ĥ(P ).
One way of doing this which has proved to be quite successful in genus 1
and 2 is to bound the difference between ĥ(P ) and h(P ) for P ∈ J(k) and
list points of bounded naive height h(P ). However, we are now faced with a
new problem: In the previous chapters it was perfectly clear how to define
a naive height such that both are possible (if not necessarily easy).

In the present situation we cannot work with an explicit embedding of
the Kummer variety any longer and hence we need some new ideas. It would
be desirable to develop a different method for listing points up to bounded
canonical height which bypasses the need to use the naive height, but nobody
seems to have an idea how to do this at the moment. If we want to use a
naive height, then it is clear that this naive height should be given by a sum
of local terms, one for each place of k, related to arithmetic intersection
theory, so that bounding the difference becomes possible. Moreover, it is
obviously a good idea to work on (regular models of the) curve as much as
possible. See [51] for the recent construction of a promising naive height.

5.2.1 Representing and reducing divisors

The basic reference for large parts of the remainder of this section is [48].
If an ideal I is generated by b1, . . . , bn, then we write I = (b1, . . . , bn). Let



142 CHAPTER 5. ARITHMETIC INTERSECTION THEORY

l be an arbitrary field and let C denote a smooth projective geometrically
connected curve of genus g ≥ 1 defined over l. There are essentially two
ways of representing a divisor D ∈ Div(C)(l).

(a) As a sum

D =
∑

i

miDi,

where Di ∈ Div(C)(l) is irreducible over l and mi ∈ Z for all i. We
call this the free representation of D.

(b) Assuming D is effective, using a defining ideal

ID ⊂ l[C].

We call this the ideal representation of D.

It often helps to view prime divisors over l as places of the function field l(C).
Most computations are done by first writing a general divisor as a difference
of effective divisors and using their respective ideal representations.

Since in our intended applications we are allowed (and occasionally even
required) to vary divisors in their linear equivalence classes, it is a natural
question to ask whether it is possible to find divisors linearly equivalent to
a given divisor in a way that facilitates explicit computations.

Lemma 5.15. (Hess) For all D ∈ Div(C)(l) and effective A ∈ Div(C)(l)
there exists an effectively computable triple (D̃, r, a), where D̃ ∈ Div(C)(l)
is effective, r ∈ Z and a ∈ l(C) such that deg(D̃) < g+deg(A) and we have

D = D̃ + rA+ div(a).

We call D̃ a reduction of D along A. If deg(A) = 1, then D̃ is the unique
effective divisor such that dim(L(D̃ − r′A)) = 0 for all r′ ≥ 1. In this
case we have D ∼ D̃ + rA, where r ∈ Z is the maximal integer such that
dim(L(D − rA)) = 1.

Proof. See [48, §8].

It is not obvious how to pick the effective, l-rational divisor A. If we
have an l-rational divisor of degree 1 on C then this can be used. If C is a
plane curve, then we can use the zero or pole divisor of a function x− ζ, for
instance the pole divisor (x)∞. In some situations we might want to pick
distinct A,A′ in order to reduce two divisors D,D′ and at the same time
separate their supports. But in general the choice of A (and possibly of A′)
depends on the specific situation.
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5.2.2 Mumford representation of divisors on hyperelliptic
curves

Suppose that C is a hyperelliptic curve of genus g defined over l, given as
the smooth projective model of an equation

Y 2 +H(X, 1)Y = F (X, 1), (5.2)

where F (X,Z),H(X,Z) ∈ l[X,Z] are forms of degrees 2g + 2 and g + 1,
respectively, and the discriminant of the equation (5.2) is nonzero. Suppose
that D ∈ Div(C)(l) has degree zero. Then the notions introduced in the
previous section are all well-known: The reduction process is part of Cantor’s
algorithm for the addition of divisor classes introduced in [19]; here the
divisor A used for reduction is equal to (∞) when we have an l-rational
Weierstrass point∞ at infinity and is equal to (∞+)+(∞−) when there are
two branches ∞+,∞− over the singular point at infinity in the projective
closure of equation (5.2) as in Chapter 3.

In the former case Lemma 5.15 says that the reduction process yields
the unique effective D̃ such that

D ∼ D̃ + r(∞),

where 0 ≤ −r = deg D̃ ≤ g and deg(D̃) is minimal. In the latter case
it turns out that when g is even we can still find a unique D̃ of minimal
nonnegative even degree −r ≤ g such that

D ∼ D̃ +
r

2
((∞+) + (∞−))

if we impose further conditions on its ideal representation. Conversely, if g is
odd we might have to take reductions of degree g+1 into account and these
are not be unique. However, uniqueness of the reduction is not an essential
property in our applications and so we shall not discuss it any further. The
case g = 3 is discussed in Section 4.1.

The ideal representation of a reduced effective divisor D is given by the
Mumford representation which we recall briefly below. Note that this has
already been used in the proof of Proposition 3.12.

If we view C as embedded in weighted projective space of weights 1, g+
1, 1 assigned to the variables X,Y,Z, then it is given by the equation

Y 2 +H(X,Z)Y = F (X,Z).

An effective divisor D of degree d ≤ g + 1 corresponds to a pair of homoge-
neous forms (A(X,Z), B(X,Z)), where A(X,Z) and B(X,Z) have degrees
d and g + 1 respectively, such that D is defined by

A(X,Z) = 0 = Y −B(X,Z)
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and we impose the additional condition that A(X,Z) divides B(X,Z)2 +
H(X,Z)B(X,Z) − F (X,Z).

First suppose that there is a unique Weierstrass point ∞ at infinity in
C(l). Then any nonzero effective divisor D =

∑d
j=1(Pj) that is reduced

along (∞) has degree d ≤ g and cannot contain ∞ in its support. Hence we
can safely dehomogenize in order to represent D and so we may take

ID = (a(x), y − b(x)),

where a(x) = A(x, 1) and b(x) = B(x, 1), for its ideal representation. More
concretely, we have

a(x) =

n∏

j=1

(x− x(Pj))

and b(x) has minimal degree such that

b(x(Pj)) = y(Pj) for j = 1, . . . , d.

Conversely, suppose that there are two points ∞+,∞− at infinity. Sup-
pose that D is reduced along (∞+) + (∞−). If supp(D) does not contain
a point at infinity, then we can dehomogenize as before to find an affine
representation. If this does not hold, say ∞+ ∈ supp(D), then necessarily
∞+,∞− ∈ C(l) and ∞− /∈ supp(D). This case is more subtle, because
we cannot tell the multiplicity of ∞+ in D from its dehomogenized form.
For our applications it suffices to treat the affine and the infinite part of D
separately. Hence this complication does not cause any trouble.

5.3 Computing canonical heights using the global

Néron symbol

In this section we shall address the steps needed for the computation of
global Néron symbols introduced in the previous section. The first two steps
are global in nature and can be viewed as preparatory steps for the remaining
four sections which are local. We usually start with a general discussion
and then specialize to certain situations where more precise statements or
improvements are possible.

The case of hyperelliptic curves of odd degree has also been treated in-
dependently by Holmes, see [50], where some of the results of this section
also appear; we shall point out when this is the case and also mention dif-
ferences. We assume that C is a smooth projective geometrically connected
curve over a number field or one-dimensional function field k given by an
Ok-integral model. Let J denote the Jacobian of C.
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5.3.1 Finding suitable divisors of degree zero

Assume that we are given some divisor D ∈ Div0(C)(k) such that J(D) =
P ∈ J(k) and we want to find E ∼ D such that E and D have disjoint
support, that is, we are looking for an effective version of the moving lemma.
However, we would like to keep the computations as simple as possible and
this means that we would like to work with divisors that are reduced along
some effective divisor of small degree whenever possible. This leads to the
following method:

1. Pick two effective divisors A,A′ ∈ Div(C)(k) with disjoint support.

2. Compute multiples nD, where n = 1,−1, 2,−2, . . . and reduce them
along A and A′ until we find some n and n′ such that the reduction
D̃n of nD along A and the reduction D̃n′ of n′D along A′ have disjoint
support.

3. Let rn, rn′ ∈ Z such that nD ∼ D̃n + rnA and n′D ∼ D̃′
n′ + rn′A′.

Compute

〈D,D〉 =
1

nn′
〈D̃n + rnA, D̃′

n′ + rn′A′〉

=
1

nn′
〈D̃n, D̃′

n′〉+
rn
nn′
〈A, D̃′

n′〉+
rn′

nn′
〈D̃n, A

′〉+
rnrn′

nn′
〈A,A′〉.

In practice integers n, n′ of fairly small absolute value usually suffice.

For instance, let C be a hyperelliptic curves given by a model of the form
(5.2). Let the divisor D∞ be defined by 2(∞) if there is a unique l-rational
point at infinity and by (∞+)+(∞−) otherwise. Also suppose d is even and

D = D̃ −
d

2
D∞,

where D̃ =
∑d

i=1(Pi) is reduced along D∞, such that no Pi is a point at
infinity or a Weierstrass point. Then we can always use n1 = 1 and n2 = −1
in the method introduced above; this is due to Holmes, see [50]. Namely, if
we apply the hyperelliptic involution

Q 7→ Q−

to the points Pi, then we have

D′ =
d∑

i=1

(P−
i )−

d

2
D∞ ∼ −D.
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If we move this by the divisor of a function x− ζ, where ζ ∈ k is such that
x(Pi) 6= ζ for all Pi, then we find

supp(D) ∩ supp(E) = ∅,

where E = D′ + d/2 div(x− ζ). This corresponds to choosing A = D∞ and
A′ = Dζ in the method outlined above, where Dζ = div(x− ζ) +D∞.

Instead of computing 〈D,D〉, we can now compute

ĥ(P ) = −〈D,D〉 = 〈D,−D〉 = 〈D,E〉.

If we have

D = D̃ −
d

2
D∞,

where

D̃ =
d′∑

i=1

(Pi) + n∞(∞+)

is reduced along D∞ = (∞) + (∞−), such that d = d′ + n∞ and all Pi are
affine non-Weierstrass points (see Section 5.2.2), then we also have to move
D away from ∞+ using a function x − ζ ′, where x(Pi) 6= ζ ′ 6= ζ for all
i = 1, . . . , d′. The computation becomes

−〈D,D〉 = 〈
d′∑

i=1

(Pi) + n∞(∞+)−
d

2
Dζ′ ,

d′∑

i=1

(P−
i ) + n∞(∞−)−

d

2
Dζ〉

and poses no additional problems due to the bilinearity of the local Néron
symbol.

What if there is a unique rational Weierstrass point ∞ at infinity and d
is odd? In that case we use

D′ = 2

d∑

i=1

(P−
i )− dD∞ ∼ −2D

and compute

ĥ(P ) = −〈D,D〉 = 〈D,−D〉 =
1

2
〈D,E〉,

where E = D′ + ddiv(x − ζ) and ζ is as above. Note that we can still use
the reduced Mumford representation, because we have

〈D,E〉 = 2〈D,
d∑

i=1

(P−
i )〉 − d〈D,Dζ〉.

Finally, if supp(D) contains an affine Weierstrass point, then we simply
compute ĥ(P ) = 1

n2 ĥ(nP ) such that nP has a reduced representation not
containing an affine Weierstrass point.



5.3. COMPUTING THE GLOBAL NÉRON SYMBOL 147

5.3.2 Determining relevant non-archimedean places

Given two divisors D and E with disjoint support, we have to find the
finite set of non-archimedean places v such that 〈D,E〉v 6= 0 is possible.
Any such place must either be a place of bad reduction such that Dv,C and
Ev,C intersect the singular locus of the closure C of C over Spec(Ov) or we
must have

iv(Dv,C′ , Ev,C′) > 0, (5.3)

where ξ : C′ → C is a desingularization of C in the strong sense (or both).
Recall that ξ is a proper birational morphism with C′ a regular model of C
that is an isomorphism above regular points of C. So (5.3) can only happen
if the closures Dv,C and Ev,C do not have disjoint supports.

We can assume that D and E are effective and use their respective ideal
representations. The idea is to cover our curve by affine patches C1, . . . , Cn

and determine the relevant places for each patch using Gröbner bases. See
[1] for an introduction to the theory of Gröbner bases.

So let Ci = Spec k[x1, . . . , xn]/(Gi,1(x1, . . . , xn), . . . , Gi,mi
(x1, . . . , xn))

be such an affine patch, where Gi,j(x1, . . . , xn) ∈ Ok[x1, . . . , xn] for all j.
Suppose for now that the ring of integers Ok is Euclidean and that D and
E are represented by ideals ID,i and IE,i, respectively, on C

i for each i. In
fact we can assume that ID,i and IE,i are given by bases whose elements are
in Ok[x1, . . . , xn]. If we compute a Gröbner basis Bi of

ID,E,i := (Gi,1(x1, . . . , xn), . . . , Gi,nm(x1, . . . , xn)) + ID,i + IE,i

over Ok, then Bi contains a unique element qD,E,i ∈ Ok. By the above
discussion, if (5.3) holds for some v ∈ M0

k , then v must clearly satisfy
v(qD,E,i) > 0 for some i, so the problem comes down to factoring qD,E,i for
all i. This can become quite time-consuming and in practice tends to be
the most expensive part of the entire algorithm when some qD,E,i contains
at least two large prime factors. If v(qD,E,i) > 0, then we also know that we
only have to do the local computations over the ring of integers Ov of the
completion kv modulo π

precD,E,v
v , where πv is a uniformizer at v and

precD,E,v = max{v(qD,E,i) : i ∈ {1, . . . , n}}+ 1.

If Ok is not a Euclidean ring, then we can still use this Gröbner basis ap-
proach by writing k as k′(α), where k extends k′ and the ring of integers
Ok′ of k

′ is Euclidean; for example we can use k′ = Q in the number field
case and k′ = l[x] in the function field case, where l is the constant field
of k. This trick appears in [1, Exercise 4.3.1]. We add a new variable t to
Ok′ [x1, . . . , xn], satisfying the relation

φk/k′(t) = 0,



148 CHAPTER 5. ARITHMETIC INTERSECTION THEORY

where φk/k′ is the minimal polynomial of α over k′, and replace any occur-
rence of α in ID,E,i by t. Now we get at most one qD,E,i(t) ∈ Ok′ [t] \ Ok′
in the Gröbner basis of ID,E,i, but we might also have some q′D,E,i ∈ Ok′ .
We factor the principal ideal qD,E,i(α) in Ok and, if necessary, the principal
ideal q′D,E,i in Ok to find the relevant v ∈M0

k .

Applied to all affine patches Ci, the procedure introduced above finds
all v ∈ M0

k such that iv(Dv,C′ , Ev,C′) > 0 is possible for a desingularization
of the closure of the given model of C over Spec(Ov) in the strong sense.
For efficiency reasons we would like to keep the number of factorizations to
a minimum. Suppose that C is covered by two affine patches C1 and C2.
For instance, if C is a hyperelliptic curve given by a model of the form (5.2),
then we can take

C1 : y2 +H(x, 1)y = F (x, 1) (5.4)

and

C2 : w2 +H(1, z)w = F (1, z). (5.5)

Suppose we have gone through the above-mentioned steps on C1 and that
the ideal representations of D and E on C1 are ID,1 = (a(x), cy − b(x))
and IE,1 = (a′(x), c′y − b′(x)), respectively (where we have multiplied all
polynomials by the common denominators of their coefficients, if necessary).
Moreover suppose that v ∈ M0

k satisfies iv(Dv,C′ , Ev,C′) > 0, where C′ → C
is a desingularization in the strong sense over Spec(Ov) and that the points
of intersection do not lie above the closure of C1. Any such v must satisfy
v(ad) > 0 and v(a′d′) > 0, where ad and a′d′ are the leading coefficients of
a(x) and a′(x), respectively.

These coefficients are usually much smaller than qD,E,2 and so this sim-
plification can make a big difference in practice. If we want to bound the
precision that is necessary for the intersection computations, we can simply
compute qD,E,2 and v(qD,E,2) for any such v (with the described modifica-
tions when Ok is not a Euclidean ring). Of course similar techniques can be
applied in the case of smooth plane curves.

5.3.3 Regular models

In the following three sections we let R denote a discrete valuation ring
with spectrum S = Spec(R), field of fractions l, valuation v, uniformizing
element π and residue field l. Let C be a smooth projective geometrically
connected curve of genus g ≥ 1 defined over l and suppose that C is given by
an R-integral model. Using a transformation, if necessary, We can assume
that the closure C of the given model over S is normal and flat; therefore it
has only isolated singularities on the special fiber.

The existence of a proper regular model C′ of C over S is guaranteed
by Theorem 1.20 which also gives a practical method of constructing such
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a model. In fact, it always produces a desingularization of C in the strong
sense; this property will turn out to be useful later on. As mentioned in
Section 1.5, the construction of a proper regular model over S is implemented
in Magma and hence we do not discuss it in any depth. This is always a
desingularization of the closure C in the strong sense whenever this closure
is normal and flat.

However, note that in the desingularization sequence (1.5) only the iso-
lated singularities in the normal arithmetic surfaces Ci are blown up. In
practice, one can often simplify this by blowing up an entire component
that contains several singularities, because a blow-up is an isomorphism
outside of the singular locus of its center, provided this locus is closed; see
[17, Satz 1.29]. A regular model thus constructed still has the property
that it is a desingularization of C in the strong sense. Note that this fact
is already used in Tate’s algorithm for the computation of a proper regular
model of an elliptic curve, cf. [89, §IV.9]. Normalizations are usually more
difficult than blow-ups from a computational point of view; a constructive
method for computing normalizations is discussed in [56].

In the desingularization process one usually works over suitable affine
charts as opposed to using the abstract Proj-construction as in [65, §8.1].
After resolving all singularities it is important, using the gluing maps stored
along the way, to identify identical components in different affine charts,
which essentially boils down to a bookkeeping issue.

5.3.4 Computing non-archimedean intersection multiplicities

We keep the notation from the previous section and assume, in addition,
that C is covered by affine patches C1, . . . , Cn, where

Ci = Spec l[x, y]/Gi(x, y)

and Gi(x, y) ∈ R[x, y]. This assumption is made for simplicity of presenta-
tion, but everything we do works in much greater generality. We stress our
assumption that the closure C of the given model is normal and flat; it is
covered by the affine patches

Ci = SpecR[x, y]/Gi(x, y).

In order to define intersection multiplicities in Section 5.1 we had to work
on a regular model. In many cases, however, it is possible to work entirely
on the closure C of the given model of C without any additional difficulty.
Fix a desingularization ξ : C′ → C in the strong sense and let P,Q ∈ C(l).
By definition, iv((P )C′ , (Q)C′) > 0 is only possible if the reductions P̃ and
Q̃ on Cv = C̃ are equal.
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Now suppose we have two divisors D,E with disjoint support whose clo-
sures DC and EC have the property that their common support does not
contain any singular points. Then, by the above, and because the total
intersection is defined as a sum of local intersections, we might as well com-
pute the intersection directly on the closure C of C over Spec(R) and this
means that for the intersection computation we do not have to compute any
regular model at all. By abuse of notation, we shall write iv(DC , EC) in this
situation when we mean in fact the intersection multiplicity iv(DC′ , EC′) on
any desingularization C′ of C in the strong sense.

For computational purposes we shall assume for the moment that we
have two such divisors D and E whose closures over C lie entirely in an
affine piece Ci for some i ∈ {1, . . . , n}. The following lemma is very helpful
in computations. It is a well-known result from commutative algebra saying
that quotients and localizations commute.

Lemma 5.16. Let A be a commutative ring with unity and let T ⊂ A be a
multiplicative subset. Let I ⊂ A be an ideal and let T̄ denote the image of
T in A/I. Then we have

AT /IAT ∼= (A/IA)T̄ ,

where the subscripts denote localizations.

Proof. See [69, Theorem 4.2].

We want to compute the intersection

iv(DC , EC) =
∑

P

iP (DC , EC)[l(P ) : l],

where the sum is over all closed points of Civ lying in supp(DC) ∩ supp(EC).
In particular, no irregular points contribute toward the sum and hence the
intersection takes place entirely on Ci. Let l′ be an extension of l such that
all points in the support of D and E are defined over l′ and let v′ denote
the extension of v to l′.

Lemma 5.17. Suppose D =
∑

i nk(Pk) and E =
∑

jmj(Qj), where Pk and

Qj are l
′-rational and nk,mj ∈ Z for all k, j such that all reductions P̃k and

Q̃j are non-singular. Then we have

iv(DC , EC) =
∑

k,j

nkmj min{v′(x(Pk)− x(Qj)), v
′(y(Pk)− y(Qj))},

where Pk = (x(Pk), y(Pk)), Qj = (x(Qj), y(Qj)) ∈ C
i.
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Proof. Using properties (a) and (g) of Proposition 5.7 we can assume that all
Pk, Qj lie in C(l) and it suffices to compute iP ((Pk)C , (Qj))C for all Pk, Qj
and P ∈ Civ. We can also assume that Pk ≡ P (mod π) and Qj ≡ P
(mod π), since otherwise the intersection multiplicity vanishes. The remain-
der of this proof is similar to calculations done by Busch in [17] in order to
compute intersection multiplicities in the case of elliptic curves. According
to Definition 1.29 we get

iP ((Pk)C , (Qj)C) = lengthO
Ci,P
OCi,P/(I(Pk),i + I(Qj),i).

We have
OCi,P = (R[x, y]/Gi(x, y))mP

,

where mP = (x−x(P ), y− y(P ), π) is the maximal ideal at P . The defining
ideals of (Pk)C and (Qj)C in OCi,P are given by

I(Pk),i = (x− x(Pk), y − y(Pk))

and
I(Qj),i = (x− x(Qj), y − y(Qj)).

Therefore we find

OCi,P /(I(Pk),i + I(Qj),i)

∼= (R[x, y]/Gi(x, y))mP
/(x− x(Pk), y − y(Pk), x− x(Qj), y − y(Qj))

∼= (R[x, y]/(Gi(x, y), x − x(Pk), y − y(Pk), x− x(Qj), y − y(Qj)))mP
,

where the second isomorphism follows from Lemma 5.16. Now we apply the
morphisms x 7→ x(Pk) and y 7→ y(Pk) and obtain

OCi,P/(I(Pk),i + I(Qj),i)
∼= R(π)/(x(Pk)− x(Qj), y(Pk)− y(Qj))R(π)

∼= R/(x(Pk)− x(Qj), y(Pk)− y(Qj))R

from which the result follows.

