
HOW TO SOLVE A DIOPHANTINE EQUATION
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Abstract. These notes represent an extended version of a talk I gave for the
participants of the IMO 2009 and other interested people. We introduce dio-
phantine equations and show evidence that it can be hard to solve them. Then
we demonstrate how one can solve a specific equation related to numbers oc-
curring several times in Pascal’s Triangle with state-of-the-art methods.

1. Diophantine Equations

The topic of this text is Diophantine Equations. A diophantine equation is an
equation of the form

F (x1, x2, . . . , xn) = 0 ,

where F is a polynomial with integer coefficients, and one asks for solutions in
integers (or rational numbers, depending on the problem). They are named after
Diophantos of Alexandria on whom not much is known with any certainty. Most
likely he lived around 300 AD. He wrote the Arithmetika, a text consisting of
13 books, a number of which have been preserved. In this text, he explains through
many examples ways of solving certain kinds of equations like the above in rational
numbers. Diophantos was also one of the first to introduce symbolic notation for
the powers of an indeterminate.

To give you a flavor of this kind of question, let me show you some examples.
Ideally, you should cover up the part of the page below the equation and try to
find a solution for yourself before you read on. The first equation is

x3 + y3 + z3 = 29 ,

an equation in three unknowns, to be solved in (not necessarily positive) integers. I
trust it did not take you very long to come up with a solution like (x, y, z) = (3, 1, 1)
or maybe (4,−3,−2). Now let us look at

x3 + y3 + z3 = 30 .

Try to solve it for a while before you look up a solution in this footnote1. This solu-
tion is the smallest and was found by computer search in July 1999 and published
in 2007 [1]. This already indicates that it may be quite hard to find a solution to
a given diophantine equation. Now consider

x3 + y3 + z3 = 31 .

Date: 23 February, 2010.
1x = 2220 422 932, y = −2 218 888 517, z = −283 059 965.
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Did you try to solve it? You should have come to the conclusion that there is no
solution: the third power of an integer is always ≡ −1, 0 or 1 mod 9, so a sum
of three cubes can never be ≡ 4 or 5 mod 9. Since 31 ≡ 4 mod 9, the number
31 cannot be a sum of three cubes. If we replace 31 with 32, the same argument
applies. So we consider

x3 + y3 + z3 = 33

next. If you were able to solve this, you should consider making diophantine
equations your research area. The sad state of affairs is that it is an open problem
whether this equation has a solution in integers or not!2

So the following looks like an interesting problem: to decide if a given diophantine
equation is solvable or not. In fact, this problem appears on the most famous
list of mathematical problems, namely the 23 problems David Hilbert stated in
his address to the International Congress of Mathematicians in Paris in 1900 as
questions worth working on in the new century. The description of the tenth
problem in Hilbert’s list reads thus (in the German original [3], see [4] for an
English translation of Hilbert’s address):

Here is an English translation.

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

In modern terminology, Hilbert asks for an algorithm that, given a polynomial
F (x1, . . . , xn) with integral coefficients, decides whether the equation

F (x1, . . . , xn) = 0

can be solved in integers. This is commonly known as Hilbert’s Tenth Problem.
It is not only the shortest problem on Hilbert’s list, it is also the only decision
problem3, so it is somewhat special. From the wording it can be inferred that
Hilbert believed in a positive solution to his problem: such an algorithm had to
exist. In fact, at the end of the introductory part of his speech, before turning to
the list of problems, he says

2This introduction was inspired by a talk Bjorn Poonen gave at a workshop in Warwick
in 2008.

3A decision problem asks for an algorithm that decides if a given element of a specified set
has a specified property.
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. . . in der Mathematik giebt es kein Ignorabimus!

(There is no ‘Ignorabimus’4 in mathematics.) This indicates that Hilbert was
convinced that every mathematical problem must have a definite solution.