In [50] Holmes also states Lemma 5.17 independently for hyperelliptic
curves of odd degree without proof. He then proceeds to express the right
hand side in terms of certain resultants that are easily computable over
the ground field l. This only works for hyperelliptic curves. We describe
a different approach that applies to more general curves. For simplicity
we suppose, in addition to our previous assumptions, that the special fiber
Cv is irreducible as a divisor on C. Moreover, we assume that the defining
ideals ID,i and IE,i of D and E, respectively, are given by bases consisting
of polynomials with coefficients in R. Hence they are also defining ideals of
DC and EC .

For the computation of the intersection multiplicity we use the following
version of the Chinese remainder theorem for modules.
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Proposition 5.18. Let A be a commutative ring and let M be an Artinian
and Noetherian A-module. Then there is an isomorphism of A-modules

M ∼=
⊕

P

MP ,

where the sum is over all maximal ideals P of A and MP denotes the loca-
lization of M at P .

Proof. See [36, Theorem 2.13].

We use this result to express iv(DC , EC) as the length of an OCv -module,
where we view Cv as a prime divisor on C. It follows from our assumptions
that we may restrict to

Civ = Spec l[x, y]/G̃i(x, y),

where G̃i(x, y) is the reduction of G(x, y) modulo π. The maximal ideal at
the generic point of Cv is the maximal ideal (π) of R, and so the local ring
is

OCi
v
= (R[x, y]/Gi(x, y))(π) .

Proposition 5.19. We have

iv(DC , EC) = lengthO
Civ

(
OCi

v
/(ID,i + IE,i)OCi

v

)

Proof. From Proposition 5.18 we get an isomorphism of OCi
v
-modules

OCi
v
/(ID,i + IE,i) ∼=

∑

P

OCi,P/(ID,i + IE,i), (5.6)

where the sum is over all maximal ideals of OCi
v
, that is, over all closed

points P ∈ Civ. By our assumptions we have

iv(DC , EC) =
∑

P

iP (DC , EC)[l(P ) : l]

=
∑

P

lengthO
Ci,P

(
OCi,P /(ID,i + IE,i)

)
[l(P ) : l]

=
∑

P

lengthO
Civ

(
OCi,P/(ID,i + IE,i)

)

= lengthO
Civ

⊕

P

(
OCi,P/(ID,i + IE,i)

)

= lengthO
Civ

(
OCi

v
/(ID,i + IE,i)

)

using (5.6), additivity of the length and the fact that if M is an OCi
v
-module

that is also an OCi,P -module for some closed point P ∈ Civ, then we have

lengthO
Civ

(M) = lengthO
Ci,P

(M)[l(P ) : l].
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We can explicitly construct the R-algebra

AD,E,i,v := (R[x, y]/ID,E,i,v)(π)
∼= OCi

v
/(ID,i + IE,i), (5.7)

where
ID,E,i,v = (Gi(x, y)) + ID,i + IE,i, (5.8)

using Lemma 5.16.
The computation of lengthO

Civ

AD,E,i,v is rather easy and can be done,

for instance, in Magma. See Algorithm 3 which is also applicable for any
number of variables. The crucial step is the computation of a Gröbner basis
B of ID,E,i,v over the Euclidean ring R, which is usually very fast because
the ideal is zero-dimensional and the polynomials involved have quite low
degree. We will return to this question later on in Section 6.2.1. We refer to
[1, Chapter 4] for an introduction to the theory and applications of Gröbner
bases for polynomial rings over Euclidean rings. What we need here is that
all polynomials h in R[x, y] have a well-defined remainder h mod B.

Algorithm 3 Computation of lengthO
Civ

AD,E,i,v

B = {g1(x, y), . . . , gr(x, y), q} ← Gröbner basis of ID,E,i,v
m← v(q)
td← 0
T ← ∅
repeat

td← td+ 1
V ← {xiyj : i+ j = td and ∄h ∈ T such that h | xiyj}
m′ ← m
for g ∈ V do

n← 0
while deg(πng mod B) > td or g | πng mod B do

n← n+ 1
end while

m← n+m.
if n = 0 then

T ← T ∪ {g}
end if

end for

until m = m′

return m

In the course of this section we have made several simplifying assump-
tions:

(a) The respective closures DC and EC lie entirely in a single affine piece
Ci.
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(b) The ideals ID,i and IE,i are given by R-integral bases.

(c) The special fiber Cv is irreducible.

(d) The closures DC and EC contain no irregular point.

(e) The affine piece Ci is given by Speck[x, y]/Gi(x, y).

Note that assumption (b) implies assumption (a). Assumption (e) is com-
pletely unnecessary for everything we did in this chapter, but simplified the
exposition. We will deal with divisors that do not satisfy (d) below.

Suppose we want to apply Lemma 5.17 or Proposition 5.19 and we are
given an effective divisor D ∈ Div(C)(l) such that assumption (b) above
does not hold for any affine piece Ci. Then we need to decompose D into
D =

∑n
j=1Dj such that all Dj,C lie completely in some Cij and furthermore

we have anR-integral basis for each IDj ,i. In order to accomplish this it is not
strictly necessary to decompose D into prime divisors, but it is certainly the
most straightforward approach. Because R is Henselian, any prime divisor
must reduce completely to a single affine patch and so (a) holds, although
a field extension may be required to satisfy (b).

In order to decompose divisors one uses the ideal representation and for
this one needs to compute the factorization of multivariate polynomials as
in [48]. But currently this is not implemented over local fields in Magma

and so we cannot always use this approach. Of course, if C is defined over
a number field or one-dimensional function field k, where l = kv, and we
already have a decomposition of D and E over k such that (a) and (b) hold
for the respective summands, then we can simply apply Proposition 5.19 to
these summands.

So we can always compute canonical heights over an extension field k′/k
over which we can decompose D and E into divisors for which (a) and
(b) hold for the localizations at every v. This may require a rather large
extension.

We discuss the situation for hyperelliptic curves below; here we can de-
compose divisors easily, because this reduces to factorization of univariate
polynomials over l and this is implemented in Magma, at least when l is
the completion of a global field. The techniques described below are thus
applicable whenever decompositions of divisors can be determined using
factorization of univariate polynomials. A possible approach to the prob-
lem of representing divisors on smooth plane quartics that closely resembles
Mumford representations of divisors on hyperelliptic curves and may thus
be useful for the computation of canonical heights is presented in [83].

Finally a word on assumption (c): This is unnecessary, provided that
points in the common support of DC and EC all lie on the same irreducible
component of the special fiber. If this is satisfied, we can simply use the
local ring of the relevant component, since in practice this ring is rather easy
to compute. If not, then we have to work over a suitable extension as usual.
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An example of a situation that allows us to compute non-archimedean
intersections using Proposition 5.19 is the case of hyperelliptic curves. Sup-
pose the affine pieces C1 and C2 covering C are defined as in (5.4) and (5.5)
and suppose, for simplicity, that the special fiber Cv of the closure is irre-
ducible. Let D ∈ Div(C)(l) be effective such that its ideal representation
is

ID,1 = (a(x), y − b(x)),

where a(x), b(x) ∈ l[x] and we have deg(a) ≤ g and deg(b) ≤ g + 1 as in
Section 5.2.2. We can factor a(x) = a1(x)a2(x), where a2(x) is constant
modulo π and a1(x) ∈ R[x]. This corresponds to a decomposition D =
D1 +D2, where D1,C lies in C1 and D2,C lies in C2. More precisely, we have

ID1,1 = (a1(x), y − b1(x)),

where b1(x) = b(x) (mod a1(x)). In order to use Proposition 5.19, we need
b1(x) ∈ R[x], but if this does not hold we can extend the field l, and thus
we assume that this is satisfied. In practice the case that such an extension
is necessary does not seem to occur often. We also get

ID2,1 = (a2(x), y − b2(x))

where b2(x) = b(x) (mod a2(x)), although we are of course more interested
in the defining ideal ID2,2, but the latter can be determined using the same
method. This way we can obtain the desired decomposition into divisors
satisfying (a) and (b) above.

Hence we can assume that D and E are effective divisors with disjoint
support satisfying (a), (b) and (d) for i = 1 and we have

ID,1 = (a(x), y − b(x))

and

IE,1 = (a′(x), y − b′(x)).

Then

ID,E,1,v = (y2 +H(x, 1)y − F (x, 1), a(x), y − b(x), a′(x), y − b′(x))

is the ideal defined in (5.8) that we need to compute a Gröbner basis of.

It is now straightforward to apply Proposition 5.19 using Mumford repre-
sentations. Note that according to Section 5.3.1 some of the divisors we
encounter have an ideal representation of the form ID,1 = (x− ζ) and that
makes the Gröbner basis computations even easier. In practice the algo-
rithm outlined above has proved faster than the resultants method due to
Holmes in all examples considered so far.
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Up to now we have assumed that all intersections take place at regular
points on the closure C of C over S. Now let D,E ∈ Div(C)(l) with dis-
joint support such that supp(DC)∩ supp(EC) includes irregular points of Cv.
Suppose

D =
∑

i

(Pi), E =
∑

j

(Qj) (5.9)

and that supp(DC) and supp(EC) both lie in the same affine piece Ci. Let
C′ denote a desingularization in the strong sense of C over S.

We want to compute iv(DC′ , EC′). If we can compute the decompositions
(5.9), then we can look for an affine piece C′i,j of the generic fiber of C′

containing images of the points Pi and Qj for each i and j and compute
the intersection using a formula similar to Lemma 5.17. We determine the
images of Pi and Qj on C

′
v by following through the construction of C′. If no

such affine piece exists, then the intersection of (Pi)C′ and (Qj)C′ must be
trivial. This approach requires extending the ground field to some li,j such
that both Pi and Qj are defined over li,j. However, it is only guaranteed to
work if we can choose an unramified extension li,j of l, since C

′ may not be
regular over the integers of li,j.

Fortunately we can sometimes do better. Since the blow-ups and norma-
lizations used to construct C′ induce transformations between the different
affine pieces covering C′, it is natural to investigate how these transforma-
tions act on the defining ideals of D and E. We will only sketch this briefly
here.

If the curve is hyperelliptic, for instance, they act on the Mumford rep-
resentation. Hence we can sometimes work entirely over the ground field.

We illustrate this in the simplest case. We treat the uniformizer π as
a variable. Suppose we need to blow up a closed point P ∈ Civ on the
special fiber. We may assume without loss of generality that it is l-rational,
because otherwise the desingularization process (for example as implemented
in Magma) uses an extension l′ of l such that P is defined over the residue class
field of l′ and this forces us to work over l′ anyway. Using a transformation,
we can assume P is at x = 0, y = 0, π = 0, so we are in the classical situation
of blowing up the origin of affine 3-space containing Civ, that is, we introduce
new variables x1, y1, π1 satisfying

xy1 = yx1, xπ1 = πx1, yπ1 = πy1.

This leads to three affine charts C1 = {x1 6= 0}, C2 = {y1 6= 0}, C3 = {π1 6= 0}
covering the blow-up and three transformations τi : C −→ Ci acting on affine
points by

τ1(x, y, π) = (x, y1, π1) = (x, y/x, π/x),

τ2(x, y, π) = (x1, y, π1) = (x/y, y, π/y),

τ3(x, y, π) = (x1, y1, π) = (x/π, y/π, π).
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Suppose that C is hyperelliptic, D is an effective divisor of degree d ≥ 0
whose support does not contain a point at infinity and ID,1 = (a(x), y−b(x)).
Since P = (0, 0, 0) ∈ Cv(l), we know that the reduction ã(x) factors as

ã(x) = xmg(x),

where m ≥ 0 and g(x) ∈ l[x] is such that g(0) 6= 0. Similarly, we have

ã′(x) = xm
′

g′(x),

where m′ ≥ 0, g′(x) ∈ l[x] is such that g′(0) 6= 0 and IE,i = (a′(x), y−b′(x)).
Hence we know that m of the Pi and m

′ of the Qj reduce to P and therefore
lie on one of the components contracted to P under the blow-up map.

The action of the transformations is given by

Iτ∗1 (D),1 = (a(x), xy1 − b(x), π − π1x),

Iτ∗2 (D),1 = (a(x1y)/y
2, y − b(x1y), π − π1y),

Iτ∗3 (D),1 = (a(πx1)/π
2, y1 − b(x1)/π),

and similarly for (a′(x), y − b′(x)). After applying the transformations, we
can check easily how many Pi and Qj reducing to P become regular and
which components they map to. If all points map to regular points, then we
compute the intersections on the respective affine charts using Proposition
5.19, otherwise we continue this process.

If both a(x) and a′(x) happen to be unramified, then we are in the
particularly convenient situation that the entire intersection takes place on
the third affine chart C3 defined by π1 6= 0, as all Pi and Qj reducing to P
map to this chart. Since the transformation τ3 is given by

(x, y, π) 7→ (x/π, y/π, π),

we have
iv((τ3(Pi))C1 , (τ3(Qj))C1) = i′v(Pi, Qj)− 1, (5.10)

where
i′v(Pi, Qj) = min{v(x(Pi)− x(Qj)), v(y(Pi)− y(Qj))}.

Therefore we are not actually required to apply τ3; it is sufficient to compute
how many Pi and Qj map to P . We can iterate this process, so in case only
points have to be blown up in order to construct C′ (for instance, when C has
rational singularities), we can compute the intersection multiplicity entirely
on C, followed by subtraction of a certain integer which we can calculate as
above by tracing through the blow-up process.

If we have to normalize in the desingularization process, more complica-
tions arise. If we can get away with blowing up a line, then we can again
assume that it is l-rational. Hence we can compute the preimages under the
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blow-up map entirely using the ideal representation just as above. However,
it is not possible any longer to compute the intersection multiplicity on Cv
when a(x) and a′(x) are unramified because there is no useful analog of
(5.10). In this case, it might be more suitable to employ Holmes’ algorithm
that uses resultants, see [50], since, in contrast with our algorithm, it does
distinguish between contributions coming from differences of x-coordinates
and those coming from differences of y-coordinates.

We have not investigated the case of more general normalizations. How-
ever, since in practice one usually performs such normalizations purely on
the level of rings (see [56]), it should be possible to obtain further simplifi-
cations.

In [50] Holmes introduces a different method for the computation of
〈D,E〉v when supp(DC)∩ supp(EC) includes irregular points, at least in the
case of models of the form y2 = f(x), where f(x) is monic of odd degree.
He proves that we have

〈D,E〉v = 〈div(h), E〉v + iv(D
′
C , EC)

whenever h ∈ l(C)∗ is such thatD′ = D−div(h) and E have disjoint support
and that D′

C contains no irregular points. The question is whether such an
h can always be found. This is answered affirmatively in [50] if we allow
taking multiples of D and E. However, we have found that our approach
outlined above has been more efficient in all examples considered so far.

On a side note, an important application of canonical heights consists
of the gathering of numerical evidence for the Birch and Swinnerton-Dyer
conjecture on abelian varieties as in [44]. See also Section 1.7. In order
to do this, we also need to compute the Tamagawa numbers for all non-
archimedean places v and this requires computing regular models at these
places, so for this application we can assume a priori that such models are
available. Moreover, the recent work [51] of Holmes, where a good candidate
for the naive height is constructed, also uses the minimal regular model.

5.3.5 Computing the correction term

We continue to let C′ denote a desingularization in the strong sense of
C over S, where the closure C of C over S is assumed normal and flat.
Suppose that the special fiber C′v is equal to

∑r
i=0 niΓ

i
v, where Γ0

v, . . . ,Γ
r
v

are the irreducible components of C′v. Let Mv be the intersection matrix(
iv(niΓ

i
v, njΓ

j
v)
)
0≤i,j≤r

of C′v as in Lemma 5.1.

Suppose we are given a divisor D ∈ Div0(C)(l) and we want to compute
a representative

∑r
i=0 αiniΓ

i
v of Φv,C′(D). For this we can use the proof of

Lemma 5.1, provided we have found both Mv and s(D), where

s(D) =
(
n0iv(DC′ ,Γ0

v), . . . , nriv(DC′ ,Γrv)
)T
. (5.11)
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We mention two possible methods here.

(i) Let M+
v be the Moore-Penrose pseudoinverse of Mv. Then setting

(α0, . . . , αr)
T := −M+

v s(D)T

works.

(ii) (Cox-Zucker) Suppose that there exists some i such that ni = 1, say
n0 = 1, and letM ′

v be the matrix obtained by deleting the first column
and row from Mv. Then setting α0 := 0 and

(α1, . . . , αr)
T := −M ′−1

v s′(D)T

works, where s′(D) is the vector obtained by removing the first entry
of s(D). See [26].

Note that the first method always works, whereas the second method re-
quires a familiar condition to be satisfied. As usual, if C has an l-rational
point, then we have nothing to worry about.

We can now compute iv(Φv,C′(D), EC′) easily for E ∈ Div0(C)(l) having
support disjoint from D. This is simply equal to

s(E)T (α0, . . . , αr),

where s(E) is defined as in (5.11).
We still have to discuss how s(D) and s(E) can be computed. But this

is already contained in the previous section. We can decompose D and E
into prime divisors of degree 1, possibly over a finite extension of l, and then
determine which components the corresponding points map to by tracing
through the blow-up (respectively normalization) process. In the case of
hyperelliptic curves we can work with the ideal representations of D and
E, see the discussion in the previous section. If the points in question are
only defined over ramified extensions of l, then it is actually necessary to
use lnr-rational data for these computations.

5.3.6 Computing archimedean intersection multiplicities

In this section we fix an archimedean place v ∈ M∞
k . Our main reference

is [59, Chapter 13]. Suppose that we have embedded C into PNC for some
N using v and let C(C) denote the associated Riemann surface. According
to Section 5.2 we need to find an almost-Green’s function with respect to
a divisor D ∈ Div0(C)(C). Notice that we can write any such divisor in
the form D = D1 −D2, where D1 and D2 are non-special, that is they are
effective of degree g and their L-spaces have dimension 1. By additivity
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of Green’s functions it suffices to determine almost-Green’s functions with
respect to non-special divisors and any fixed normalized volume form on
C(C).

In order to do this it turns out to be useful to work on the analytic
Jacobian J . Recall the notation introduced in Section 1.6. We view J as an
abelian variety over the complex numbers embedded using v. Let τv ∈ hg
such that J(C) is isomorphic to Cg/Λv , where Λv = Zg⊕ τvZg. Let the map
j be defined by

j : Cg // // Cg/Λv
∼=

// J(C).

Moreover, we fix an Abel-Jacobi map, that is an embedding ι, defined over
C, of the curve into its Jacobian and let Θ ∈ Div(J) denote the theta-
divisor with respect to ι. Let S : Div(C) −→ J denote the summation map
associated to ι.

On J(C) we can find the following canonical 2-form: Let η1, . . . , ηg be
an orthonormal basis of the differentials of first kind on the Jacobian. Then
the canonical 2-form is given by

1

2g
(η1 ∧ η̄1 + . . .+ ηg ∧ η̄g)

and we define the canonical volume form dµ on C(C) by pulling this form
back using ι, see [59, §13.2]. The details are not important for us as the
dependence on dµ disappears because we only want to compute almost-
Green’s functions with respect to divisors of degree zero.

For the next theorem, conjectured by Arakelov and proved by Hriljac,
recall the definition of Néron functions from Section 1.3. We use the notation
EP to denote the translation of a divisor E ∈ Div(J) by a point P ∈ J .

Theorem 5.20. (Hriljac) Let D ∈ Divg(C) be non-special, let P = S(D)
and D′ = ([−1]∗(Θ))P . Let λD′,v be a Néron function with respect to D′

and v. Then λD′ ◦ ι is an almost-Green’s function with respect to D and dµ,
where dµ is the canonical volume form on Cv(C)

Proof. See [59, Chapter 13, Theorem 5.2].

Remark 5.21. Additivity of Green’s functions and Theorem 5.20 can be com-
bined to give a proof of the existence of Green’s functions for anyD ∈ Div(C)
with respect to dµ, and hence, using [60, Proposition 1.3] with respect to
any normalized volume form. See [59, Chapter 13, Theorem 5.1].

The great news is that we already know how to find Néron functions with
respect to Θ in the case of an archimedean place; we show below that this
suffices for our purposes. Recall Proposition 4.15, stating that the function

λ′Θ,v(P ) = − log |θa,b(z(P ))|v + π Im(z(P ))T (Im(τv))
−1 Im(z(P ))



5.3. COMPUTING THE GLOBAL NÉRON SYMBOL 161

is a Néron function associated with Θ and v, where a = (1/2, . . . , 1/2), b =
(g/2, (g − 1)/2, . . . , 1, 1/2) ∈ Cg and θa,b denotes the theta function with
characteristic [a; b] defined in Section 1.6. Now suppose that D = D1 −D2,
where D1,D2 ∈ Div(C) are non-special divisors with disjoint support, and
let E1 =

∑d
i=1(Pi) and E2 =

∑d
i=1(Qi) be two effective divisors such that

supp(Ei) ∩ supp(Dj) = ∅ for i, j ∈ {1, 2}.

Corollary 5.22. We have

〈D1 −D2, E1 − E2〉v

=− log

d∏

i=1

|θa,b(z(ι(Pi))− z(S(D1)))θa,b(z(ι(Qi))− z(S(D2)))|

|θa,b(z(ι(Pi))− z(S(D2)))θa,b(z(ι(Qi))− z(S(D1)))|

− 2π

d∑

i=1

Im(z(S(D1)− S(D2)))
T Im(τv)

−1 Im(z(ι(Pi))− z(ι(Qi))),

where for any Q ∈ J the vector z(Q) ∈ Cg satisfies j(z(Q)) = Q.

Proof. Néron functions are invariant under translation of the divisor up to
an additive constant, see [59, Chapter 11, Theorem 2.1]. But according to
[59, Chapter 5, Theorem 5.8], [−1]∗(Θ) is just Θ translated by S(K), where
K is a canonical divisor. Hence the desired result follows from Theorem 5.20
and Proposition 4.15.

Remark 5.23. In [50] Holmes gives a more direct proof of Lemma 5.22 using
[59, §13.6/7], which relies on the theory of differentials of third kind.

We can use the previous result to compute intersections at archimedean
places. In practice we need to be able to do the following:

1) Given D ∈ Div0(C), find non-special D1,D2 such that D = D1 −D2.

2) Compute the period matrix τv.

3) Given P1 ∈ C(C) and τv, determine z ∈ Cg such that j(z) = ι(P1).

4) Given τv and z ∈ Cg, compute θa,b(z) = θa,b(z, τv).

The first step is not difficult, because we can, if need be, compute mul-
tiples of our divisor and use the bilinearity of the local Néron symbol. For
hyperelliptic curves, steps 2), 3) and 4) are all implemented in Magma by
van Wamelen, as already mentioned in Section 3.7.2. In the general case
all of the relevant algorithms have been developed (see [29], [7] and [30]) by
Deconinck et al. Both approaches are essentially numerical in nature. In
contrast to the non-archimedean case the running times of steps 2), 3) and
4) do not crucially depend on the heights of the points in the supports of
the respective divisors, since we work with the complex uniformisation. But
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the amount of work required to find the image of a point P1 ∈ C on the
Riemann surface C(C) does depend on this height.

For computational purposes, we want to stress that only D1 and D2 are
required to be of degree g; E1 and E2 can be effective of lower degree. In
many situations the divisor E which we start with is given in such a form,
for instance E1 = (P1) and E2 = (Q1), where P1, Q1 ∈ C. Moreover, it is
actually desirable to work with Ei of low degree, because this means fewer
applications of the Abel-Jacobi map ι and of theta functions are necessary,
significantly reducing the running time of the entire algorithm.

Remark 5.24. Deconinck and his collaborators have implemented their algo-
rithms in Maple in a package called algcurves. Their approach requires the
curve to be given as an affine plane curve in A2, but because their algorithm
can deal with singular Riemann surfaces, this is not an essential restriction.
Since version 11 of Maple, this package has been part of the official Maple
distributions. Unfortunately, the Maple developers have since decided to
change some of the functions that algcurves uses, in the process destroying
some of the package’s functionality. For instance, the implementation of the
Abel-Jacobi map is now very unreliable and only occasionally returns the
correct value (if indeed it returns anything at all).

This means that the package, which worked perfectly well for Maple 10,
is now useless for our purposes. Deconinck [31] is currently working on a
long-term project to rewrite all necessary routines in Sage [91]. Once this
is completed, steps 1) – 4) should again be possible and we can compute
canonical heights on non-hyperelliptic Jacobians in practice. For the mo-
ment, however, this is limited to hyperelliptic Jacobians.
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In this final chapter we investigate how the algorithms developed in this
thesis can be applied in practice.

6.1 Jacobian surfaces

We start by discussing practical implications of Chapter 3. Let k be a
number field or a one dimensional function field. If J is the Jacobian of a
genus 2 curve C, then we can use our algorithm introduced in Chapter 3 for
the computation of canonical heights on J and we can also use our results
from that chapter to obtain better bounds on the non-archimedean local
height constants than those that were previously available.

6.1.1 Computing heights

We briefly discuss the advantages and disadvantages of our algorithm for the
computation of canonical heights on Jacobian surfaces introduced in Chapter
3. We first note that a comparison to the current Magma-implementation
of the algorithm of Flynn, Smart and Stoll (see Sections 3.2.2 and 3.2.3)
is not very useful, because that implementation is not optimized; it uses
global arithmetic instead of v-adic arithmetic which would speed up the
computations significantly.

The main advantage of our algorithm is that for the computation of
the values of the error function µv(P ), where P ∈ J(k) and v ∈ M0

k , we
usually do not have to compute multiples of points on the Jacobian or on
the Kummer surface. In those cases where we do have to compute mul-
tiples nP the number n can only be larger than 4 if we have reduction
type [Im1 − Im2 − l], where m1,m2 > 4 and l > 1 and this case can only
occur when v(∆(C)) > 22, where ∆(C) is the discriminant of the curve C.
Furthermore, our algorithm works for non-global one dimensional function
fields (as always, with perfect residue fields), see Remark 3.75.

Suppose that k is a global field, so that the algorithm due to Flynn,
Smart and Stoll is guaranteed to work theoretically. It is easy to find exam-
ples where the current implementation fails or becomes very time consuming.
This happens whenever one of the integers Mv becomes large, where for a
non-archimedean place v ∈ Mk, Mv is the smallest positive integers such
that εv(MvP ) = 0. The size of the coordinates of κ(nP ) grows at a rate
of about n2 if we work over a global field and since we have to compute
κ(2MvP ), this can become prohibitive. See the introduction of [94] for an
example. If we are in one of the five cases for which we have explicit formu-
las, then we can usually bound the number Mv explicitly. Recall that when
the model is semistable we have rational singularities and hence εv factors
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through the component group Φv.

• Suppose C has reduction type [Im−0−0] (see Section 3.6.1), where m =
v(∆) is large. Then the largest Mv that we can have is Mv = m. For
a curve with reasonably small coefficients, it is therefore unlikely that
Mv becomes too large for the current implementation.

• The situation for reduction type [Im1−m2−0] discussed in Section 3.6.2
can be worse, because we have v(∆) = m1 + m2, but we may need
Mv = m1m2, since Φv ∼= Z/m1Z × Z/m2Z.

• If we have reduction type [Im1−m2−m3 ], then we get

#Φv = m1m2 +m1m3 +m2m3

according to Section 3.6.3. See Example 6.3 below.

• Reduction types [I0 −K− l], where K is a Kodaira type of an elliptic
curve and l ≥ 0, only require Mv ≤ 4 if l = 0, see Lemma 3.59. But
if l > 0, then Conjecture 3.66 suggests that Mv depends not only on
v(∆), but also on the residue characteristic of v. Hence we can again
expect large Mv in some cases.

• The situation for reduction type [Im1 − K − l] is a combination of
reduction type [Im1−0−0] and of reduction type [I0−K− l], see Section
3.6.1.

We could give several examples where the current Magma implementation
takes an insufferable amount of time, but our algorithm is very quick, for
each of the cases discussed above. Yet this is not very interesting, since it
does not tell us how our algorithm compares to a version of the algorithm of
Flynn, Smart and Stoll that uses v-adic arithmetic. Instead we only discuss
one interesting example that will be continued in the next section.

Example 6.1. Consider the curve C given as the smooth projective model
over Q of the equation

Y 2 = 1306881X6 + 18610236X5 − 46135758X4 − 1536521592X3

− 2095359287X2 + 32447351356X + 89852477764.

This curve was found by Colin Stahlke in a systematic search for curves of
genus 2 with many rational points. He shows in [90] that #C(Q) ≥ 366 and
Stoll has found 8 more points in C(Q), see [98]. The given model is not
minimal at v = 2 and we have v2(∆(C)) = 56. A (globally) minimal model
C ′ for C is given by

Y 2 + (−2X3 + 3X2 − 3X)Y = 1306880X6 + 5384478X5 − 29895936X4

− 149001723X3 + 129430735X2

+ 1009320565X + 887232025;
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we have v2(∆(C ′)) = 26. It turns out that C ′ has reduction type [I5−9−12]
at v = 2 and so ε2 factors through Φ2 on the Jacobian J ′ of C ′. However,
the discussion of Section 3.6.3 tells us that #Φ2 = 213. One can show that
for

P = [(3,−358592) − (−2,−166188)]

we actually have M2 = 213. In order to compute µ2(P ) using the algorithm
by Flynn, Smart and Stoll, we therefore need to compute κ(426P ) and this is
non-trivial even using 2-adic arithmetic, because we need a lot of precision.
On the other hand, it is quite easy (and requires much less precision) to
use our algorithm to compute all possible values of ε2 and µ2 after a few
straightforward transformations without the need to compute any multiples
and from this list all values of µ2 can be read off. We will come back to this
curve in Example 6.3 below.

Our algorithm is usually quite efficient, but sometimes it can become
slow. So far we have only discussed the five different situations for which we
have formulas for µv. In general the reduction of C may have a singularity of
multiplicity at least 4 and then we need to apply the simplification procedure
introduced in Proposition 3.36. In this case we do not get bounds on Mv

in a simple way. Moreover, it can happen that the points on C mapping
to the same singular point on the reduction are very close v-adically and
so we need several iterations of the reduction procedure. Although this is
done v-adically, we may have to work over large ramified field extensions.
Hence it is possible that in these cases an optimized implementation of the
algorithm due to Flynn and Smart using Stoll’s refinements would actually
be faster. However, we have found that in practice it is very rare that we
need more than one iteration in the simplification process.

We do not discuss the archimedean contribution, because it turns out
that without new tricks to compute theta functions, the method for com-
puting µv when v is archimedean that was already introduced by Flynn and
Smart is still the fastest available.

6.1.2 Improving the bound on the height constant

In Chapter 3 we have mentioned several possible improvements of bounds
on the non-archimedean local height constant

βv = sup {µv(P ) : P ∈ J(kv)} .

Recall that good bounds on the height constant are necessary if we want to
compute generators of the Mordell-Weil group of J using the method given
by Stoll in [94, §7], see Section 1.7. We will not repeat the improvements
discussed in Chapter 3. Furthermore, we will not actually compute such
generators, since that is not the topic of this thesis. Instead we give two
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p vp(2
4Disc(F )) bound on βp redn. type new bound

2 20 16/3 [I0−0−0] 2
3 6 4/3 [II − III − 0] 4/3
5 26 17/3 [I0 − II − 1] 4

305175781 6 2 [I2−2−2] 1

Table 6.1: Bounds on local height constants for C1

examples with large coefficients which show that our refinements can dras-
tically reduce the previous bound on the height constant in some situations.

We will compare our bounds for the height constant to those obtained
from Stoll’s Proposition 3.11 and the improved bounds that can be computed
using [92, §7].

Example 6.2. Let C1 be given as the smooth projective model of

Y 2 = X6 + 1220703126X3 + 1220703125 = (X3 + 1)(X3 + 513).

The primes dividing the discriminant are 2, 3, 5 and 305175781 = 513−1
4 .

Our strategy is to analyze the different reduction types of C. Note that
this does not require the actual computation of a regular model, since the
information we need drops out of our canonical height algorithm for free,
except for the primes p = 2 and p = 3. But for p = 2 the given model
is not minimal. Computing a 2-minimal model yields a regular model C ′

1.
Hence µ2 vanishes on the Jacobian J ′

1 of C
′
1 and since the determinant of the

transformation τ : C ′
1 −→ C1 has valuation equal to 2, we find that β2 = 2.

For p = 3 there are two singularities of multiplicity 3 and hence we do
not get a simple improvement of the bound. For p = 5, we have reduction
type [I0−II−2], which means that β5 can be bounded by 4 = 2·2 according
to Remark 3.69. Finally, we consider the prime p = 305175781. Here the
reduction type is [I2−2−2]; using our algorithm we find that the largest value
that µp takes is 1.

Our findings are summarized in Table 6.1. The second column lists the
bound that we get when we apply Proposition 3.11 and the third column
contains the bound on βp obtained as B/3, where B is the improved bound
on

γp = sup {εp(P ) : P ∈ J(kp)} ,

computed using the techniques of [92, §7]. The fourth column contains the
reduction type of a p-minimal model of C1; for p 6= 2 we can simply use C1

and for p = 2 we take C ′
1. In the last column we give the bound which we

get using our knowledge of the reduction type.

Comparing the explicit global bounds, we find that Proposition 3.11
yields

65.890122 = 58.485758 + 7.404364,
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p vp(2
4Disc(F )) bound on βp redn. type new bound

2 52 16 [I5−9−12]
1753
213

3 13 11/3 [III9] 11/3
5 11 11/3 [I5−3−3] 2
7 4 2/3 [I0 − IV − 0] 2/3
11 8 8/3 [I2−3−3] 4/3
13 6 2 [I2−2−2] 1
19 4 4/3 [I1−1−2] 3/5
29 4 4/3 [I1−1−2] 3/5
37 3 1 [I1−1−1] 1/3

Table 6.2: Bounds on local height constants for C

where the first summand is the non-archimedean contribution and the se-
cond summand is the archimedean contribution. The techniques of [92, §7]
improve this to

60.329401 = 52.925037 + 7.404364.

Finally, the bound that we get using our observations equals

36.229625 = 28.825261 + 7.404364.

Although this is still too large for practical purposes, it shows that we can
get a significant improvement in some cases.

Our second example is a continuation of Example 6.1.

Example 6.3. Let C be given by

Y 2 = 1306881X6 + 18610236X5 − 46135758X4 − 1536521592X3

− 2095359287X2 + 32447351356X + 89852477764.

We proceed as in the previous example. See Table 6.2 for the results. We
have left out prime factors which only divide the discriminant once, because
according to [94, §5] they do not contribute toward the height constant.

For p = 2 we already know that the given model is not 2-minimal and
we have given a minimal model C ′ in Example 6.1. Hence we can compute
a bound on β2 on J ′ and then use Remark 3.51 to compute a bound on
J . For the other primes of reduction type [Im1−m2−m3 ] we simply list all
possible values which µp can take using the ideas of Section 3.6.3. For the
prime p = 3 we get no improvement using our methods and for p = 7 we
know that the existence of some P ∈ J(Q7) such that ε7(P ) = 2 will prove
that 2/3 is in fact an upper bound; it is easy to find such a point. For the
other primes we use the results of Section 3.6.3 to quickly list all possible
values of µp.

To sum up, we get an improvement of 20.86614 on the previous bound

54.60157 = 44.50728 + 10.09429,
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where the first summand on the right hand side is the non-archimedean
contribution and the second is the archimedean contribution to the bound.

Remark 6.4. It seems strange that C has reduction type [Im1−m2−m3 ] for so
many primes. However, in fact many of the curves containing a large number
of rational points of genus 2 that we have analyzed exhibit this behavior;
namely, they have such a reduction type for the majority of primes of bad
reduction. This is due to the fact that if C has reduction type [Im1−m2−m3 ]
at a prime p, then f(x) is a square modulo p and hence every x-coordinate
yields a point on the reduction C̃.

6.2 Intersection theory

In this section we provide a hyperelliptic example of a regulator that was
computed using the algorithm outlined in Chapter 5 and a non-hyperelliptic
example for which we compute all non-archimedean data. In the latter case,
the computation of the archimedean local Néron symbol is straightforward
once the algorithms developed by Deconinck et al. have been reimplemented
(see the discussion in Remark 5.24). Moreover, we shall discuss, at least in
the case of hyperelliptic curves, how the running time changes as we increase

(a) the genus of the curve;

(b) the size of the coefficients of the point.

6.2.1 Hyperelliptic curves

We use the Magma-implementation of our algorithm to compute the regulator
of the Jacobian of a hyperelliptic genus 3 curve up to an integral square. We
have chosen an example where the 2-Selmer group could be computed quite
easily, because all elements of the 2-torsion subgroup are defined over Q. See
[93] for an implementation-oriented description of the 2-descent algorithm;
as usual, we have used Magma for the descent computations.

Example 6.5. Let C be given by the smooth projective model of the equation

Y 2 = X(X − 1)(X − 2)(X − 3)(X − 6)(X − 8)(X + 8).

The curve C is a hyperelliptic curve of genus 3, defined over Q. A quick
search reveals the following rational non-Weierstrass points on C.

(−2,±240), (4,±48), (−6,±1008)

Let J denote the Jacobian of C; obviously its entire 2-torsion subgroup is
defined over Q. In order to bound the Mordell-Weil rank of J we compute the
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prime # of comps. Φp time

2 14 (Z/2Z)5 1.95s
3 9 (Z/2Z)3 × Z/4Z 0.35s
5 4 (Z/2Z)3 0.23s
7 3 (Z/2Z)2 0.29s
11 2 Z/2Z 0.10s

Table 6.3: Regular model data

S ∈ J(Q) ĥ(S) time

P 1.90008707521104082692048090266 23.10s
Q 1.15261793630905629106514447088 19.76s
R 2.90090831616336727010940214290 20.96s

P +Q 2.36481584203715381857836835238 19.95s
P +R 5.51584078564985349844572029952 20.67s
Q+R 5.74901893484137170755580219303 21.22s

Table 6.4: Canonical height computations

dimension of the 2-Selmer group of J over Q using Magma. This dimension
is equal to 3 and hence we get an upper bound of 3 on the rank.

We want to compute the regulator Reg(P,Q,R) of the subgroup G of
J(Q) generated by the points

P = (−2,−240) − (∞)

Q = (4,−48) − (∞)

R = (−6, 1008) − (∞).

One can check using reduction modulo small good primes that these points
are independent and hence that the rank is 3 and that G is a subgroup of
finite index. Since Reg(P,Q,R) will turn out to be non-zero, we get another
proof that G has finite index.

The discriminant of C factors as 2503125674112. We first find regular
models at the bad primes 2, 3, 5, 7 and 11. All computations in this example
were done using Magma on a 1.73 GHz Pentium processor. It turns out that
all computed regular models are already minimal; we list the number of
components of the special fiber of the respective regular model, the (geo-
metric) group of components Φp of the Néron model and the time it took
to compute the regular model in Table 6.3.

After this preparatory step we now compute the entries of the height
pairing matrix. The results and timings can be found in Table 6.4, Using
these results, we find

Reg(G) := Reg(P,Q,R) = 4.28880986177463283058861934366.



6.2. INTERSECTION THEORY 171

We can test our findings by computing Reg(nP,mQ, lR) for several integral
values of n,m, l. In all cases we get the relation

Reg(nP,mQ, lR)/Reg(G) = n2m2l2

up to an error of less than 10−27, where the computations were done with
real precision of 1030 and respective p-adic precisions of p100.

Next we want to illustrate the behavior of the running time of our algo-
rithm. We have refrained from a formal complexity analysis, mostly because
the algorithm uses several external subroutines, such as the computation of
regular models and of theta functions, whose complexities have not yet been
analyzed. Moreover, a meaningful complexity analysis is made difficult by
our usage of Gröbner bases whose complexity can be extremely problematic
in general.

But in the case of zero-dimensional ideals of polynomial rings over fields,
the complexity can be shown to be polynomial in Dn, where D is the maxi-
mal degree of the elements of the basis we start with and n is the number of
variables. See [47] for a summary of results regarding complexity of Gröbner
basis computations. In particular this holds for Faugère’s F4-algorithm [38],
used for instance by Magma (over fields and Euclidean rings). This result can
be extended easily to the case of polynomial rings over Euclidean domains,
provided we have fast algorithms available for the linear algebra compu-
tations in the F4-algorithm, such as those implemented in Magma. So the
Gröbner basis computations do not cause any trouble in practice.

Indeed, the running time of the algorithm is usually dominated by the
various analytic computations required for the archimedean local Néron sym-
bols. They depend exponentially on the genus; the largest curve we have
been able to compute with has genus 10, see Example 6.6 below. If the
genus is not too large, but the size of the coefficients of the point P ∈ J(k)
that we want to compute the canonical height of is, then it turns out that
the main bottlenecks are usually the factorizations alluded to in Section
5.3.2; recall that these are required in order to find out which places can
lead to non-trivial non-archimedean local Néron symbols. See Example 6.7.
The typical behavior is that the non-archimedean part of the computation
is much faster than the archimedean part unless the former fails completely
due to the factorisation problem.

All computations for the following two examples were done using a 3.00
GHz Xeon processor.

Example 6.6. Consider the family

Cd : y
2 = xd + 3x2 + 1

for d ∈ {5, 7, 9, 11, 13, 15, 17, 19, 21} and let P = [(0, 1) − (0,−1)] ∈ Jd(Q),
where Jd is the Jacobian of Cd. We compute ĥ(P ) and record the running
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d genus ĥ(P ) act nact

5 2 1.20910894883943045491548486513 3.51s 0.33s
7 3 1.31935353209873515158774224282 6.70s 0.34s
9 4 1.39237255678179422540594853290 12.65s 0.87s
11 5 1.44187308116714103129667604112 32.30s 1.67s
13 6 1.47679608841931245229396457463 120.51s 2.99s
15 7 1.50265701979128671544005708236 791.14s 5.17s
17 8 1.52254076352483838532148827258 4729.03s 8.95s
19 9 1.53829882683402848666502818888 62535.55s 14.20s
21 10 1.55109127084768378637549292754 280731.59s 21.35s

Table 6.5: Canonical heights in a family

n ĥ(nP ) act nact

1 1.20910894883943045491548486513 3.00s 0.31s
2 4.83643579535772181966193946057 3.15s 0.01s
3 10.8819805395548740942393637862 2.93s 0.21s
4 19.3457431814308872786477578421 3.28s 0.02s
5 30.2277237209857613728871216281 3.11s 0.31s
6 43.5279221582194963769574551447 3.29s 0.11s
7 59.2463384931320922908587583915 3.47s 0.34s
8 77.3829727257235491145910313685 3.90s 0.45s
9 97.9378248559938668481542740752 4.31s 1.02s

Table 6.6: Canonical heights for multiples of a point

time for both the archimedean and the non-archimedean computations. See
Table 6.5, where nact and act denote non-archimedean and archimedean
computation time, respectively. This example hints at an exponential de-
pendency on the genus.

Example 6.7. Next we look at the running times for positive multiples of
P ∈ J5(Q). The results are in Table 6.6 and we see that we have ĥ(nP ) =
n2ĥ(P ) for all n ∈ {1, . . . , 9}. Here nact and act have the same meaning as
in Table 6.5. We only get to 9P , because for 10P the integer qD,E,1 that has
to be factored in order to find the possible primes of non-trivial intersection
(see Section 5.3.2) is of order 10119 and must have at least two large prime
factors; we have not succeeded in factoring it in nine days. But we see that
our implementation performs reasonably well up to that point.