The simple examples I have shown at the beginning may (or should) have given
you a feeling that this problem may actually be very hard. This is also what
happened historically. People got more and more convinced that the answer to
Hilbert’s Tenth Problem was likely to be negative: an algorithm conforming to the
given specification does not exist. Now if an algorithm does exist that performs a
certain task, it is fairly clear how one can prove this fact. Namely, one has to find
such an algorithm and write it down, then everybody will agree that it indeed is
an algorithm solving the given problem. To show that such an algorithm does not
exist is a quite different matter. One needs some way of getting a handle on all
possible algorithms, so that one can show that none of them solves the problem.
The relevant theory, which is a branch of mathematical logic, did not yet exist
when Hilbert gave his talk. It was developed a few decades later, leading to such
famous results as Gödel’s Incompleteness Theorem, which definitely showed that
there certainly is an Ignorabimus in mathematics. Indeed, work of several people,
most notably Martin Davis, Hilary Putnam and Julia Robinson, made it possible
for Yuri Matiyasevich to finally prove in 1970 the following result5.

Theorem 1 (Davis, Putnam, Robinson; Matiyasevich).
The solvability of diophantine equations is undecidable.

In fact, he proved a much stronger result, which implies for example that there
is an explicit polynomial F (x0, x1, . . . , xn) such that there is no algorithm that,
given a ∈ Z as input, decides whether or not there is an integral solution to

F (a, x1, . . . , xn) = 0 .

Note that if a diophantine equation is solvable, then we can prove it, since we will
eventually find a solution by searching through the countably many possibilities
(but we do not know beforehand how far we have to search). So the really hard
problem is to prove that there are no solutions when this is the case. A similar
problem arises when there are finitely many solutions and we want to find them
all. In this situation one expects the solutions to be fairly small6. So usually it
is not so hard to find all solutions; what is difficult is to show that there are no
others.

So, given Theorem 1, should we give up all attempts to solve diophantine equa-
tions, convinced that the task is completely hopeless? That would be premature.
We might still be able to prove positive results when we restrict the set of equa-
tions in some way. For example, there are quite good reasons to believe that there
should be a positive answer to Hilbert’s question for equations in two variables.

4This Latin word means ‘we will not know’.
5See [6] for an accessible account of the problem and its solution
6The large solution to x3 + y3 + z3 = 30 is no counterexample to this statement, since there

should be infinitely many solutions in this case.
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In the remainder of this contribution, we will consider one such equation as an
example case and show with what kind of methods it can be attacked and solved.

2. The Example Equation

The equation we want to consider here is motivated by the following question.
Consider Pascal’s Triangle (Fig. 1). Which natural numbers occur several times
in this triangle, if we disregard the outer two “layers” (1, 1, 1, . . . and 1, 2, 3, . . . )
on either side and the obvious reflectional symmetry?

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0 0 0

0 0 0 1 4 6 4 1 0 0 0
0 0 0 1 5 10 10 5 1 0 0 0

0 0 1 6 15 20 15 6 1 0 0
0 0 1 7 21 35 35 21 7 1 0 0

0 1 8 28 56 70 56 28 8 1 0
0 1 9 36 84 126 126 84 36 9 1 0

1 10 45 120 210 252 210 120 45 10 1

Figure 1. Pascal’s Triangle

In other words, what are the integral solutions to the equation

(2.1)

(
y

k

)
=

(
x

l

)
,

subject to the conditions 1 < k ≤ y/2, 1 < l ≤ x/2 and k < l? The following
solutions are known.(

16

2

)
=

(
10

3

)
,

(
56

2

)
=

(
22

3

)
,

(
120

2

)
=

(
36

3

)
,(

21

2

)
=

(
10

4

)
,

(
153

2

)
=

(
19

5

)
,

(
78

2

)
=

(
15

5

)
=

(
14

6

)
,(

221

2

)
=

(
17

8

)
,

(
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1

F2iF2i+3 + 1

)
for i = 1, 2, . . . ,

where Fn is the n-th Fibonacci number.
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Equation (2.1) is not a diophantine equation according to our definition, since it
depends on k and m in a non-polynomial way. Also, it is way too hard to solve.
So we specialize by fixing k and l. The cases

(k, l) ∈ {(2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6)}
have already been solved completely. Each of these cases requires some deep
mathematics of a flavor similar to what is described below. The next interesting
case is obviously (k, l) = (2, 5), leading to the equation

(2.2)

(
y

2

)
=

(
x

5

)
, or 60y(y − 1) = x(x− 1)(x− 2)(x− 3)(x− 4) .

So we are asking for numbers that occur both in the red and the blue diagonal in
Figure 1.