6.2.2 Non-hyperelliptic curves

Because our results from Chapter 5 are not limited to hyperelliptic curves, we
would like to give an example of a regulator of (a subgroup of finite index of)
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the Mordell-Weil group of a non-hyperelliptic Jacobian. The computation of
the non-archimedean local Néron symbols can be done as in the hyperelliptic
case, unless for some v ∈ M0

k we encounter kv-rational divisors D and E
whose supports are defined over local extension fields such that there is no
single affine patch containing the entire intersection of the closures of D
and E. In this case there are additional complications and we may have to
restart our algorithm over an extension field of k. We refer to Section 5.3.4
for a discussion of this problem.

However, if k = Q and our divisors are supported in Q-rational points to
start with, then this difficulty cannot occur. Many interesting examples are
of this form, because in practice one is often lead to regulators of Jacobians
of curves that contain Q-rational points. For such examples we can use our
algorithm to compute the non-archimedean local Néron symbols.

The archimedean local Néron symbols are a different matter. See Re-
mark 5.24 for a discussion of the current situation of the necessary algo-
rithms described in Section 5.3.6. The best we can do is to give a list of
explicit computations that yield the desired result once a suitable implemen-
tation exists. By virtue of Corollary 5.22 it suffices to list suitable divisors
D1,i,D2,i, E1,i, E2,i for i = 1, . . . , N , where N ≥ 1 is finite, such that com-
puting the local Néron symbols 〈D1,i − D2,i, E1,i − E2,i〉 suffices. Here all
D1,i and D2,i should be non-special with disjoint support and all E1,i and
E2,i should have degree at most g.

Example 6.8. An example of a curve for which the computation of the re-
gulator is interesting and useful is the curve Xdyn

0 (6) considered by Stoll in

[97]. It is a quotient of the curve Xdyn
1 (6) which is a smooth projective curve

that has an affine patch Y dyn
1 (6) parametrizing 6-cycles, that is pairs (x, c),

where x is periodic of exact order 6 under the iteration

x0 = x, xn+1 = x2n + c for n ≥ 0. (6.1)

It is an interesting problem in arithmetic dynamics to determine whether
there are rational N -cycles for a given N . The situation for N = 2, 3, 4, 5 is
known and it is expected that there are no rational N -cycles for N > 3. See
the introduction to [97]. Stoll shows, assuming the existence of an analytic
continuation and functional equation of the L-series of J and the Birch and
Swinnerton-Dyer conjecture for J that there are no rational 6-cycles, that
is x, c ∈ Q satisfying (6.1). Here J is the Jacobian of Xdyn

0 (6).

In order to give further evidence for this conditional statement, it would
be helpful to verify the second part of the Birch and Swinnerton-Dyer conjec-
ture 1.43 for Xdyn

0 (6). Stoll has already computed several terms appearing
in that statement and according to [97] it remains to show that

Reg(J/Q)ΩJ#X(J/Q) = 0.03483 . . . . (6.2)
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Recall that Reg(J/Q) is the regulator, ΩJ is the real period of the Néron
differential andX(J/Q) is the Shafarevich-Tate group of J/Q. These terms
are defined in [49, §F.4.1].

It can be shown that if X(J/Q) is finite, then in this particular case
its order must be a square. The real period ΩJ is probably not too hard
to compute; for Jacobian surfaces a method due to Wetherell is reproduced
in [44, §3.5]. So in order to check (6.2) up to an integral square, the main
problem is the computation of the regulator of a subgroup of J(Q) of finite
index.

The curve Xdyn
0 (6) is a non-hyperelliptic curve of genus 4 without any

special properties. We refer to [97] for the construction of a model C of

Xdyn
0 (6) that is given by a curve of bidegree (3, 3) in P1 × P1 with affine

equation

G(u,w) = w2(2+1)u3− (5w2+w+1)u2−w(w2−2w−7)u+(w+1)(w+3).

We will also use the image of this under the Segre embedding into P3. This
yields a model C ′ of Xdyn

0 (6) given by

x10x01 + x00x11 = 0,

x300 − x00x
2
10 + x200x01 − 5x00x10x01 + 2x210x01 − x10x

2
01 + x210x11

+ 7x10x01x11 − x
2
01x11 − 2x10x

2
11 − 3x311 = 0.

In order to compute intersection numbers, we need to find a regular model
over each Spec(Zp). Stoll has already computed such models. The only
primes of singular reduction are p = 2 and p = 8029187; the reduction
of C modulo the latter is regular, so only the prime p = 2 remains to be
considered. Here Stoll finds a desingularization in the strong sense of the
closure of C over Spec(Z2) consisting of two elliptic curves A and B and
three rational curves S, S′ and T . The corresponding intersection matrix is
given by:

A B S S′ T

A -4 2 1 1 0
B 2 -2 0 0 0
S 1 0 -2 0 1
S′ 1 0 0 -2 1
T 0 0 1 1 -2

In [97, §3] Stoll lists ten rational points P0, . . . , P9 ∈ C(Q) (none of which
come from a rational 6-cycle) and shows that the divisors supported in them
generate a subgroup G of J(Q) of rank 3. Moreover, he proves that the first
part of the Birch and Swinnerton-Dyer conjecture predicts that the rank
of J(Q) is exactly 3, which would imply that G has finite index in J(Q).
We have listed coordinates for P0, . . . , P9 on C and on C ′ in Table 6.7; here



6.2. INTERSECTION THEORY 175

((U1 : U2), (W1 : W2)) ∈ C (x00 : x01 : x10 : x11) ∈ C
′ cpt

P0 ((0 : 1), (1 : 0)) (0 : 1 : 0 : 0) A
P1 ((0 : 1), (−1 : 1)) (0 : −1 : 0 : 1) B
P2 ((0 : 1), (3 : 1)) (0 : 3 : 0 : 1) B
P3 ((1 : 0), (0 : 1)) (0 : 0 : 1 : 0) A
P4 ((1 : 1), (2 : 1)) (2 : 2 : 1 : 1) T
P5 ((2 : 1), (1 : 1)) (2 : 1 : 2 : 1) B
P6 ((1 : 1), (1 : 0)) (1 : 1 : 0 : 0) A
P7 ((1 : 0), (−1 : 1)) (−1 : 0 : 1 : 0) A
P8 ((−1 : 1), (1 : 0)) (−1 : 1 : 0 : 0) A
P9 ((−4 : 5), (−1 : 1)) (4 : −5 : −4 : 5) B

Table 6.7: Rational points on models of Xdyn
0 (6)

(U1 : U2) and (W1 : W2) are the homogenizations of u and w, respectively,
and cpt is the component on the regular model of C over Spec(Z2) given
above that the respective point maps to. This component can be determined
easily by following through the blow-ups necessary for the construction of
the regular model.

Lemma 6.9. Let D = (P0) − (P1), let E = (P2) − (P1) and let F =
(P4)− (P2). Then the points P,Q and R generate G, where

P = [D], Q = [E] and R = [F ].

Moreover, we have

D ∼ (P7) + (P9)− (P6)− (P8) =: D′

E ∼ (P3) + (P5) + (P6)− (P0)− (P7)− (P9) =: E′

2F ∼ (P3) + 2(P5)− (P0)− 2(P6) := F ′

Proof. This follows easily from the six independent linear equivalence rela-
tions between the (Pi) and subsequent remarks given in the proof of [97,
Lemma 4].

For the next step, we need to compute the intersection multiplicities
between different (Pi). It turns out that there are very few non-trivial
intersections. Indeed we have (with the obvious abuse of notation)

i2((P6), (P8)) = 1, i2((P1), (P9)) = 1, i5((P7), (P9)) = 1,

and all other intersection multiplicities are trivial. For p 6= 2 we can show
this using Lemma 5.17. We also have that P5 reduces to the same singular
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point as P1 and P9 modulo 2, but blowing up this point separates the image
of P5 from the image of P1 and P9.

Using Lemma 6.9 we can now split up the computation of the terms
appearing in the regulator of G as follows:

ĥ(P ) = −〈D,D〉 = −〈D,D′〉 = −
∑

p∈M0
Q

〈D,D′〉p − 〈D,D
′〉∞

ĥ(Q) = −〈E,E〉 = −〈E,E′〉 = −
∑

p∈M0
Q

〈E,E′〉p − 〈E,E
′〉∞

ĥ(R) = −〈F,F 〉 = −
1

2
〈F,F ′〉 = −

∑

p∈M0
Q

1

2
〈F,F ′〉p −

1

2
〈F,F ′〉∞

(P,Q) = −〈D,E〉 = −〈D′, E〉 = −
∑

p∈M0
Q

〈D′, E〉p − 〈D
′, E〉∞

(P,R) = −〈D,F 〉 = −〈D,F 〉 = −
∑

p∈M0
Q

〈D,F 〉p − 〈D,F 〉∞

(Q,R) = −〈E,F 〉 = −〈E′, F 〉 = −
∑

p∈M0
Q

〈E′, F 〉p − 〈E
′, F 〉∞

The correction terms at p = 2 are easily computed using one of the two ap-
proaches in Section 5.3.5, because we have the intersection matrix available
and we know which components the Pi map to. This finishes the computa-
tion of the non-archimedean local Néron symbols.

Recall that for the computation of the archimedean local Néron sym-
bol one of the divisors should be the difference of two non-special divisors
with disjoint support. In the present situation this can be arranged easily.
Combining everything, we have:

ĥ(P ) =
1

2
log 2−

1

2
〈D, 2D′〉∞

ĥ(Q) = log 2−
1

4
〈4E,E′〉∞

ĥ(R) = −
1

2
log 2−

1

8
〈4F,F ′〉∞

(P,Q) = − log 2−
1

2
〈2D′, E〉∞

(P,R) =
1

2
log 2−

1

4
〈D, 4F 〉∞

(Q,R) = −
1

4
〈E′, 4F 〉∞

For the computation of the archimedean local Néron symbols see Section
5.3.6 and the introduction to the present section. Since the algorithms of
Deconinck et al. use Puiseux expansions, we are likely to need a plane curve



6.2. INTERSECTION THEORY 177

in P2 or A2 to construct the Riemann surface of the curve and this was the
case in the Maple package. Since the algorithms are supposed to work on
singular Riemann surfaces, this is not an essential restriction, since we can
use a map to a suitable curve in P2 that is birationally equivalent to C ′. This
way it will be possible to complete the example once a new implementation
of the necessary algorithms exists.
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Appendix A

Proofs of some results from
Chapter 3

A.1 Proof of Lemma 3.16

In this section we prove Lemma 3.16 using case distinctions and elementary
algebraic manipulations. It would be interesting to find a more conceptual
proof. In all cases F is of the form F (X,Z) = f1XZ

5 + f3X
3Z3 + f5X

5Z.

Case (a): H = Z3, f5 6= 0

The identity δ̃i(x) = K̃(x) = 0 implies

0 = δ̃2(x) + f3K̃(x) = f5x
4
1

and thus x1 = 0. We find 0 = δ̃1(x) = f5x
4
2 and hence x2 = 0. Then we also

obtain x3 = 0 from 0 = K̃(x) = f5x
4
3 and thus 0 = δ̃4(x) = x44 means that

indeed xi = 0 holds for all i ∈ {1, 2, 3, 4}.

Case (b): H = XZ2, f1f5 6= 0

Similar to case (a) we have

0 = δ̃2(x) + δ̃3(x)K̃(x) = f5x
2
1x

2
3,

so we must have x1 = 0 or x3 = 0.
If x1 = 0, then 0 = δ3(x) = f5x

4
3, thus x3 vanishes. The Kummer

surface equation then reads 0 = K(x) = x22x
2
4, whence x2 = 0 or x4 = 0

follow. However, if x2 = 0, then we get 0 = δ4(x) = x44 and if x4 = 0,

179
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then we get 0 = δ4(x) = f21f
2
5x

4
2. Therefore we can deduce xi = 0 for all

i ∈ {1, 2, 3, 4} in both subcases.
In the other case x3 = 0 implies 0 = δ3(x) = f21x

4
1, so x1 vanishes and

we are again in the situation already considered above.

Case (c): H = X2Z +XZ2, f1f5(f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 ) 6= 0

For this case, which is slightly more complicated than the two previous cases,
we employ a case distinction on x1. First we assume x1 = 0 and show that
necessarily the other xi must be equal to zero as well. Then we suppose
x1 6= 0 and derive a contradiction. We set β := f1 + f3 + f5 + f21 + f23 + f25 .

So let x1 = 0. Then we get

0 = δ3(x) = x23(x4 + f5x3)

which means that we must have x3 = 0 or x4 = f5x3.
If x3 = 0, then 0 = K(x) = x22x

2
4 implies x2 = 0 or x4 = 0. But from

0 = δ4(x) = x44 + f21f
2
5x

4
2

the result follows.
If we have x4 = f5x3 6= 0 instead, then we find

0 = K(x) = f25x
2
3(x2 + x3),

so that we get x2 = x3 6= 0 and hence

0 = δ4(x) = f25βx
4
3,

a contradiction. This means that x1 = 0 = δi(x) is only possible if we have
xi = 0 for all i.

Now we consider the case x1 6= 0, so we may assume that x1 = 1. Here
we get

0 = δ2(x) + f3K(x) = (1 + x2 + x3)x3(x4 + f1 + f5x3).

If x3 = 0, then we find
0 = δ1(x) = f21 + x24

which implies x4 = f1 and hence

K(x) = f21 (1 + x2)
2

from which the contradiction

0 = δ4(x) = f21β (A.1)
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follows.
Next we suppose that x4 = f1 + f5x3, leading to 0 = δ1(x) = f25x

2
3(1 +

x2 + x3)
2, so that either x3 = 0 which leads to a contradiction by (A.1) or

1+x2+x3 = 0 must hold. However, in that case we deduce 0 = K(x) = x23β,
so we get a contradiction anyway.

Finally, we assume that 1 + x2 + x3 = 0 and obtain

0 = δ1(x) = (x4 + f1 + f5x3)
2,

so we are in the case x4 + f1 + f5x3 = 0 anyway, proving the lemma.

A.2 Proof of Lemma 3.18

In all cases our method is to first assume x1 = 0 and then show that either
xi = 0 for all i or yi = 0 for all i follows. To finish the claim, we assume
x1 6= 0, so without loss of generality x1 = 1, and then show that all yi must
be zero. We abbreviate x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). There
are a lot of nested case distinctions, so in order to follow the proof, the main
difficulty is to remember at each step which assumptions were made. As in
the case of Lemma 3.16 a conceptual proof would be of interest.

Case (a): H = Z3

First we assume x1 = 0. Then we get

0 = B12(x, y) = f5x
2
2y

2
1.

If x2 = 0, but y1 6= 0, then we find

0 = B14(x, y) = f5x
2
3y

2
1,

0 = B11(x, y) = x24y
2
1,

so all xi vanish.
If we have y1 = 0 6= x2 instead, then all yi are zero, because one can

show that

0 = B14(x, y) = f25x
2
2y

2
2,

0 = B22(x, y) = x22y
2
4,

0 = B11(x, y) = f25x
2
2y

2
3.

The third case we have to look at is the case x2 = y1 = 0. In this situation
we get 0 = B22(x, y) = x24y

2
2, so x4 = 0 or y2 = 0. We also have 0 = K(x) =

f25x
4
3 and hence x3 = 0. So we may assume y2 = 0 6= x4 which implies

0 = B33(x, y) = (y3x4)
2 and 0 = B44(x, y) = (x4y4)

2,
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therefore we get y3 = y4 = 0.
Now that we have finished proving that x1 = 0 implies the lemma in

case (a), the remaining step is to deduce that all yi must be equal to zero
under the assumption x1 = 1. This follows quickly from the observation

0 = B12(x, y) = f5(y2 + x2y1)
2,

since then we have y2 = x2y1, leading to

0 = B23(x, y) = f5(y3 + x3y1)
2, so y3 = x3y1

and 0 = B11(x, y) = (y4 + x4y1)
2, so y4 = x4y1

and 0 = B24(x, y) = f25y
2
1 .

Hence all yi vanish.

Case (b): H = XZ2

Suppose x1 = 0 and observe 0 = B12(x, y) = f5x
2
3y

2
1, implying either x3 = 0

or y1 = 0.
If x3 = 0, then we get

0 = K(x) = x22x
2
4, so x2 = 0 or x4 = 0.

If x2 = 0, then we have

0 = B11(x, y) = x24y
2
1 = B22(x, y) = x24y

2
2 = B33(x, y) = x24y

2
3

from which xi = 0 for all i or yi = 0 for all i follows.
If x4 = 0, we observe that

0 = B11(x, y) = f25x
2
2y

2
3 = B22(x, y) = x22y

2
4 = B33(x, y) = f21x

2
2y

2
1

= B44(x, y) = f21 f
2
5x

2
2y

2
2

and so we find again that xi = 0 for all i or yi = 0 for all i.
Now we suppose that y1 = 0 6= x3. This has the following consequence:

0 = B34(x, y) = f25x
2
3y

2
3

Hence we get y3 = 0, implying 0 = B33(x, y) = x23y
2
4 and 0 = B11(x, y) =

f25x
2
3y

2
2 , therefore all yi must vanish.

We now consider the case x1 = 1. Then we obtain

0 = B34(x, y) = y21(f1 + f5x
2
3)

2 (A.2)

and hence either y1 = 0 or we can express f1 as f1 = f5x
2
3.

The first case is y1 = 0, which implies y3 = 0 and 0 = B23(x, y) = x3y2y4.
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If x3 = 0, we get

0 = B11(x, y) = y24 and 0 = B33(x, y) = f21y
2
2 ,

thus y2 = y4 = 0.
If we have y2 = 0 in (A.2), then again 0 = B11(x, y) = y24, so y4 = 0.

Finally, if we have y4 = 0 in (A.2), then y2 = 0 follows from 0 = B33(x, y) =
f21y

2
2 .
In order to prove the lemma in case (b), it remains to prove it in the

case x1 = 1, y3 = x3y1, f1 = f5x
2
3. Assuming this leads to x3 6= 0 and hence

y3 = 0. We also find

0 = B33(x, y) = x23(y4 + x4y1 + f5x3(y2 + y1x2))
2 = 0, (A.3)

whence y4 = x4y1 + f5x3(y2 + y1x2).
Using this relation we find

0 = B23(x, y) = f5x
2
3(y2 + x2y1)

2

and hence y2 = x2y1, whereby y1 = y2 = 0 follow from

0 = B24(x, y) = f5x
2
3y

2
1.

We also have y3 = 0 from (A.2) and y4 = 0 because of (A.3), which proves
part (b) of the lemma.

Case (c): H = X2Z +XZ2, f1f5(f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 ) 6= 0

Let β := f1 + f3 + f5 + f21 + f23 + f25 . This is the trickiest case of the
lemma, although it is, like the other cases, completely elementary. Having
said that, we again start off by assuming x1 = 0, yielding the following
Kummer surface equation

0 = K(x) = (f5x
2
3 + x2x4)

2

from which we get f5x
2
3 = x2x4. In turn this implies

0 = B13(x, y) = x3y1y3(x4 + f5x2).

Hence we have

x3 = 0 or y1 = 0 or y3 = 0 or x4 = f5x2. (A.4)

We first assume y1 = 0 and get

0 = B34(x, y) = x4y3(y4 + f5y3)(x2 + x3)
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and therefore

x4 = 0 or y3 = 0 or y4 = f5y3 or x2 = x3. (A.5)

We actually go through all the cases in (A.5). This is a rather tedious task,
but we will be rewarded later on, as we can reuse several of the results in
the other cases appearing in (A.4).

Suppose y3 = 0. Then we get

0 = B33(x, y) = x23y
2
4. (A.6)

If x3 = 0, then we have
0 = K(x) = x22x

2
4.

Now we find

x2 = 0⇒ 0 = B22(x, y) = x24y
2
2, 0 = B44(x, y) = x24y

2
4

and
x4 = 0⇒ 0 = B22(x, y) = x22y

2
4 , 0 = B44(x, y) = f21f

2
5x

2
2y

2
2 ,

so we see that in both cases we either have xi = 0 for all i or yi = 0 for all i.
If y4 = 0 holds in (A.6), then we get

0 = B22(x, y) = x24y
2
2, 0 = B44(x, y) = f21 f

2
5x

2
2y

2
2

so either y2 = 0 or x2 = x4 = 0, in which case we have 0 = K(x) = f25x
4
3.

This finishes the case y3 = 0 in (A.5).
If x4 = 0 in (A.5), then we obtain

0 = B22(x, y) = x22y
2
4, 0 = B33(x, y) = x23y

2
4 ,

so y4 = 0 or x2 = x3 = 0.
If we have x2 = x3 = 0, this means that we are already done. If instead

we have y4 = 0, we get

0 = B11(x, y) = f25x
2
2y

2
3

We have already dealt with the case y3 = 0, so we can assume x2 = 0. But
this leads to 0 = K(x) = f25x

4
3 again.

The next case in (A.5) that we consider is the case y4 = f5y3 which
implies K(y) = f25 y

2
3(y2 + y3)

2. Since we know that y3 = 0 implies our
claim, we can assume y2 = y3 6= 0. Then we get

0 = B33(x, y) = y23(x4 + f5x3)
2 and

0 = B22(x, y) = f25 y
2
3(x2 + x3)

2;

therefore x4 = f5x3 and x2 = x3 follow, implying

0 = B44(x, y) = f25βx
2
3y

2
3,
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and finally x2 = x3 = 0.
In order to finish off (A.5) we assume x2 = x3, thus

K(x) = x23(f5x3 + x4)
2.

Assuming x3 = 0, we deduce from x2 = x3 = 0 and

0 = B22(x, y) = x24y
2
2

0 = B33(x, y) = x24y
2
3

0 = B44(x, y) = x24y
2
4

that we have either xi = 0 for all i or yi = 0 for all i.
So we consider the case x4 = f5x3 6= 0 and find that

0 = B33(x, y) = x23(y4 + f5y3)
2.

Hence we have
0 = B22(x, y) = f25x

2
3(y2 + y3)

2.

But if y2 = y3, then 0 = B44(x, y) = f25βx
2
3y

2
3 and so y3 = 0, a case we have

dealt with already. Therefore we have proved the assertion of the lemma for
the case x1 = y1 = 0.

Now we go back to (A.4) and assume that x3 = 0. The Kummer surface
equation then tells us that either x2 = 0 or x4 = 0. But we find that

x2 = 0⇒ 0 = B11(x, y) = x24y
2
1 = B22(x, y) = x24y

2
2

= B33(x, y) = x24y
2
3 = B44(x, y) = x24y

2
4

and

x4 = 0⇒ 0 = B11(x, y) = f25x
1
2y

2
3 = B22(x, y) = x22y

2
4

= B33(x, y) = f21x
2
2y

2
1 = B44(x, y) = f21 f

2
5x

2
2y

2
2.

Thus we get that in both cases either xi = 0 for all i or yi = 0 for all i.
The next possible case from (A.4) is y3 = 0. Because of what we have

shown already, we can assume y1x3 6= 0. We find that

0 = B23(x, y) = y1x3(x2 + x3)(f1y1 + y4),

so that either x2 = x3 6= 0 or y4 = f1y1 6= 0. In the former case we have
0 = B33(x, y) = x23(y4 + f1y1)

2, so we are in the latter case anyway.
Accordingly we suppose y4 = f1y1 6= 0 which means that

K(y) = f21 y
2
1(y1 + y2)

2.

Thus y2 = y1 6= 0 and from 0 = B44(x, y) = f21 y
2
1(x4 + f5x2)

2 we get
x4 = f5x2 which ultimately leads to

0 = B22(x, y) = βx23y
2
1,
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a contradiction. This finishes case (c) of the lemma in the case x1 = 0.
Now we assume x1 = 1. It turns out that it is a good idea to further

distinguish between the cases y3 = 0 and y3 6= 0.
We start with the case y3 = 0 which leads to

0 = B11(x, y) = (y4 + x4y1 + f5x3y2)
2 (A.7)

and thus
0 = B12(x, y) = f5x3(y1 + y2)

2 = 0 (A.8)

so that we either get x3 = 0 or y1 = y2.
The assumption x3 = 0 yields

0 = B14(x, y) = (f1(y1 + x4))
2 ⇒ y1 = 0 or x4 = y1.

If y1 = 0, then 0 = B33(x, y) = f21 y
2
1, so we conclude y2 = y1 = 0 by

assumption and also y4 = 0 due to (A.7), thus all yi vanish.
If, on the other hand, x4 = f1 and y1 6= 0, then we have

0 = B22(x, y) = f21 (y2 + x2y1)
2;

therefore we get y2 = x2y1 and

0 = B24(x, y) = f21 y
2
1(x2 + 1)2

which implies 0 = B44(x, y) = f21βy
2
1 , contradicting our assumptions.

At this point we return to the other possible case in (A.8), namely the
case y1 = y2. It leads to

0 = B14(x, y) = y22(x4 + f1 + f5x3),

that is y2 = 0 or x4 = f1 + f5x3. But y1 = y2 and (A.7) already imply that
in the former case all yi vanish, whereas in the latter case we can assume
y2 6= 0 and 1 + x2 + x3 = 0 from

0 = B33(x, y) = f21 y
2
2(1 + x2 + x3)

2 = 0.

The final step is then to look at B44(x, y), which is equal to f21βy
2
2 and thus

gives the desired contradiction.
The only remaining case is x1 = 1 = y3. The first helpful observation is

0 = B11(x, y) = y4 + y1x4 + f5x2 + f5x3y2,

hence we must have

y4 = y1x4 + f5x2 + f5x3y2. (A.9)

Using this consequence we obtain

x2 = 1 + x3(y1 + y2)
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from
0 = B12(x, y) = f5(x2 + 1 + x3(y1 + y2))

2.

Thus we deduce

0 = B34(x, y) = y1x3(x4 + f5x3 + f1y1 + f1y2)
2, (A.10)

that is y1 = 0 or x3 = 0 or x4 = f5x3 + f1y1 + f1y2. We handle these cases
separately.

Let us first suppose y1 = 0, in which case we have

0 = B14(x, y) = f25x
2
3(y2 + 1)2 (A.11)

and thus x3 = 0 or y2 = 1.
In case y2 = 1, we consider K(y) = (y4 + f5)

2, so y4 = f5 and moreover

0 = B33(x, y) = (x4 + f1 + f5x3)
2

implying 0 = B22(x, y) = β which cannot happen by assumption.
But if x3 = 0 and y2 6= 1, then we observe 0 = B33(x, y) = (x4 + f1y2)

2,
hence 0 = B23(x, y) = f1(1 + y2)

2 gives us a contradiction.
We proceed by assuming that x3 = 0 6= y1 in (A.10); here we observe 0 =

B14(x, y) = y21(x4 + f1)
2, whereby x4 = f1. We then have 0 = B33(x, y) =

f21 (1 + y1 + y2)
2, so that we can deduce y1 + y2 + 1 = 0 and thus 0 =

B22(x, y) = β, a contradiction.
The upshot of this is that in order to finish the proof of the lemma we can

assume we are in the case x1 = 1 = y3, x3y1 6= 0 and x4 = f5x3+f1y1+f1y2
(see (A.10)). We can see immediately that we have

0 = B23(x, y) = f1(1 + y1 + y2)
2(1 + x3y1)

2.

Upon noticing

1 + y1 + y2 = 0⇒ 0 = B24(x, y) = βx3y1

we may thus assume that x3y1 = 1 and y1 + y2 6= 1.
We have

0 = B14(x, y) = (1 + y1 + y2)
2(f5x3 + f1y1)

2,

resulting in f5x3 = f1y1. This relation allows us to obtain

x4 = f1y2

from (A.10) and hence y4 = f1y1y2 from (A.9). We also have f5 = f5x3y1 =
f1y

2
1. Now we make these substitutions in K(y) and find that

0 = K(y) = y21(f
2
1 y

4
2 + f1y

2
2 + f3 + f23 )

so that f21 y
4
2 = f1y

2
2 + f3+ f23 . But if we plug this into B24(x, y) we see that

0 = B24(x, y) = f1(y1 + y2 + 1)2,

contradicting the assumption y1 + y2 + 1 6= 0.
This finally completes the proof of the lemma.
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A.3 Proof of Proposition 3.28

Recall that we must have xi 6= 0 and yj 6= 0 for some i, j.

Case (i)

This is part of the proof of [94, Proposition 3.2].

Case (ii)

Part (1): We have δ4(x) = x44 and

δ4(x) = 0⇔ x4 = 0⇔ δ(x) = 0.

Part (2): We have B44 = x24y
2
4. If we assume x4 = 0 6= y4 and B = 0, then

we find Bii = xiy
2
4 for i = 1, 2, 3, so

B = 0⇒ x4 = y4 = 0⇒ δ(x) = δ(y) = 0.

Case (iii)

Part (1): We have δ4(x) = x44 and

δ4(x) = 0⇔ x4 = 0⇔ δ(x) = 0.

However,
x4 = 0⇒ K(x) = a2x41 ⇒ x1 = 0.

Part (2): We have B44 = x24y
2
4. If we assume x4 = 0 6= y4 and B = 0, then

we find Bii = xiy
2
4 for i = 1, 2, 3, so

B = 0⇒ x4 = y4 = 0⇒ δ(x) = δ(y) = 0.

Case (iv)

Part (1): We have δ1(x) = x21x
2
4, δ2(x) = 0, δ3(x) = a2x41, δ4(x) = x44. But

we also have
K(x) = x22x

2
4 + x21x3x4 + a2x41

and hence
δ4(x) = 0⇔ x4 = 0⇔ δ(x) = 0,

with the additional condition x1 = 0.
Part (2): We have B44 = x24y

2
4. If we assume x4 = 0 6= y4 and B = 0, then

we find Bii = xiy
2
4 for i = 1, 2, 3, so

B = 0⇒ x4 = y4 = 0⇒ δ(x) = δ(y) = 0.
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Case (v)

Part (1): We have δ1(x) = 0, δ2(x) = a2x21x
2
3 = K(x), δ3(x) = 0, δ4(x) =

x44, so

δ4(x) = 0⇔ x4 = 0⇔ δ(x) = 0,

with the additional condition x1x3 = 0.
Part (2): We have B44 = x24y

2
4. If we assume x4 = 0 6= y4 and B = 0, we get

B11 = x21y
2
4 and B33 = x23y

2
4. Hence x1 = x3 = 0 which yields B22 = x22y

2
4

and thus

B = 0⇒ x4 = y4 = 0⇒ δ(x) = δ(y) = 0.

Case (vi)

Part (1): We have δ1(x) = b2x41, so δ(x) = 0 implies x1 = 0, which in turn
leads to δ4(x) = x44. Since x1 = x4 = 0 implies δ(x) = 0, we get

δ1(x) = δ4(x) = 0⇔ x1 = x4 = 0⇔ δ(x) = 0.

Part (2): We have B14 = b2x21y
2
1 = 0. If we assume B = 0 and x1 = 0 6= y1,

we get B11 = x24y
2
1, so x4 = 0 and B23 = b2x22y

2
1 follow. From x2 = 0 we

deduce B22 = b2x23y
2
1, so we get the contradiction x = 0 and hence we have

x1 = y1 = 0. But this means that we have

B44 = x24y
2
4, B22 = x24y

2
2 + x22y

2
4, B33 = x23y

2
4 + x24y

2
3.

From this we get x4 = y4 = 0 and hence δ(x) = δ(y) = 0.

Case (vii)

The proof is the same as in case (ii).

Case (viii)

Part (1): We have δ4(x) = x44 and in fact

δ4(x) = 0⇔ x4 = 0⇔ δ(x) = 0

as in case (ii).
Part (2): We have B44 = x24y

2
4, but if we suppose B = 0 and x4 = 0 6= y4,

we find B11 = x21y
2
4 and B33 = x23y

2
4 . Together these imply x1 = x3 = 0 and

moreover B22 = x22y
2
4, so we get x = 0, a contradiction. Thus we conclude

B = 0⇒ x4 = y4 = 0⇒ δ(x) = δ(y) = 0.
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Case (ix)

Part (1): We have δ4(x) = x44, so from δ(x) = 0 it follows that x4 = 0 and
thus δ1(x) = δ3(x) = 0. Furthermore, we get

δ2(x) = b(b2 + b)x21x
2
3 = bK(x),

so δ4(x) = 0⇔ x4 = 0 with the additional condition x1x3 = 0.
Part (2): The same proof given in case (viii), part (2), works here as well.

Case (x)

Part (1): We have δ1(x) = x21(x4 + ax1)
2. If x1 = 0, then δ4(x) = x44 and

since x1 = x4 = 0 implies δ(x) = 0, this case is finished. If we assume
x4 = ax1 6= 0, however, then we find δ4(x) = (a2 + a + b + b2)x41, so we
cannot have δ(x) = 0.
Part (2): This is the most tedious part of the proof. We distinguish between
the cases x1 = 0 and x1 6= 0 and start with the former. We find B44 = x24y

2
4

and suppose that we have both B = 0 and x4 = 0 6= y4. Then we may
assume y4 = 1, so B33 = (x3 + ax2y1)

2 and therefore x3 = ax2y1. From this
we can see that

B23 = ax22y
2
1(1 + ay21),

i.e. x2y1(1 + ay1) = 0.

• If x2 = 0, then also x3 = ax2y1 = 0, and we get the contradiction
x = 0.

• If y1 = 0, then x3 = ax2y1 = 0 and B22 = x22, so again we have x = 0.

• If ay1 = 1, then x3 = ax2y1 = x2 and this implies

B22 = x22(1 + ay21 + b2y21 + by21) = (a2 + a+ b+ b2)x22y
2
1 ,

which is impossible, since we must be in one of the two cases already
treated.

Therefore we find that x1 = x4 = 0 necessarily means that y4 vanishes. But
since we then have B33 = a2x22y

2
1, and the assumption y1 6= 0 implies x2 = 0

and B23 = ax23y
2
1 , hence x = 0, we deduce

B = x1 = 0⇒ δ(x) = δ(y) = 0.

Next we consider the situation B = 0, x1 6= 0 and we want to derive a
contradiction. We may assume x1 = 1 and find B11 = y24 + x24y

2
1 , so y4 =

x4y1, in turn implying B1,4 = y21(a + x4)
2. Hence we either have y1 = 0 or

y1 6= 0, x4 = a.
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• If y1 = 0, then also y4 = 0 and thus B33 = (ay2 + x4y3)
2 = 0. But

because of this we find

B23 = x24y
2
3 + x4y2y3 + ay2y3 + ay23 = y23(x4 + a)2

which implies x4 = a and thus y2 = y3. The contradiction is now
immediate from B22 = (a2 + a+ b+ b2)y23.

• If y1 6= 0 and x4 = a, we find y4 = ay1, whereby B44 = a2(a2+ a+ b+
b2)y21 . But since by assumption none of the factors vanish, we end up
with another contradiction, as desired.

Case (xi)

Part (1): We have δ3(x) = a2x41, so x1 = 0 follows from δ(x) = 0. But this
implies δ4(x) = x44 and x1 = x4 = 0 means that we have δ(x) = 0, so

δ1(x) = δ4(x) = 0⇔ x1 = x4 = 0⇔ δ(x) = 0.

Part (2): We have B34 = a2x21y
2
1, so x1y1 = 0 if B = 0. We assume x1 = 0 6=

y1 and find B11 = x24y
2
1, implying x4 = 0 and hence B33 = x23y

2
4 + a2x22y

2
1,

B22 = x22y
2
4 + b2x23y

2
1 and B23 = x2x3y1y4.

• If x2 = 0, then B22 = b2x23y
2
1 .

• If x3 = 0, then B33 = x22y
2
1.

• If y4 = 0, then B22 = b2x23y
2
1, B33 = x22y

2
1.

Since these all lead to the contradiction x = 0, we must have y1 = 0, but
from this x4 = y4 = 0 and thus δ(x) = δ(y) = 0 follow exactly as in case
(vi).

Case (xii)

This is part of the proof of [94, Proposition 3.2].

Case (xiii)

This is also part of the proof of [94, Proposition 3.2].

A.4 Proof of Lemma 3.46

Proof. (for v(2) = 0)
Let i ∈ {0, . . . ,m−1}. Since εv factors through the component group Φ,

it suffices to find a single P satisfying χ(P ) = i and εv(P ) = 2min{χ(P ),m−
χ(P )} to show that the lemma holds for i.
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If i = 0, then we can use εv(O) = 0, where O is the origin or more
generally any point in the kernel of reduction.

Let 0 < i < m/2. An unramified field extension yields an affine point P1

on C such that v(z(P1)) = i. Let P2 be any affine point mapping to B0 = A
such that z(P2) = 0. Then the point P = [(P1) − (P2)] on the Jacobian
satisfies

χ(P ) ∈ {i,m − i}.

Here we may assume that χ(P ) = i, since we could take P−
1 instead of P1 if

need be, where P−
1 is the image of P1 under the hyperelliptic involution.

Let x = (x1, x2, x3, x4) be a set of Kummer coordinates for P such
that x3 = 1. Then we see that n := v(x1) = v(z(P1)), v(x2) = 0 and
v(x4) ≥ n hold. We now take a closer look at the valuations of the entries of
the quadruple δ(x) = (δ1(x), δ2(x), δ3(x), δ4(x)). One can check easily that
v(δi(x)) ≥ 2n holds for all i ∈ {1 . . . , 4}.

Now we distinguish cases. If n < v(x4), then the unique term of valuation
equal to 2n appearing in δ3(x) is

4f21 f4x
2
1x

2
2 6= 0

and hence we get εv(P ) = v(δ(x)) = 2n = 2min{χ(P ),m − χ(P )}.
The case v(x4) = n is more difficult. Here we find that v(δ2(x)) = 2n if

the following expression has valuation equal to 2n, because the valuations
of all other summands are strictly larger than 2n:

r = 16x21x
2
3(f1f

2
4 − 20f2f3f4 + 5f33 ) + x24(5x

2
2f3 + 8x2x3f4) + 2x4(4x1x

2
2

f1f4 + 8x1x2x3f2f4 − 5x1x2x3f
2
3 − 6x1x

2
3f3f4)− 12x21x2x3f1f3f4

Next we assume that v(r) > 2n and show that it puts severe restrictions on
P2.

We can use the fact that x = (x1, x2, x3, x4) satisfies the defining equa-
tion K(x) = 0 of the Kummer surface, and the fact that since all summands
of δ3(x) have valuation greater than 2n, except for possibly 4f4(f1x1x2 −
x3x4)

2, our assumption v(r) > 2n leads to

f1x1x2 − x3x4 ≡ 0 (mod πn+1).

Playing around with these two ingredients (and skipping the rather tiresome
details), we arrive at the following necessary condition for r to satisfy v(r) >
2n:

4f1f4z(P2)
2 − (8f3f4 − 5f2f3)z(P2) + 4f24 ≡ 0 (mod π) (A.12)

However, there can be at most two possible values for the reduction of z(P2)
satisfying (A.12), hence we can, after possibly making another unramified
field extension, find a point on the reduction of the curve that does not
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satisfy (A.12). We lift it to C and set P2 equal to it to find a point on J
that satisfies

εv(P ) = v(δ3(x)) = 2n = 2min{χ(P ),m − χ(P )}.

The last remaining case is when m is even and χ(P ) = m/2. We pick
P = [(P1) − (P2)] with v(z(P1)) ≥ m/2 and v(z(P2)) = 0. Then we get
v(δi(x)) ≥ m for i ∈ {1, 2, 3, 4}. However, Stoll proves in [94] that in general
v(∆) is an upper bound for εv(P ), so that

εv(P ) = m = 2χ(P ) = 2min{χ(P ),m− χ(P )}

follows. The proof for v(2) > 0 is analogous.

A.5 Proof of Lemma 3.47

Proof. (for v(2) = 0)
The lemma holds trivially in several cases, namely when either P1 or P2

map to A (use the proof Lemma 3.46), when χ(P ) = m/2 (dito) or when
χ(P ) = 0 (as εv(P ) = 0⇔ v(x1)v(x4) = 0).

So we can assume 0 < v(z(P1)), 0 < v(z(P2)), implying v(x2) > 0 and
w(P ) = min{v(x1), v(x4)} < m/2. We show that we have εv(P ) = 2w(P )
directly; the first equality was the subject of Lemma 3.46. The two cases to
be considered are

(a) v(x1) < v(x4)

(b) v(x4) ≤ v(x1).

In case (a) we find δi(x) ≥ 2v(x1) for all i ∈ {1, 2, 3, 4}. In particular
the coefficient of x21x

2
3 in δ2(x) is equal to

16f1f
2
4 − 5f3(4f2f4 − f

2
3 )

and all other summands in δ2(x) have valuation strictly larger than 2v(x1).
However, the Kummer surface equation K(x) = 0 satisfies

K(x) ≡ (f23 − 4f2f4)x
2
1x

2
3 (mod π2n+1),

where n = v(x1). Therefore we get

δ2(x) ≡ 16f1f
2
4x

2
1x

3
3 (mod π2n+1)

and thus
v(δ(x)) = 2v(x1) = 2w(P ).

In case (b) we have δi(x) ≥ 2v(x4) for all i ∈ {1, 2, 3, 4} and v(δ3(x)) =
2v(x4); here the unique term in δ3(x) with lowest valuation is 4f4x

2
3x

2
4.

Hence we deduce
v(δ(x)) = 2v(x4) = 2w(P ).
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A.6 Proof of Lemma 3.53

Proof. We assume that v(2) = 0. The proof for residue characteristic 2
is virtually the same. We first assume v(x1)v(x3) = 0. By symmetry we
may assume v(x1) > 0 and v(x3) = 0; then we obviously have χ2(P ) =
0. We start with the assumption v(x1) < m1/2. Then we get v(x1) <
v(x4), implying K(x) ≡ (f23 − 4f2f4)x

2
1x

2
3 (mod π2v(x1)+1) which is impos-

sible, therefore
v(x4) ≤ v(x1)

follows. Then we see that

v(δ2(x)) = v(f4x
2
3x

2
4) = 2v(x4),

and hence from inspection of the other δi(x) we deduce that εv(P ) = 2v(x4).
If v(x2) = 0, then we also have

v(x1) < v(x4),

leading to
K(x) ≡ x22x

2
4 (mod π2v(x4)+1).

Thus we get v(x1) = v(x4) and hence

εv(P ) = 2v(x4) = 2v(x1) = 2min{χ1(P ),m1 − χ1(P )}.

But the fact that for any 0 ≤ i < m1/2 we can find a point P1 (possibly
defined over an unramified extension of the base field) satisfying v(z(P1)) = i
implies that we also have

εv(P ) = 2min{χ1(P ),m1 − χ1(P )} = 2v(x4)

for those x that satisfy v(x2) > 0
Now we look at the case when both x1 and x3 have positive valuation,

whence v(x2) = 0. If v(x1) < m1/2 and v(x3) < m2/2, then the definition
of x4 implies that we must have

v(x4) ≥ v(x1) + v(x3).

However, if v(x4) were strictly larger than v(x1)+v(x3), then K(x) would be
congruent to (f23 − 4f2f4)x

2
1x

2
3 modulo π2v(x1)+2v(x3)+1, which is impossible,

since (f23 − 4f2f4) does not vanish modulo π. Hence we deduce

v(x4) = v(x1) + v(x3)

and in this case the Kummer surface equation yields

v((f23 − 4f2f4)x
2
1x

2
3 + x22x

2
4 − 2f3x1x2x3x4) > 2(v(x1) + v(x3)). (A.13)
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It is easy to see that the δi(x) satisfy v(δi(x)) ≥ 2(v(x1) + v(x3)) for all i.
A closer look at δ2(x) reveals that the sum of the terms of lowest valuation
in δ2(x) is equal to

5f3((f
2
3 − 4f2f4)x

2
1x

2
3 + x22x

2
4 − 2f3x1x2x3x4) + 16f2f2x1x2x3x4,

so that by (A.13) we have

v(δ2(x)) = v(16f2f2x1x2x3x4) = v(x1) + v(x3) + v(x4) = 2(v(x1) + v(x3)).