The first step in solving an equation like (2.2) is to go and look for its solutions.
We easily find solutions with

x = 0, 1, 2, 3, 4, 5, 6, 7, 15 and 19 ,

and then no further ones. (Only the last two are ‘nontrivial’ in the sense that they
satisfy the constraints given above. Also, there are no solutions with x < 0, since
then the right hand side is negative, but the left hand side can never be negative
for y ∈ Z.) This now raises the question if we have already found them all, and if
so, how to prove it.

This is a good point to look at what is known about the solution set of equations
like (2.2) in general. The first important result was proved by Carl Ludwig Siegel
in 1929. (See [5, Section D.9] for a proof.)

Theorem 2 (Siegel).
Let F ∈ Z[x, y]. If the solutions to F (x, y) = 0 cannot be rationally parameterized,
then F (x, y) = 0 has only finitely many solutions in integers.

A rational parameterization of F (x, y) = 0 is a pair of rational functions f(t),
g(t) (quotients of polynomials), not both constant, such that F (f(t), g(t)) = 0
(as a function of t). The existence of such a rational parameterization can be
algorithmically checked; for our equation it turns out that it is not rationally
parameterizable. So we already know that there are only finitely many solutions.
In particular, we have a chance that our list is complete. On the other hand,
Theorem 2 and its proof are inherently ineffective: we do not get a bound on the
size of the solutions, so this result gives us no way of checking that our list is
complete. This somewhat unsatisfactory state of affairs did not change until the
1960s, when Alan Baker developed his theory of ‘linear forms in logarithms’ that
for the first time provided explicit bounds for solutions of many types of equations.
For this breakthrough, he received the Fields Medal. Baker’s results cover a class
of equations that contains our equation (2.2). For our case, what he proved comes
down to roughly the following.

(2.3) |x| < 10101010
600

.
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This reduces the solution of our equation (2.2) to a finite problem. The inequality
in (2.3) gives us an explicit upper bound for x. So we only have to check the finitely
many possibilities that remain, and we will obtain the complete set of solutions
to (2.2). From a very pure mathematics viewpoint, we may therefore consider our
problem as solved. On the other hand, from a more practical point of view, we
would like to actually obtain the complete list of solutions, and the assertion that
it is possible in principle to get it does not satisfy us. To say that the number
showing up in (2.3) defies all imagination is a horrible understatement, and one
cannot even begin to figure out how long it would take to actually perform all the
necessary computations.

However, time did not stop in the 1960s, and with basically still the same method,
but with a lot of refinements and improvements thrown in, we are now able to
prove the following estimate.

(2.4) |x| < 1010600

.

You may rightly ask whether something has really been gained, in practical terms.
The number of electrons in the universe is estimated to be about 1080, so we cannot
even write down a number with something like 10600 digits! However, it will turn
out that the improvement represented by (2.4) is crucial. But before we can see
this, we need to look at our problem from a different angle.

3. A Geometric Interpretation

The idea is to translate our at first sight algebraic problem ((2.2) is an algebraic
equation) into a geometric one. An equation F (x, y) = 0 in two variables defines
a subset of the plane, consisting of those points whose coordinates satisfy the
equation. If F is a (non-constant) polynomial, this solution set is called a plane
algebraic curve. We can draw the curve C corresponding to our equation (2.2) in
the real plane R2, see Fig. 2. We are now interested in the integral points on C,
since they correspond to integral solutions to (2.2). The set of integral points on C
is denoted C(Z).

This set C(Z) of integral points on the curve C by itself does not have any useful
additional structure. But we can make use of a well-developed theory, called Alge-
braic Geometry, that studies sets defined by a collection of polynomial equations,
and in particular algebraic curves like C. This theory tells us that we can embed
the curve C into another object J , which is not a curve, but a surface. This can
be constructed for any curve and is called the Jacobian variety of the curve7. The
interesting fact about J (and Jacobian varieties in general) is that J is a group.
More precisely, there is a composition law on J that is defined in a geometric way
and that turns (for example) the set J(Z) of integral points8 on J into an abelian
group. In a similar spirit as Siegel’s Theorem 2 (and actually preceding it), we

7The Jacobian variety need not be a surface; its dimension depends on the curve.
8Algebraic geometers use the set of rational points here. This does not make a difference,

since J is a projective variety. (Which means that the coordinates can be scaled so as to remove
denominators.)
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Figure 2. The curve given by (2.2), with some integral points.

have the following important result, valid for Jacobian varieties in general. (See [5,
Part C].)
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Theorem 3 (Weil 1928).
If J is the Jacobian variety of a curve, then the abelian group J(Z) is finitely
generated.