The possible images of P under χ are listed below:

(v(x1), v(x3)), (m1−v(x1), v(x3))(v(x1),m2−v(x3)), (m1−v(x1),m2−v(x3))

Hence

εv(P ) = 2(min{χ1(P ),m1 − χ1(P )} +min{χ2(P ),m2 − χ2(P )})

follows.
In all remaining cases we have v(x1) ≥ m1/2 or v(x3) ≥ m2/2 and

by symmetry we may assume the latter. If we assume that 0 < v(x4) <
m3/2 + 2v(x1) holds, then we get

K(x) ≡ x22x
2
4 ≡ 0 (mod π2v(x4)+1),

a contradiction. Hence we see that v(x4) is at least m3/2 + 2v(x1) and it
follows easily that v(δi(x)) ≥ m3 + 2v(x1) holds.

First suppose 0 < v(x1) < m1/2. In this case we find that

δ3(x) ≡ 4(f21 f2 + 4f0f2f4)x
2
1x

2
2 (mod πm3+2v(x1)+1)

and therefore

εv(P ) = v(δ3(x)) = m3 + 2v(x1) = 2min{χ1(P ),m1 − χ1(P )}+ 2χ2(P ).

We proceed with the case v(x1) = 0 and observe

δ4(x) ≡ (f21 + 4f0f2)(f
2
3 − 4f2f4)x

4
1 (mod πm3+1),

whence
εv(P ) = v(δ4(x)) = m3 = 2χ2(P ).

Finally, if v(x1) ≥ m1/2 and v(x3) ≥ m2/2, then all δi(x) satisfy δi(x) ≥
m1 +m2. By Stoll’s bound from [92] this is also an upper bound for εv , so
we get

εv(P ) = m1 +m2 = 2χ1(P ) + 2χ2(P ).

This finally finishes the proof of Lemma 3.53.
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A.7 Proof of Proposition 3.56

Proof. Again we give the proof only when v(2) = 0, the complementary case
being entirely analogous.

In order to obtain formulas for µv in this case, we first observe that in
contrast to case (2) we have

f23 − 4f2f4 ≡ 0 (mod π)

and moreover a closer look at the coefficients of the Fi tells us

v(f23 − 4f2f4) ≥ min{m1,m2,m3}.

We first consider points P = [(P1)− (P2)] where P1, P2 ∈ C(kv) are nonsin-
gular and map to distinct components of the special fiber, so without loss of
generality P1 maps to A and P2 maps to E. In this case we obtain v(x4) > 0
and the computation of εv(P ) goes as follows:

We first show that we must have

v(x4) ≥ min{m1,m2,m3}.

Supposing the contrary, the Kummer surface equation reduces to

K(x1, x2, x3, x4) ≡ −2x1x3x4(2f2x1 + f3x2 + 2f4x3) ≡ 0 (mod πv(x4+1))

and this cannot happen, because the term in parentheses reduces to

2(1 − x(P̃1))(1− x(P̃2))

which is non-zero, since neither P1 nor P2 reduce to the singular point (1, 0).
We also find that m1 = min{m1,m2,m3} implies εv(P ) = v(δ1(x)) =

m1. By symmetry we also obtain εv(P ) = v(δ3(x)) = m3 whenever m3 =
min{m1,m2,m3} and if the inequality m2 < min{m1,m3} holds, then we
have εv(P ) = v(δ2(x)) = m2.

Next we consider the cases P 7→ [Di − A] and P 7→ [Di − E]. Clearly
we may assume i ≤ m3/2 (otherwise use −P ); in fact we first deal with the
case i < m3/2. We know that v(x3) = v(x(P1)) = i and v(x1) = v(x2) = 0.
Our usual observation tells us that we cannot have v(x4) < v(x3), since that
would imply

K(x1, x2, x3, x4) ≡ x
2
2x

2
4 (mod π2v(x4)+1).

Let x(P1) = x′(P1)π
i and y(P1) = y′(P1)π

i. Also let x′4 := π−ix4(x(P1) −
x(P2))

2. Then we have

x′4 ≡ 2f2x
′(P1)x(P2) + f3x

′(P1)x(P2)(x(P1) + x(P2)) + 2y′(P1)y(P2)

≡ 2x′(P1)x(P2)(1− x(P2)) + 2y′(P1)y(P2) (mod π).
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Since P1 7→ Di we have y
′(P1) ≡ −x

′(P1) (mod π). If we now suppose that,
in addition, we have y(P2) ≡ x(P2)(x(P2)−1) (mod π) (case [Di−A]), then

x′4 ≡ 4x′(P1)x(P2)(1− x(P2)) 6≡ 0 (mod π) (A.14)

and hence v(x4) = v(x3) = i follow. Moreover, we have

εv(P ) = v(δ1(x)) = 2v(x4) = 2i.

Of course this result also gives us the values of εv on the components [Bi−A]
and [Ci − A] in terms of i, where i satisfies i < m1/2 and i < m2/2,
respectively.

The case [Di − E], i.e y(P2) ≡ −x(P2)(x(P2) − 1) (mod π), is more
difficult, since then v(x4) > v(x3) = i holds (see (A.14)) and we need to
look more closely at the duplication polynomials.

Recall that we have set

m4 = min{v(x3) + v(f23 − 4f2f4), v(x3) + v(f5), v(x3) + v(f6),m3 − v(x3)}.

Lemma A.1. If P maps to [Di − E], then we have εv(P ) = v(x3) +m4

Proof. The Kummer surface equation reduces modulo πv(x3)+v(x4)+1 to

K(x1, x2, x3, x4) ≡ (f23 − 4f2f4)x
2
1x

2
3 − 2(2f2x1 + f3x2)x1x3x4

− 4f2(f5x1 − f6x2)x2x
2
3 + (f21 − 4f0f2)x

4
1

− 4f0f3x
3
1x2 − 4f0f4x

2
1x

2
2

≡ 0.

Hence we see that v(x4) ≥ m4 must hold. It is also easy to see that εv(P ) ≥
v(x3) +m4 holds.

First suppose m4 = m3 − v(x3). Then we have

δ3(x) ≡ 4(f21 − 4f0f2)x
2
1(f2x

2
1 + f3x1x2 + f4x

2
2) (mod πm3+1)

and it is a trivial check that this is not congruent to zero. Hence εv(P ) =
m3 = v(x3) +m4 follows.

Similarly, if m4 = v(x3) + v(f6), then we get

δ1(x) ≡ 16f2f6x
2
3(f2x

2
1 + f3x1x2 + f4x

2
2) (mod π2v(x3)+v(f6)+1)

and thus εv(P ) = 2v(x3) + v(f6) = v(x3) +m4.
In the situation m4 = min{v(x3)+ v(f23 − 4f2f4), v(x3)+ v(f5)} we have

to make a case distinction. From looking at the Kummer surface equation
we know that at least two of the valuations of (f23 − 4f2f4)x3, f5x3 and x4
must be equal. We have

δ2(x) ≡ x1x3δ
′
2 (mod πv(x3)+m4+1),
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where

δ′2 = 5f3x1x3(f
2
3 − 4f2f4) + 4f2f5x3(f2x1 − 3f3x2)− 12f2f3x1x4

+ 2(8f2f4 − 5f23 )x2x4.

If m4 = v((f23 − 4f2f4)x3) = v(f5x3) < v(x4), then a short calculation using
the Kummer surface equation reveals

δ′2 ≡ 5f3x1x3(f
2
3 − 4f2f4) + 4f2f5x3(f2x1 − 3f3x2)

≡ f2f5x2x3(8f3x2 + 16f2x1)

≡ 8f2f5x2x3(f3x2 + 2f2x1)

≡ 16f2f5x2x3(1− x(P2)) (mod πm4+1)

and hence εv(P ) = v(x3) +m4.
Now we assume m4 = v(f5x3) = v(x4) ≤ v((f23 − 4f2f4)x3. Here we

substitute

5f3x1x3(f
2
3−4f2f4) ≡ 5f3(4f2f5x2x3+4f2f3x1x4+2f23x2x4) (mod πm4+1)

in δ′2 and obtain

δ′2 ≡ 8f2f5x3(f3x2 + 2f2x1) + 8f2x4(f3x1 + f4x2)

≡ 16f2(x(P2)− 1)(f5x3 − x4) (mod πm4+1).

Hence assuming the incorrectness of the statement of the lemma implies

x4 ≡ f5x3 (mod πm4+1). (A.15)

However, a very similar reasoning (namely, substituting 8f2f5f3x2x3 in δ′2)
tells us that in this case we must also have

8f22 f5x3 ≡ (f23 − 4f2f4)x3. (A.16)

Combining (A.15) and (A.16) gives a contradiction to the vanishing of the
Kummer surface equation, which reduces to

K(x1, x2, x3, x4) ≡ f5x3 ≡ 0 (mod πm4+1).

This completes the proof of Lemma A.1.

Using a transformation of the curve we also get formulas for the value
of εv on all components of the form [Ci − A], [Ci − E] for i 6= m2/2 and
[Bi −A], [Bi − E] for i 6= m1/2.

What happens when P maps to [Dm3/2−A] (or [Dm3/2−E], which does
not make a difference)? Then v(x4) ≥ m3/2 and hence v(δi(x)) ≥ m3 can
be observed immediately. We find that

εv(P ) = v(δ3(x)) = m3 (A.17)
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using

δ3(x) ≡ −16f0f2f4x
2
1x

2
2 + 4f21 (f2x

2
1 + f3x1x2 + f4x

2
2)x

2
1 (mod πm3+1),

because the sum in parentheses can be easily seen not to be congruent to
zero.

Finally we get εv(P ) = m2 (or εv(P ) = m1) for P mapping to [Cm2/2 −
A], [Cm2/2 − E] (or [Bm1/2 − A], [Bm1/2 − E] respectively) using a suitable
transformation applied to (A.17).

This completes the determination of εv(P ) for all components of the
form [Bi −A], [Ci −A], [Di −A], [Bi − E], [Ci − E], [Di − E].

Now suppose P = [(P1) − (P2)] with 0 < v(x(P1)) =: i < m3/2 and
0 < −v(x(P2)) =: j < m1/2. In that case we have

x1 =
1

x(P1) + x(P2)
,

x2 = 1,

x3 =
x(P1)x(P2)

x(P1) + x(P2)
,

x4 =
F0(x(P1), x(P2)) + 2y(P1)y(P2)

(x(P1)− x(P2))2(x(P1) + x(P2))
.

Hence we find v(x1) = j, v(x2) = 0 and v(x3) = i. In order to determine
v(x4), notice that we have v(y(P1)) = i and v(y(P2)) = −2j; we write

x(P1) = πix′(P1), y(P1) = πiy′(P1), x(P2) = π−jx′(P2), y(P2) = π−2jy′(P2).

Looking more closely at the blow-ups necessary to compute the minimal
proper regular model of the curve, we see that y′(P1) ≡ ±x

′(P1) (mod π)
and y′(P2) ≡ ±x

′(P2)
2 (mod π). In fact we have

P1 7→ Di ⇔ y′(P1) ≡ −x
′(P1) (mod π)

P1 7→ Dm3−i ⇔ y′(P1) ≡ x
′(P1) (mod π)

P2 7→ Bj ⇔ y′(P2) ≡ x
′(P2)

2 (mod π)

P2 7→ Bm1−j ⇔ y′(P2) ≡ −x
′(P2)

2 (mod π).

Using

v(x4) = v(F0(x(P1), x(P2)) + 2y(P1)y(P2)) + 3j,

and

v(F0(x(P1), x(P2)) + 2y(P1)y(P2)) ≥ i− 2j

and the fact that we have

v(F0(x(P1), x(P2)) + 2y(P1)y(P2)) > i− 2j
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if and only if y′(P1)y
′(P2) ≡ x

′(P1)x
′(P2)

2 (mod π), we draw the conclusion
that

v(x4) = i+ j = v(x1) + v(x3)

holds whenever we are in the situation P 7→ [Di − Bj ] or P 7→ [Dm3−i −
Bm1−j ]. On the other hand, we see that

v(x4) > i+ j = v(x1) + v(x3)

holds for P 7→ [Dm3−i −Bj ] or P 7→ [Di −Bm1−j].
In both cases the inequality v(δi(x)) ≥ v(x1) + v(x3) holds for all i =

1, 2, 3, 4, but in the former case we can compute εv(P ) easily, because then

δ2(x) ≡ 5f3x
2
2x

2
4 − 10f23x1x2x3x4 + 16f2f4x1x2x3x4 (mod π2v(x4)+1)

and
K(x1, x2, x3, x4) ≡ x

2
2x

2
4 − 2f3x1x2x3x4 (mod π2v(x4)+1),

follow, similarly to (A.13). Therefore we deduce

εv(P ) = v(x1) + v(x3) + v(x4) = 2v(x4) = 2i+ 2j.

Recall the definition of m5 given in the statement of Proposition 3.56. For
the two remaining cases we show the following:

Lemma A.2. Suppose P maps to [Dm3−i −Bj ] or [Di −Bm1−j ]. Then we
have

εv(P ) = m5.

Proof. The Kummer surface equation reduces to

K(x1, x2, x3, x4) ≡ (f23 − 4f2f4)x
2
1x

2
3 − 2f3x1x2x3x4 − 4f2f5x1x2x

2
3

− 4f1f4x
2
1x2x3 − 4f0f4x

2
1x

2
2 − 4f6x

2
2x

2
3

≡ 0 (mod πv(x1)+v(x3)+v(x4)+1).

Hence we see that v(x4) ≥ m5 must hold.
First suppose that m5 = v(f0x

2
1). Then we get v(δi(x)) ≥ m5 for all i

and

εv(P ) = v(δ3(x)) = v(−16f0f2f4x
2
1x

2
2) = m5.

Similarly we find that

εv(P ) = v(δ1(x)) = v(−16f2f4f6x
2
2x

2
3) = m5,

whenever m5 = v(f6x
2
3).

Therefore we may reduce to the situation

m5 = min{2v(x4), v((f
2
3 − 4f2f4)x

2
1x

2
3), v(f1x

2
1x

2
3), v(f5x

2
1x

2
3)}
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and

K(x1, x2, x3, x4) ≡ (f23 − 4f2f4)x
2
1x

2
3 − 2f3x1x2x3x4 − 4f2f5x1x2x

2
3

− 4f1f4x
2
1x2x3 ≡ 0 (mod πv(x1)+v(x3)+v(x4)+1).

Now the easiest possibility is m5 = v((f23 − 4f2f4)x
2
1x

2
3). Then we have

v(δi(x)) ≥ m5 for all i and moreover

δ2(x) ≡ (5f23 − 4f2f4)x
2
1x

2
3 + (16f2f4 − 10f23 )x1x2x3x4

− 12f3x1x2x3(f2f5x3 + f1f4x1)

≡ 2x1x3(f
2
3 − 4f2f4)(f3x1x3 − 4x2x4) (mod πm5+1),

where the second congruence is due to the Kummer surface equation. Since
we also know v(x4) > v(x1) + v(x3), we deduce

εv(P ) = v(δ2(x)) = m5.

The remaining case

m5 = min{2v(x4), v(f1x
2
1x

2
3), v(f5x

2
1x

2
3)}

and

K(x) ≡ −2x1x2x3(f3x4 + 2f1f4x1 + 2f2f5x3) ≡ 0 (mod πv(x1x3x4)+1).
(A.18)

is slightly more difficult.
From (A.18) we obtain

γ := f3x4 + 2f1f4x1 + 2f2f5x3 ≡ 0 (mod πr+1),

where r = min{v(x4), v(f1x1), v(f5x3)}. It turns out that we always have

v(δi(x)) > min{v(x4), v(f1x1), v(f5x3)}

for all i, so we have to be more careful.
We first take a closer look at the Kummer equation. Because of our

assumption
m5 = min{2v(x4), v(f1x

2
1x

2
3), v(f5x

2
1x

2
3)}

it reduces to

K(x) ≡ x22x
2
4 − 4f2x

2
1x3x4 − 4f4x1x

2
3x4 − 2f1f2x

3
1 − 2f3f5x1x

3
3

− 4f1f5x1x
2
2x3 − 4f0f4x

2
1x

2
2 − 4f6x

2
2x

2
3 − 2x1x2x3γ

≡ 0 (mod π2r+1).

Now we substitute

f3x4 ≡ −2f1f4x1 − 2f2f5x3 (mod π2r+1)
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in f23K(x). We obtain

f23K(x) ≡ 4x22(f
2
2 f

2
4x

2
1 + f22f

2
5x

2
3 + (2f2f4 − f

2
3 )f1f5x1x3)

≡ 4x22(f1f4x1 − f2f5x3)
2 ≡ 0 (mod π2r+1),

and hence

f1f4x1 ≡ f2f5x3 (mod πr+1). (A.19)

In particular we have v(f1x1) = v(f5x3) = v(x4) = r because of f3x4 ≡
2f1f4x1 (mod πr+1).

Looking at the valuations of the δi(x), we find

v(δ1(x)) = v(4f2f
2
5x

2
2x

2
3) = 2v(x4),

v(δ3(x)) = v(4f2f
2
5x

2
2x

2
3) = 2v(x4),

v(δ4(x)) > 2v(x4).

We see that γ appears in δ2(x) with multiplicity −6f3x1x2x3, so that
subtracting 3f3K(x) from δ2 yields:

δ2(x) ≡ 2f2x
2
2x

2
4 + 8f1f4x1x

2
2x4 + 8f2f5x

2
2x3x4

+ 4(4f2f4 − f
2
3 )x1x2x3x4 + 4f1f3f5x1x

2
2x3

+ 16(f1f
2
4 + f22f5)x

2
1x

2
3 (mod πrx1x3+1).

Therefore we get

v(δ2(x)) ≥ min{2v(x4), v(f1x
2
1x

2
3), v(f5x

2
1x

2
3)}} = m5

and if we had εv(P ) > m5, then the following conditions would have to be
satisfied simultaneously:

• m5 = v(f1x
2
1x

2
3) = v(f5x

2
1x

2
3) < 2v(x4)

• v(f1) = v(f5)

• (f1f
2
4 + f22f5)x

2
1x

2
3 ≡ 0 (mod πv(f1x

2
1x

2
3)+1)

Note that we have

(f1f
2
4 + f22f5)x

2
1x

2
3 ≡ f2f5x1x

2
3(f4x3 + f2x1) (mod πv(f1)+1)

because of (A.19), so the last condition can only be satisfied if x1 + x3 ≡ 0
(mod πv(x1)+1) which means that x(P1)x(P2) ≡ −1 (mod π). But since εv
is constant on components, it is easy to see that this special case cannot
occur, finishing the proof of the lemma.
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Notice that we can eliminate 2v(x4) from the definition of m5, because
at least two of the terms in that definition must be equal. This is important
in practice, because it allows us to compute εv once we know the component
itself and the valuations of the coefficients of f .

We must now look at the case P 7→ [Dm3/2−Bj ], first for j 6= m1/2. The
case j = 0 has already been treated (see (A.17)). We check the duplication
polynomials and find v(δi(x)) ≥ m3 + 2v(x1) for all i ∈ {1, 2, 3, 4} and in
particular

δ3(x) ≡ 4f4(4f0f2 + f21 )x
2
1x

2
2 (mod πm3+2v(x1)+1),

so that
εv(P ) = v(δ3(x)) = m3 + 2v(x1)

follows. Using suitable transformations, we have also completed the cases
[Dm3/2 −Bj], [Bm1/2 − Cj ], [Bm1/2 −Dj], [Cm2/2 −Bj ] and [Cm2/2 −Dj ].

The final case we have to consider is v(x1) ≥ m1/2, v(x3) ≥ m3/2, i.e.
P maps to [Dm3/2 − Bm1/2]. We find v(δi(x)) ≥ m1 +m3 for all i and the
congruence

δ4(x) ≡ f
2
1f

2
5 + 16f0f2f4f6 − 4f0f2f

2
5 − 4f21 f4f6)x

4
2 (mod πm1+m3)

implies
εv(P ) = m1 +m3.

In order to deal with the cases [Dm3/2 − Cm2/2], [Bm1/2 − Cm2/2], [Bm1/2 −
Dm3/2], [Cm2/2 − Bm1/2] and [Cm2/2 −Dm3/2] we apply a suitable transfor-
mation as usual.

A.8 Proof of Theorem 3.62

Proof. In the course of this proof we do not assume that v(2) = 0 holds
from the beginning, although we will do so from some point onward. We
assume, however, that the cases are exactly as stated in Section 3.4.4, so in
particular we have H = 0 whenever v(2) = 0 holds. Note that if we have
residue characteristic 2, it will never play a role which of the two cases (i)
or (ii) we consider, see the end of Section 3.4.4.

The idea of the proof is, similar to the semistable case, to break the
problem down into a number of cases that are tractable and then use the
explicit expressions for the δi. It turns out that instead of looking at δ2(x)
we should consider δ′2(x) = δ2(x) − 5f3K(x), where K(x) is the Kummer
surface equation. Moreover we denote by y = (y1, y2, y3, y4) a set of v-
integral Kummer coordinates for 2P satisfying v(yi) = 0 for some i.

Note that unless we have K = I0, at least one of the following must hold:

v(h0) > 3l, v(h1) > l, v(f0) > 6l, v(f1) > 4l, v(f2) > 2l
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This is crucial in some of the estimates, so we postpone the case K = I0
until the end of the proof.

We first assume v(x1) = 0, v(x2) > 0 and 0 ≤ v(x3) ≤ 4l. In order to
figure out the valuation of x4, we can either check the definition of x4 or the
Kummer surface equation. Both methods lead to the result v(x4) ≤

1
2v(x3).

Hence we find

δ1(x) ≡ 4x1x
3
4 (mod π3v(x4)+1)

δ′2(x) ≡ 4x2x
3
4 + 12f3x1x3x

2
4 (mod πv(δ

′
2(x))+1)

δ3(x) ≡ 4x3x
3
4 (mod πv(x3)+3v(x4)+1)

δ4(x) ≡ x44 (mod π4v(x4)+1).

Suppose we have v(2) = 0. Then we can conclude εv(P ) = 3v(x4) and that
we can find Kummer coordinates y = (y1, y2, y3, y4) for 2P satisfying v(y1) =
0, v(y2) ≥ min{v(x2), v(x3) − v(x4) + v(3)} > 0, v(y3) = v(x3), v(y4) =
v(x4), so that εv(2P ) = 3v(x4) holds as well. Thus we obtain

µv(P ) =

∞∑

n=0

4−n−13v(x4) = v(x4). (A.20)

If we have v(2) > 0, then we use an observation that will also be impor-
tant later on, so we put it into a

Lemma A.3. If v(2) > 0, v(x1) = 0, v(x2) > 0 and 0 ≤ v(x3) ≤ 4l, then
we have

µv(P ) = v(x4).

Proof. A more detailed analysis of the δi(x) shows that we get

min{3v(x4) + 2v(2), 4v(x4)} ≤ εv(x) ≤ 4v(x4)

and if εv(x) = v(δ1(x)) < 4v(x4), then we find v(y1) = 0 and 0 < v(y4) <
v(x4), so 2P falls into the same case as P . For each point Q ∈ J(kv)
let x(Q) denote a set of integral Kummer coordinates for Q such that one
of the x(Q)i is a unit. Then we see that applying δ repeatedly to Kummer
coordinates x(2nP ) decreases v(x(2nP )4) at each step and hence yields some
t such that εv(2

tP ) = 4v(x(2tP )4) and εv(2
t+1P ) = 0. It follows that we

have µv(2
tP ) = v(x(2tP )4). By induction we get the desired result, because

if µv(2
n+1P ) = v(x(2n+1P )4), then we find

µv(2
nP ) =

1

4
εv(P ) +

1

4
µv(2

n+1P )

=
1

4
εv(P ) +

1

4
v(x(2n+1P )4)

=
1

4
εv(P ) +

1

4
(4v(x(2nP )4)− εv(2

nP ))

= v(x(2nP )4).
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Next we consider the situation v(x1) > 0, v(x2) = 0, v(x3) ≤ 2l. Since
x needs to satisfy the Kummer equation, we find that v(x4) > v(x3) fol-
lows (otherwise we would have K(x) ≡ x22x

2
4 (mod π2v(x4)+1). We get the

following congruences:

δ1(x) ≡ 4f3f
2
5x2x

3
3 (mod π3v(x3)+1)

δ′2(x) ≡ 0 (mod π3v(x3)+1)

δ3(x) ≡ 4f23 f6x
4
3 + 4x3x

3
4 + 4f3f5x

3
3x4 (mod π4v(x3)+1)

δ4(x) ≡ f23f
2
5x

4
3 (mod π4v(x3)+1)

If v(2) = 0, then we have

εv(P ) = v(δ1(x)) = 3v(x3)

and
v(y1) = 0, v(y2) > 0, v(y3) > 0, v(y4) = v(x3) ≤ 2l.

Now if v(y3) ≤ 4l, then we are in the case considered above, so the conclusion
is

µv(P ) =
1

4
µv(2P ) +

1

4
εv(P ) =

1

4
v(y4) +

3

4
v(x3) = v(x3). (A.21)

The case v(y3) > 4l will be dealt with later, because the situation differs for
different reduction types. However, we shall see that in all possible cases
(A.21) follows. In fact, we will see that for some reduction types (namely
II and II∗) it is impossible to have v(y1) = 0 and v(y3) > 2l.

Conversely, suppose v(2) > 0. Then the proof of the formula µv(P ) =
v(x3) is analogous to Lemma A.3.

The last case that we can cover simultaneously for all Kodaira types
K 6= I0 is the case v(x1) = v(x2) = 0 < v(x3) ≤ 2l. Here it is easy to see
that x3 and x4 must satisfy v(x3) = v(x4). Suppose we have v(2) = 0. The
δi(x) reduce to

δ1(x) ≡ 4(x1x4 − f5x2x3)(x
2
4 − f3f5x

2
3) (mod πv(δ1(x))+1),

δ′2(x) ≡ 4x2x4(x
2
4 + 3f3f5x

2
3) + 4x1x3(3x

2
4 + f3f5x

2
3) (mod πv(δ2(x))+1),

δ3(x) ≡ 4x3x4(x
2
4 + f3f5x

2
3) (mod πv(δ3(x))+1),

δ4(x) ≡ (x24 − f3f5x
2
3)

2 (mod πv(δ4(x))+1).

The idea is to look at a representation of P as a divisor on the curve; namely
let P1, P2 ∈ C such that P = [(P1) − (P2)]. As usual, we also write v for
the valuation extending v if the points are only defined over an extension.
See Remark A.4 below. We suppose without loss of generality that we have
v(x(P1)) = v(x3) > 0 and v(x(P2)) = 0. It turns out that we get

x4 ≡ ax(P1) (mod πv(x3)+1)
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and hence

δ1(x) ≡ ax(P1)
3
(
a− x(P2)

2
)2

(mod π3v(x3)+1)

δ′2(x) ≡ 16a2x(P1)
3x(P2)

(
a+ x(P2)

2
)

(mod π3v(x3)+1)

δ3(x) ≡ 4a2x(P1)
4x(P2)

(
a+ x(P2)

2
)

(mod π4v(x3)+1)

δ4(x) ≡ a2x(P1)
4
(
a− x(P2)

2
)2

(mod π4v(x3)+1).

Therefore we are required to make yet another case distinction.
Case x(P2)

2 6≡ ±a (mod π)
This case is easy: We find

v(δ1(x)) = v(δ′2(x)) = 3v(x3) = 3v(x4)

and
v(δ3(x)) = v(δ4(x)) = 4v(x3) = 4v(x4).

Therefore
εv(P ) = v(x3) = v(x4)

and
v(y1) = v(y2) = 0, v(y3) = v(y4) = v(x3) = v(x4)

follow. However, 2P again satisfies the condition of case x(P2)
2 6≡ ±a

(mod π) if and only if a and x(P2) satisfy a certain quartic polynomial
in two variables. Hence we cannot yet finish the proof for this case, but
need to discuss the two other possible cases first in order to give a formula
for µv(P ).

Case x(P2)
2 ≡ a (mod π)

Here we have
v(δ1(x)) > 3v(x4) = 3v(x3) = v(δ′2(x))

and
v(δ3(x)) = 4v(x4) = 4v(x3) < v(δ4(x)).

This means that 2P satisfies

v(y1) > 0 = v(y2), v(y3) = v(x3) < v(y4),

so because of v(x3) ≤ 2l, this is another case we have finished already, see
(A.21).

Case x(P2)
2 ≡ −a (mod π)

In this situation we find that

v(δ1(x)) = 3v(x4) = 3v(x3) < v(δ′2(x))

and
v(δ3(x)) > v(x4) = 4v(x3) = v(δ4(x)),
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implying that 2P satisfies

v(y1) = 0 < v(y2), v(y3) > v(x3) = v(y4).

We want to use (A.20) in order to conclude

µv(2P ) = v(y4) = v(x4)

and thus
µv(P ) = v(x4),

so we need to check that v(y3) ≤ 4l holds. Using (A.22) we find that

δ3(x)

δ2(x)
≡

1

4
x(P1) (mod πv(x3)+1),

whence we conclude
v(δ3(x))− v(δ2(x)) ≤ 2l

which immediately implies v(y3) ≤ 4l.

Remark A.4. Of course the Pi might only be defined over a possibly ramified
quadratic extension of the ground field, but this does not affect our results,
so we will not address this technical difficulty again. A different strategy
leading to the same result is the following: Use the duplication polynomials
directly to check that the conditions v(x1) = v(x2) = 0 < v(x3) = v(x4) ≤ 2l
imply that 2P falls into the preceding case or into the first case considered
above and that εv(x) = 3v(x4) holds. The desired results follows from this
(and similar computations for the other cases that we have to consider), but
the formulas are very long.

If we have char(kv) = 2, then the result follows upon observing v(x4) =
v(x3), v(δ1(x)) > 3v(x4), v(δ

′
2(x)) ≥ 3v(x4) and the congruences

δ3(x) ≡ (h2x3x4 + f3h3x
2
3)

2 (mod π4v(x3)+1),

δ4(x) ≡ (x24 + f3f5x
2
3)

2 (mod π4v(x4)+1)

combined with Lemma A.3.
From now on we assume that we are in the case char(kv) 6= 2. We

show that in order for P to map to J 0
v the point must satisfy v(x4) ≤ 2l

in all situations we have not considered yet and then we can use what we
have shown already. The proof for residue characteristic 2 follows the same
pattern: One shows using the exact same methods that v(x4) ≤ 2l must
hold and we can finish the proof easily using Lemma A.3 or very similar
statements. Therefore we have chosen to omit the details.

But now things start to get more complicated, because in order to deal
with points satisfying v(x1) = 0, v(x2) > 2l, v(x3) > 4l + 1 we need to
consider the different Kodaira types separately. These are the cases where
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the points Pi reduce to the same component Ci in the notation introduced
above. See Remark A.4. We can safely disregard points satisfying v(x1) =
0 = v(x2), v(x3) > 2l or v(x1) > 0 = v(x2), v(x3) > 2l which were left
out of the discussion so far, because they do not reduce to the connected
component of the identity on the special fiber of the Néron model (which
one could also show computationally by proving that such points are not in
the image of the Jacobian under the respective multiplication maps), unless
we are in a case of a reduction type having a trivial geometric component
group. These reduction types are precisely II and II∗; however, according
to our assumptions the coefficients of F must satisfy

v(f0) = 6l + 1, v(f1) ≥ 4l + 1, v(f2) ≥ 4l + 1

in case II or

v(f0) = 6l + 3, v(f1) ≥ 4l + 3, v(f2) ≥ 4l + 3

in case II∗, respectively. We thereby conclude that no point P1 on the curve
can satisfy v(x(P1)) > 2l, so that we are completely done with these two
cases already.

The next two reduction types in ascending order of size of Φ are III
and III∗ whose component groups have order 2. Therefore we do not have
to put any further restriction on a point P satisfying v(x1) = 0, v(x2) >
2l, v(x3) > 4l + 1 in order to ensure it reduces to J 0

v .

If K = III, then we have

v(f0) ≥ 6l + 1, v(f1) = 4l + 1, v(f2) ≥ 4l + 1.

In fact we may assume v(f0) ≥ 6l + 2, since otherwise there are no points
P of the present shape, see the discussion of type II. Looking at the Kum-
mer equation we find that necessarily 0 < v(x4) ≤ 2l must hold, because
otherwise

K(x) ≡ f21x
4
1 (mod π8l+3)

leads to a contradiction. Hence we have

δ1(x) ≡ 4x1x
4
3 (mod πv(δ1(x))+1),

δ4(x) ≡ 4x44 (mod πv(δ4(x))+1);

implying v(δ1(x)) = 3v(x4) and v(δ4(x)) = 4v(x4). Examining the other two
duplication polynomials we also find v(δ′2(x)) > 2l + 3v(x4) and v(δ3(x)) >
4l + 3v(x4). We deduce

εv(P ) = 3v(x4)

and furthermore

µv(P ) = v(x4) (A.22)
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using v(y1) = 0, v(y2) > 2l, v(y3) > 4l and v(y4) = v(x4).

For the proof of the statement for reduction type III∗ we first note that
we cannot have points P1 on the curve satisfying v(x(P1)) = 2l + 1. This
can be verified by tracing through the process of blowing up, since such a
point would have to reduce to a component of multiplicity greater than 1
on the special fiber of Cmin

v , which is absurd. Therefore we may assume
v(x(P1)) ≥ 2l + 2, v(x(P2)) ≥ 2l + 2 so that v(x2) ≥ 2l + 1, v(x3) ≥ 4l + 3
and using

v(f0) ≥ 6l + 5, v(f1) = 4l + 3, v(f2) ≥ 2l + 2

we find that

F (x(P1), 1)) ≡ f0 + f1x(P1) ≡ 0 (mod π6l+6)

and that

F (x(P2), 1)) ≡ f0 + f1x(P2) ≡ 0 (mod π6l+6).

Therefore we deduce v(x(P1)− x(P2)) ≥ 2l+ 3 and v(x22 − 4x1x3) ≥ 4l+ 6.

The Kummer equation reduces to

K(x) ≡ (x22−4x1x3)x
2
4+x

2
1(f

2
1x

2
1−4f0x1x4−2f1x2x4) (mod π6l+6+v(x4)),

so the vanishing of K(x) implies v(x4) ≤ 2l and hence the desired result
µv(P ) = v(x4) ≤ 2l follows in the same way as (A.22).

Reduction types IV and IV ∗, being the only types that can have com-
ponent groups of order 3, are only slightly more involved. Fortunately, there
is an easy criterion that tells us when two points on the curve mapping to
the components C1 or C2 map to the same component. This is completely
analogous to the elliptic curve situation, see [16].

If we have reduction type IV , then we get

v(f0) = 6l + 2, v(f1) ≥ 4l + 2, v(f2) ≥ 4l + 2

and moreover

y(P1)
2 ≡ f0 (mod π6l+3)

for a point P1 ∈ C such that v(x(P1)) > 2l. If we let f0 = π6l+2f ′0 and
denote the two square roots of f ′0 by α1 and α2, then P1 maps to C1, say, if
and only if

y(P1) ≡ π
3l+1α1,

and thus the point P = [(P1) − (P2)] ∈ J(kv) maps to J 0
v if and only if

v(x1) = 0, v(x2) > 2l, v(x3) > 4l+1 and f0 ≡ y(P1)y(P2) (mod π6l+3). As-
suming the first three conditions, the last condition is equivalent to v(x4) ≤
2l and we conclude

εv(P ) = 3v(x4)
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and
µv(P ) = v(x4)

as in the proof of (A.22).
The case of reduction type IV ∗ is similar, the only differences are that

we now have

v(f0) = 6l + 4, v(f1) ≥ 4l + 3, v(f2) ≥ 4l + 3

and that if P1 is a point satisfying v(x(P1)) > 2l, then for the same reason
as in the case of type III∗ the x-coordinate has valuation even greater than
2l+1, so that we can assume v(x1) = 0, v(x2) > 2l+1, v(x3) > 4l+3 and

f0 ≡ y(P1)y(P2) (mod π)6l+5.

We get the same results
εv(P ) = 3v(x4)

and
µv(P ) = v(x4).

If we are in case K = I∗n for n ≥ 0, then we have 4 components of simple
multiplicity in the special fiber Cmin

v which we denote by C1, C2, C3 and
C4. Here C1 is the component that contains all points P1 = (x, y) satisfying
v(x) ≤ 2l and the points at infinity. Recall that F (X,Z) = F1(X,Z)G(X,Z)
such that v(disc(F1)) > 0 and both the discriminant of G and the resultant
of F1 and G have valuation equal to zero. In the present case we have

v(disc(F )) = v(disc(F1)) = 12l + 6 + n

and
v(f0) ≥ 6l + 3, v(f1) ≥ 4l + 2, v(f2) ≥ 2l + 1.

Because of (A.20) we only need to check points P = [(P1)− (P2)] such that
P1 and P2 both map to the same component Ci, where i > 1. Our goal is
to prove that in this situation we always have v(x4) ≤ 2l, because then the
same proof as the one of (A.22) shows µv(P ) = v(x4) ≤ 2l.

We may assume that F1 is of the form

F1(X,Z) = x3 + a2X
2Z + a1XZ

2 + a0Z
3,

where ai ∈ Ov . We set

s(T ) := T 3 + a2,1T
2 + a1,2T + a0,3,

where ai = ai,jπ
(6−2i)l+j . Then we see that v(disc(s)) ≥ 0.

If v(disc(s)) = 0, then we have K = I∗0 . Note that we must have v(f0) =
v(a0) = 6l + 3 or v(f1) = v(a1) = 4l + 2. In this case let

s(T ) ≡ (T − t2)(T − t3)(T − t4) (mod π).
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The components Ci for i > 1 are defined by x′ ≡ ti (mod π), where x(P1) =
x′π2l+1. Therefore the points P ∈ J0(kv) are characterized among the points
satisfying v(x1) = 0, v(x2) ≥ 2l + 1, v(x3) ≥ 4l + 2 by

v(x22 − 4x1x3) ≥ 4l + 4.

We first prove a technical lemma. If we have x(P1) 6= x(P2), v(x(P1)) ≥
2l+ c, v(x(P2)) ≥ 2l+ c and v(x(P1)− x(P2)) = N > 2l+ c for some c ≥ 1,
then

v(F (x(P1), 1) − F (x(P2), 1)) ≥ 4l +N + 1 + c

follows immediately. We now show that we can restrict our attention to the
case where the inequality is strict.

Lemma A.5. Suppose we are in case K = I∗n such that n ≥ 0, x(P1) 6=
x(P2), v(x(P1)) ≥ 2l+c, v(x(P2)) ≥ 2l+c and v(x(P1)−x(P2)) = N > 2l+c
for some c ≥ 1.
If v(F (x(P1), 1) − F (x(P2), 1)) = 4l +N + 1 + c, then we find v(x4) ≤ 2l.

Proof. We use the definition of x4. We set x1 = 1, and we get

x4 =
F0(x(P1), x(P2)) + 2y(P1)y(P2)

(x(P1)− x(P2))2
.

But we have

F0(x(P1), x(P2))

= F (x(P1), 1) + F (x(P1), 1) + (x(P1)− x(P2))
2M0(x(P1), x(P2)),

where

M0(x(P1), x(P2)) = f2 + f3(x(P1) + x(P2)) + f4(x(P1) + x(P2))
2

+ f5(x(P1) + x(P2))(x(P1)
2 + x(P1)x(P2) + x(P2)

2)

+ f6(x(P1)
2 + x(P1)x(P2) + x(P2)

2)2.

Thus we clearly have

M0(x(P1), x(P2)) ≡ 0 (mod π2l+1)

and it suffices to show that

v(F (x(P1), 1) + F (x(P2), 1)) + 2y(P1)y(P2))) ≤ 4l +N + 1 + c (A.23)

in order to conclude

v(x4) ≤ 4l +N + 1 + c− 2N < 4l + 1 + c− (2l + c) = 2l + 1.

But this is easy: If v(F (x(P1), 1)) 6= v(F (x(P2), 1)), then we obtain

v(F (x(P1), 1) + F (x(P2), 1)) ≤ 4l +N + 1 + c
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and

v(y(P1)y(P2)) =
v(F (x(P1), 1)) + v(F (x(P2), 1))

2
> 4l +N + 1 + c,

proving (A.23).

If v(F (x(P1), 1)) = v(F (x(P2), 1)) < 4l + N + 1 + c, then (A.23) is
obvious.

Finally, suppose v(F (x(P1), 1)) = v(F (x(P2), 1)) = 4l+N +1+ c. Here
we use

(F (x(P1), 1) + F (x(P2), 1) + 2y(P1)y(P2))(F (x(P1), 1) + F (x(P2), 1)

− 2y(P1)y(P2))

= (F (x(P1), 1) − F (x(P2), 1))
2

which implies (A.23) upon noticing that both factors on the left hand side
have valuation at least equal to 4l+N +1+ c, whereas the valuation of the
product equals 8l + 2N + 2 + 2c.

We now resume the proof of the theorem. Suppose we have a point
satisfying x(P1) 6= x(P2), v(x(P1)), v(x(P2)) ≥ 2l + 1, v(x(P1) − x(P2)) =
N > 2l + 1 and v(F (x(P1), 1) − F (x(P2), 1)) > 4l + 2 + N . Note that the
last assumption yields

f1 + 2f2x(Pi) + 3f3x(Pi)
2 ≡ 0 (mod π4l+3) (A.24)

for i = 1, 2.

Now we also have

F (x(Pi), 1) ≡ 0 (mod π6l+4), (A.25)

but (A.24) and (A.25) imply that s has a multiple root, contradicting K =
I∗0 .

We have omitted the case x(P1) = x(P2) so far. We will have occasion
to use

u(T ) := f23T
4 − 2f3f1T

2 − 8f3f0T + f21 − 4f0f2. (A.26)

In this situation we get

K(x) ≡ u(x(P1))− 4x4F (x(P1), 1) ≡ 0 (mod π8l+4)

and hence v(x4) > 0 can only occur if u(x(P1)) ≡ 0 (mod π8l+4).
A short calculation reveals that together with

F (x(P1), 1) ≡ 0 (mod π6l+4)

this implies v(disc(s)) > 0, a contradiction.
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The case K = I∗1 is characterized by v(disc(s(T ))) = 1. Using a trans-
formation we can assume that the double root of s is at zero, so we find
that

v(f0) = 6l + 4, v(f1) ≥ 4l + 3, v(f2) = 2l + 1

and the component C2 is given by x′ + a2 ≡ 0 (mod π2l+2). The other
two components C3 and C4 are given by the distinct lines that are the
components of q(x′) (mod π), where

q(T ) = T 2 − a0,4 (mod π)

and x(P1) = x′′π2l+2 (see [89, §IV.9]). This means that if a point P =
[(P1)−(P2)] maps to J 0

v such that Pi 7→ C3/4, then we have v(x(Pi)) ≥ 2l+2
and

x(P1)− x(P2) ≡ 0 (mod π2l+3).

The proof of v(x4) ≤ 2l for such points goes through as in the case of the
analogous statement for K = IV . Also notice that this works for reduction
types I∗n for odd n, because in such cases the components C3 and C4 are given
by the components of (x′′′)2 − a0,3+n (mod π), where x(P1) = x′′′π2l+1+n.

What if we have P = [(P1) − (P2)] ∈ J0(kv) and Pi 7→ C2? Then P
satisfies v(x1) = 0, v(x2) = 2l + 2, v(x3) = 4l + 2 as in the case K = I∗0 .
However, if x(P1) 6= x(P2) and we set N := v(x(P1)− x(P2)), then we get

F (x(P1), 1) − F (x(P2), 1) ≡ (x(P1)− x(P2))(f1 + f2(x(P1) + x(P2))

+ f3(x(P1)
2 + x(P1)x(P2) + x(P2)

2))

≡ (x(P1)− x(P2))(f1 + aa22) (mod π4l+2+N ),

whereby we deduce that v(F (x(P1), 1)−F (x(P2), 1)) = 4l+2+N . Lemma
A.5 proves that v(x4) ≤ 2l, allowing us to conclude µv(P ) = v(x4) ≤ 2l.
This generalizes to the case of arbitrary odd integers n ≥ 1.

If on the other hand x(P1) = x(P2), where v(x(P1)) > 2l, then we must
have P1 7→ C2 (otherwise P1 and P2 do not map to the same component)
and

K(x) ≡ u(x(P1))− 4x4F (x(P1), 1) ≡ 0 (mod π8l+5).

But since in this situation we have

u(x(P1)) ≡ f
2
3x(P1)

4 (mod π8l+5),

we see directly that µv(P ) = v(x4) ≤ 2l follows. This works for any n ≥ 1.
Now we move on to the case K = I∗2 , where we find that

v(f0) = 6l + 5, v(f1) ≥ 4l + 3, v(f2) = 2l + 1.

The component C2 is as in the last case (and remains so for all n ≥ 1) and
the components C3 and C4 are given by the distinct lines that r(T ) = 0
consists of, where

r(T ) = a2,1T
2 + a4,3T + a0,5.
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It follows that if P1 maps to C3,4, then the valuation of x(P1) equals 2l+2.
If in addition P = [(P1) − (P2)] maps to J 0(kv), then we have v(x(P1) −
x(P2)) ≥ 2l + 3.

Suppose x(P1) 6= x(P2) and let N := v(x(P1) − x(P2)). We can use
Lemma A.5 with c = 2 to deduce v(x4) ≤ 2l if v(F (x(P1), 1)−F (x(P2), 1)) =
4l +N + 3. But in order to have

v(F (x(P1), 1) − F (x(P2), 1)) > 4l +N + 3,

we must have

f1 + f2(x(P1) + x(P2)) ≡ 0 (mod π4l+4)

and hence v(f1) = 4l + 3. In this case however, assuming v(x4) > 2l leads
to a contradiction, because then

K(x) ≡ f21x
4
1 ≡ 0 (mod π8l+7)

holds.
Now we suppose x(P1) = x(P2) and consider the Kummer surface equa-

tion

K(x) ≡ −4F (x(P1), 1)x4 + u(x(P1))

≡ −4F (x(P1), 1)x4 + f21 − 4f0f2 (mod π8l+7).

But
F (x(P1), 1) ≡ 0 (mod π6l+6)

and v(f21 −4f0f2) = 6l+6 – recalling that we are in case I∗n – together imply
v(x4) ≤ 2l. A slight modification of this argument enables us to draw the
same conclusion when 2|n, n ≥ 4, P1, P2 7→ C3/4 and x(P1) = x(P2) hold.

We are not done with the case K = I∗2 yet, because we have not looked
at points P = [(P1) − (P2)], where P1 and P2 map to C2. We can assume
P1 and P2 are distinct as the complementary case has been finished already
for all n ≥ 1.

If v(f1) = 4l + 3, then we can use the definition of x4 directly:

F0(x(P1), x(P2)) + 2y(P1)y(P2) ≡ f1(x(P1) + x(P2)) + 2y(P1)y(P2)

≡ 4y(P1)y(P2) (mod π6l+5).

This congruence follows from

x(Pi) ≡ −a2 (mod π2l+2)

for i = 1, 2 and implies

v(x4) = v(F0(x(P1), x(P2)) + 2y(P1)y(P2))− 2v(x(P1)− x(P2)) ≤ 2l.
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In the remaining case v(f1) > 4l + 3 we can use Lemma A.5 with c = 1,
because N = v(x(P1)− x(P2)) implies

f1 + f2(x(P1) + x(P2)) + f3(x(P1)
2 + x(P1)x(P2) + x(P2)

2))

≡ aa22 (mod π4l+3)

and so we have

v(F (x(P1), 1) − F (x(P2), 1)) = 4l +N + 2,

finishing the case I∗2 . In fact the same method covers all P = [(P1) − (P2)]
for the reduction types I∗n where Pi ∈ C2 and n ≥ 2 is even.

Hence we have covered all possible situations for reduction types K = I∗n,
n ≥ 1. This means that we can finally move on to reduction type K = I0.
Recall that we have

v(f0) ≥ 6l, v(f1) ≥ 4l, v(f2) ≥ 2l;

in the present case we have that at least one of the first two inequalities is
actually an equality and the valuation of the discriminant equals 12l. If we
have v(x(P1)), v(x(P2)) < 2l, then the validity of the theorem is verified in
the same way as the case v(x(P1)), v(x(P2)) ≤ 2l for the other reduction
types. Moreover we see at once that the formulas given there prove

v(x4) < 2l and v(x4) ≤ v(x3)⇒ µv(P ) = v(x4) (A.27)

So we need to discuss the following cases:

(a) v(x(P1)) ≥ 2l, 0 ≤ v(x(P2)) < 2l, v(x4) ≥ 2l

(b) v(x(P1)) ≥ 2l, v(x(P2)) < 0, v(x4) ≥ 2l

(c) v(x(P1)) ≥ 2l, v(x(P2)) ≥ 2l, v(x4) ≥ 2l

We consider these cases one after another, but we prove a preliminary
result first. Compare this with Lemma A.3, which works for residue cha-
racteristic 2 and K 6= I0.

Lemma A.6. For each point Q ∈ J(kv) let x(Q) denote a set of integral
Kummer coordinates for Q such that one of them is a unit. Suppose that
there exists t ≥ 1 such that εv(2

nP ) = 6l for n ∈ {1 . . . , t− 1}, but

6l < εv(2
tP ) ≤ v(δ4(x(2

tP ))) = 8l ≤ v(δ3(x(2
tP ))).

Then we have µv(P ) = 2l.
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Proof. If t = 1, then we get

0 ≤ v(x4(P )) = v(δ4(x(P ))) − εv(P ) = 8l − εv(P ) < 2l.

But (A.27) says that this implies µv(2P ) = 8l − εv(P ). Hence we find

µv(P ) =
1

4
µv(2P ) +

1

4
εv(P ) = 2l (A.28)

Now suppose t > 1. From (A.28) we deduce µv(2
tP ) = 2l. However, if

Q ∈ J(k) such that εv(Q) = 6l and µv(2Q) = 2l, then

µv(Q) =
1

4
µv(2Q) +

1

4
εv(Q) =

1

4
2l +

1

4
6l = 2l

follows, finishing the proof of the lemma.

The obvious strategy is to show that in the present situation εv(P ) > 6l
implies v(δ4(x)) = 8l. If that is the case we can combine Lemma A.6 with
(A.27) and conclude µv(P ) = min{v(x4), 2l}. Recall the notation

u(T ) = a2T 4 − 2af1T
2 − 8af0T + f21 − 4f0f2.

Lemma A.7. If v(T ) ≥ 2l, then we cannot simultaneously have

F (T, 1) ≡ 0 (mod π6l+1)

and
u(T ) ≡ 0 (mod π8l+1).

Proof. The proof consists of a simple algebraic verification showing that if
the assumptions were satisfied, then the valuation of the discriminant of C
would have to be larger than 12l.

Case (a)
Suppose that we have v(x(P1)) ≥ 2l, 0 ≤ v(x(P2)) < 2l, so that we have
v(x1) = 0, 0 ≤ v(x2) < 2l, v(x3) ≥ 2l. Then we get

v(x4) ≥ 2l, v(δ1(x)) ≥ 6l, v(δ2(x)) ≥ 6l, v(δ3(x)) ≥ 8l and v(δ4(x)) ≥ 8l.

More precisely, if we set x1 = 1, then we have

δ1(x) ≡ 4(a− x22)
2F (x4/a, 1) (mod π6l+1)

δ2(x) ≡ 16ax2(x2 − 1)(x2 − a)F (x4/a, 1) (mod π6l+1)

δ3(x) ≡ 4x2(x2 − 1)(x2 − a)u(x4/a) (mod π8l+1)

δ4(x) ≡ (a− x22)
2(x2 − a)u(x4/a) (mod π8l+1).

Hence Lemma A.7 shows that εv(P ) > 6l implies v(δ4(x)) = 8l.
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Case (b)
If v(x(P1)) ≥ 2l, v(x(P2)) < 0, then we must have v(x1) > 0, v(x2) =
0, v(x3) ≥ 2l. It follows that we have v(x4) > 2l, v(δ2(x)) > 6l and
v(δ3(x)) > 8l. Moreover, setting x2 = 1 yields

δ1(x) ≡ a2F (x3, 1) (mod π6l+1),

δ4(x) ≡ u(x3) (mod π8l+1).

Thus we conclude that εv(P ) > 6l implies v(δ4(x)) = 8l from Lemma A.7.
Notice that the above contains P2 =∞

± or P2 =∞ as a special case.
Case (c)

Finally we consider the case v(x(P1)) ≥ 2l, v(x(P2)) ≥ 2l. We have v(x1) =
0, v(x2) ≥ 2l and v(x3) ≥ 4l. It follows that v(x4) ≥ 2l and v(δ1(x)) ≥
6l, v(δ2(x)) ≥ 8l, v(δ3(x)) ≥ 10l, v(δ4(x)) ≥ 8l. In particular we can set
x1 = 1 to obtain

δ1(x) ≡ 4a2F (x4/a, 1) (mod π6l+1)

δ4(x) ≡ u(x4/a) (mod π8l+1)

which finishes the proof of the theorem.

A.9 Proof of Theorem 3.74

Proof. If v(x3) = 0, then we can copy the part of the proof of Theorem
A.8 that deals with the case l = 0. It was only given for the case of non-
multiplicative K; however, it remains valid for multiplicative K as well under
the assumptions of the theorem.

In any case, we only have to consider points satisfying v(x3) > 0. For
such points we first prove the theorem for non-multiplicative K. The case
v(x1) = 0 basically reduces to the analogous situation we have encountered
in the proof of Theorem 3.62; so the proof that µv(P ) is equal to v(x4) given
there remains valid upon noticing that neither the coefficient f5 nor, in case
char(kv), the expression f3(f3+1) (which now have positive valuation) make
a difference.

Hence we suppose that v(x1) > 0 which implies that we must have
v(x2) = 0 and in addition v(x3) ≤ 2l unless K = I0, a case we leave until the
end of the proof. So we assume that K is an additive Kodaira type, which
amounts to v(f2) > 2l, v(f1) > 4l, v(f0) > 6l, v(h1) > l and v(h0) > 3l
after a transformation, and 0 < v(x3) ≤ 2l.

First we look at points satisfying v(x1) < m1/2. We find that

K(x) ≡ (f3x1x3 − x2x4 + h22x1x
2
3x4)

2 (mod π2v(x1x3)+1),

therefore we have
v(x4) = v(x1) + v(x3)
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and
v(f3x1x3 + x2x4) = v(x4).

Now we get the following congruences:

δ1(x) ≡ 4x1x
3
4 − 4f5x3x4(x2x4 + f3x1x3)− 4f3(4f4f6 − f

2
5 )x2x

3
3

(mod πmin{4v(x1),m1}+3v(x3)+1)

δ′2(x) ≡ 8f3f4x1x
2
3x4 (mod π2v(x1)+3v(x3)+1)

δ3(x) ≡ (4f4 + h22)x
2
3x

2
4 (mod π2v(x1)+4v(x3)+1)

δ4(x) ≡ x44 − f
2
3 (h

2
2f6 + 4f4f6 − f

2
5 )x

4
3 (mod πmin{4v(x1),m1}+4v(x3)+1)

So we always have v(δ3(x)) = 2v(x1) + 4v(x3). If v(2) = 0, then we get

εv(P ) = v(δ′2(x)) = 2v(x1) + 3v(x3)

and if v(2) > 0, we find that

2v(x1) + 3v(x3) < εv(P ) ≤ 2v(x1) + 4v(x3).

The crucial observation is that if y is a set of integral Kummer coordinates of
2P containing a unit, then we know some of the valuations of the yi, because
we know what the points lying on the component χ(2P ) = (χ1(2P ), 0) look
like. Namely, if v(x1) < m1/4, then χ2(2P ) = 2v(x1) and hence

v(y1) = 2v(x1), v(y2) = 0, v(y3) ≥ 0, v(y4) ≥ 0.

Because of K 6= I0, we also have v(y4) ≤ 2l. So in that case we get for
residue characteristic not equal to 2

v(y3) = v(x3) and v(y4) = 2v(x1) + v(x3)

and in the complementary case we obtain εv(P ) = v(δ′2(x)) = 2v(x1) +
3v(x3) + r, where r is positive, and hence

v(y3) = v(x3)− r and v(y4) = 2v(x1) + v(x3)− r.

If we have m1/4 ≤ v(x1) < m1/2, then χ1(P ) = m1 − 2v(x1), and so
we have, similarly, v(y1) = m1 − 2v(x1), v(y2) = 0, v(y3) = v(x3), v(y4) =
m1−2v(x1)+v(x3) if v(2) = 0. In the other case we have εv(P ) = v(δ′2(x)) =
2v(x1) + 3v(x3) + r and v(y1) = m1 − 2v(x1), v(y2) = 0, v(y3) = v(x3) −
r, v(y4) = m1 − 2v(x1) + v(x3)− r.

Now we consider points satisfying v(x1) ≥ m1/2. Since in such cases the
assumption v(x4) < m1/2 + v(x3) leads to the contradictory statement

K(x) ≡ x22x
2
4 ≡ 0 (mod π2v(x4)+1),

we have
v(x4) ≥ m1/2 + v(x3).
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Note that we know v(y1) = 0, v(y2), v(y3), v(y4) ≥ 0, so in particular
εv(P ) = v(δ1(x)). It follows that we have

δ1(x) ≡ −4f3(4f4f6 − f
2
5 )x2x

3
3 (mod πm1+3v(x3)+1)

δ4(x) ≡ −f23 (4f4f6 − h
2
2f6 − f

2
5 )x

4
3 (mod πm1+4v(x3))+1)

which means that εv(P ) = v(δ1(x)) = m1+3v(x3)+r, where r ≥ 0 vanishes
if the residue characteristic is not 2 and otherwise r is positive and v(δ4(x)) =
m1 + 4v(x3). Furthermore we find v(δ′2(x)) ≥ m1 + 3v(x3) and v(δ3(x)) ≥
m1 + 4v(x3). Notice that this implies µv(P ) = m1 + v(x3) in both cases.

Combining all of these results, we can now slightly modify the proof of
Lemma 3.49 to find the first summand w1(P )(m1−w1(P ))

m1
. For v(2) = 0, we

can then combine this with the fact that the valuation of the third Kummer
coordinate does not change if we normalize the coordinates at each step; if
v(2) > 0, then we use the fact that we have εv(P ) = 2w1(P ) + 3v(x3) + r,
but v(y3) = v(x3)− r, so the proof of Lemma A.3 applies in this case. This
proves the theorem for all reduction types K 6= I0

It remains to verify the correctness of the theorem for K = I0. For this
we again assume char(kv) 6= 2, because the complementary case is similar.
The case v(x1) = 0 reduces to the analogous situation in Theorem 3.62 and if
v(x3) < 2l, we can simply copy the proof given for the other reduction types
above, so we can reduce to the case where v(x1) is positive and v(x3) ≥ 2l.
Checking the Kummer surface equation tells us that we must have

v(x4) ≥ min{v(x1),m1/2}+ 2l.

Suppose that v(x1) < m1/2. We show that εv(P ) ≥ 2v(x1) + 6l holds and
that εv(P ) > 2v(x1) + 6l implies v(δ3(x)) = 8l + 2v(x1). Consider

δ′2(x) ≡ −16x21F (x3, 1) (mod π2v(x1)+6l+1),

δ3(x) ≡ 4f4x
2
1u(x3) (mod π2v(x1)+8l+1),

where u was defined in (A.26).

As in Lemma A.7 we can now show easily that we cannot have both
v(F (x3, 1)) > 6l and v(u(x3)) > 8l, proving that εv(P ) > 2v(x1)+6l indeed
implies v(δ3(x)) = 8l + 2v(x1).

In fact this suffices for our purposes, because we know that

v

(
δ1(x)

δ′2(x)

)
≥ min{2v(x1),m1 − 2v(x1)};

here equality holds unless possibly when v(x1) = m1/4. Moreover, it is easy
to see that we have

v

(
δ4(x)

δ′2(x)

)
≥ v(δ1(x)) + 2l.
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Finally, suppose v(x1) ≥ m1/2. This yields

δ1(x) ≡ (f25 − 4f6)F (x3, 1) (mod πm1+6l+1)

δ4(x) ≡ 4(f25 − 4f6)u(x3) (mod πm1+8l+1).

We can also show v(δ′2(x)) ≥ m1 + 6l and v(δ3(x)) ≥ m1 + 8l, so εv(P ) ≥
m1 + 6l holds and moreover εv(P ) > m1 + 6l implies v(δ4(x)) = 8l +m1.

Why does this finish the proof for the present reduction type? The
methods used so far show that if we have v(x1) > 0 and v(x3) ≥ 2l then
either εv(P ) = 2w1(P ) + 6l and the normalized third Kummer coordinate
has valuation equal to 2l, or we have 2w1(P ) + 6l ≤ εv(P ) ≤ 2w1(P ) + 8l in

which case we get v
(
δ3(x)
δ1(x)

)
< 2l and hence

µv(2P ) =
w1(2P )(m1 − w1(2P ))

m1
+ v

(
δ3(x)

δ1(x)

)
.

Now it is easy to see that this implies the desired formula for µv(P ) and
therefore for any P such that v(x1) > 0, v(x3) ≥ 2l and ∃t ≥ 1 satisfying
εv(2

tP ) > 2w1(2
tP )+6l, but εv(2

sP ) = 2w1(2
sP )+6l for any s = 1, . . . , t−1

using an induction-type argument as in the proof of Lemma A.6. If no such
t exists, then the theorem is obvious from what has been proved already.

The last possible reduction type is [Im1 − Im2 − l] where l,m1,m2 > 0.
Suppose v(2) = 0; once again there is virtually no difference in the situation
of residue characteristic 2.

In this case we may assume v(f2) = 2l and v(f0)− 6l 6= 2v(f1)− 4l. As
before, we write

f2 = f ′2π
2l, f4 = f ′4π

4l, f6 = f ′6π
6l

which means that we have

m2 = min{v(f ′0), 2v(f
′
1)} = min{v(f0)− 6l, 2v(f1)− 4l}.

The proof for the case v(x1) ≥ 0 and 0 < v(x3) < 2l can be copied verbatim
from the verification of the theorem for v(x1) = 0, v(x3) ≤ 2l and additive
K. Note that our assumptions rule out the possibility that v(x1) > 0 and
v(x3) > 2l.

Since we have v(f2) = 2l now, we need to verify the desired formula
for v(x3) = 2l separately. However, in that case we may simply copy the
respective proof for K = I0 upon noticing

F (x3, 1) ≡ f2x
2
3 + f3x

3
3 (mod π6l+1)

and
u(x3) ≡ f

2
3x

4
3 (mod π8l+1),

so we certainly cannot have v(u(x3)) > 8l.
It remains to consider the case P ∈ J0(kv) such that both v(x1) = 0 and

v(x3) > 2l. In order to have P ∈ J0(kv) one of the following must hold:
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1. v(x(P1)) ≥ 2l, v(x(P2)) ≤ 2l

2. 2l < v(x(P1)) = v(x(P2)) < 2l +m2/2

3. v(x(P1)) ≥ 2l +m2/2, v(x(P2)) ≥ 2l +m2/2

In the first case we have 2l < v(x3) ≤ 4l and

K(x) ≡ (x2x4 − f3x1x3)
2 − 4x1x3x

2
4 − 4f2x

2
1x3x4 (mod π8l+4i+1).

If we assume that v(x4) > 2l, then v(x3) − v(x2) ≤ 2l implies that K(x)
reduces to f23x

2
1x

2
3 which is absurd; hence we conclude v(x4) ≤ 2l.

Suppose
v(x(P1)) = v(x(P2)) = 2l + i < 2l +m2/2,

then we have

K(x) ≡ (x22 − 4x1x3)x
2
4 − 4x1x3x

2
4 − 4f2x

2
1x3x4 (mod π8l+4i+1).

It follows that we have either v(x4) ≤ 2l or v(x4) = 2l + 2i. We want to
show that the latter cannot occur. By assumption the points P1 and P2 are
affine, so we can set x1 = 1.

Since v(x(P2)) = 2l + i, we have

y(Pi)
2 = F (x(Pi), 1) ≡ f2x(Pi)

2 (mod π6l+2i+1);

thus v(y(P1)) = v(y(P2)) = 3l + i and

F0(x(P1), x(P2)) + 2y(P1)y(P2)

≡ f2x(P1)x(P2) + 2y(P1)y(P2) (mod π6l+2i+1)

follow.
But we find v(f2x(P1)x(P2) + 2y(P1)y(P2)) = 6l + 2i, because we have

(f2x(P1)x(P2) + 2y(P1)y(P2))
2

≡ 2f2x(P1)x(P2)(f2x(P1)x(P2) + 2y(P1)y(P2)) (mod π6l+2i+1).

So we must have v(x4) ≤ 2l.
In the remaining case v(x(P1)), v(x(P2)) ≥ 2l +m2/2 we find that the

assumption v(x4) > 2l implies

K(x) ≡ (f21 − 4f0f2)x
4
1 (mod π8l+m2+1)

which is yet another contradiction. Therefore we get v(x4) ≤ 2l in this case
as well.

The proof of the theorem is now completed using the observation that
µv(P ) = v(x4) follows from v(x4) ≤ 2l < v(x3) as in the proof of Theorem
3.62 for K = I0, where the cases v(x4) < 2l and v(x4) = 2l (as a special case
of v(x4) ≥ 2l) are treated separately.
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methods in algebraic geometry (Castiglioncello, 1990), Birkhäuser, Boston, 313-334
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