This means that we can (in principle) get an explicit description of the group J(Z)
in terms of generators and relations. If we have that, we may be able to use the
group structure and the geometry in some way to get a handle on the elements
of J(Z) that are in the image of C; these correspond exactly to the integral points
on C.

In general, it is not known whether it is always possible to actually determine
explicit generators of a group like J(Z) in an algorithmic way, although there are
some ‘standard conjectures’ whose truth would imply a positive answer. There
are methods available that, with some luck, can find a set of generators, but they
are not guaranteed to work in all cases. This is the point where the method we
are describing may fail in practice. In our specific example, we are lucky, and we
can show that J(Z) is a free abelian group of rank 6 :

(3.1) J(Z) = Z P1 + Z P2 + Z P3 + Z P4 + Z P5 + Z P6

with explicitly known points P1, . . . , P6 ∈ J(Z).

Let ι : C → J denote the embedding of C into J . The surface J lives in some
high-dimensional space, and we can specify integral points on it by a bunch of
coordinates. We can measure the size of such a point by taking the logarithm of
the largest absolute value of the coordinates (this tells us roughly how much space
we need to write the point down). This gives us a function

h : J(Z) → R≥0

called the height. One can show that this height function has the following prop-
erties. The first one tells us how the height relates to the size of integral points
on our curve.

(3.2) h
(
ι(x, y)

)
≈ log |x|

for points (x, y) ∈ C(Z) such that x is not very small.

The second property says that the height function behaves well with respect to
the group structure on J .

(3.3) h(n1P1 +n2P2 +n3P3 +n4P4 +n5P5 +n6P6) ≈ n2
1 +n2

2 +n2
3 +n2

4 +n2
5 +n2

6 .

(To be precise, each side can be bounded by an explicit constant multiple of the
other one. To be more precise, h is, up to a bounded error, a positive definite
quadratic form on J(Z).)

If we now combine the estimate (2.4) with the properties (3.2) and (3.3) of the
height h, then we obtain the following statement.

Lemma 4. If (x, y) ∈ C(Z), then we have

ι(x, y) = n1P1 + n2P2 + n3P3 + n4P4 + n5P5 + n6P6

with coefficients nj ∈ Z satisfying |nj| < 10300.
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Of course, the bound 10300 given here is not precise; a precise bound can be given
and is of the same order of magnitude.

The conclusion is that using the additional structure we have on J enables us to
reduce the size of the search space from about 1010600

to ‘only’ 101800 (there are
six coefficients nj with about 10300 possible values each). This is, of course, still
much too large to check each possibility (think of the electrons in the universe),
but, and this is the decisive point, the numbers nj we have to deal with can be
represented easily on a computer, and we can compute with them!

4. Needles in a Haystack

We now have an enormous haystack

H =
{
(n1, n2, n3, n4, n5, n6) ∈ Z6 : |nj| < 10300

}
of about 101800 pieces of grass that contains a small number of needles. We want
to find the needles. Instead of looking at each blade of grass in the haystack, we
can try to solve this problem faster by finding conditions on the possible positions
of the needles that rule out large parts of the haystack. This is the point where
we make use of the fact that the group law on J is defined via geometry. Our
objects C, J and ι are defined over Z, therefore it makes sense to consider their
defining equations modulo p for prime numbers p. We denote the field Z/pZ of
p elements by Fp. The sets of points with coordinates in Fp that satisfy these
defining equations mod p are denoted by C(Fp) and J(Fp). Then for all but
finitely many p (and the exceptions can be found explicitly), J(Fp) is again an
abelian group, and it contains the image ι(C(Fp)) of C(Fp). The group J(Fp) is
finite, and so is the set C(Fp); both can be computed. Furthermore, the following
diagram commutes, and the geometric nature of the group structure implies that
the right hand vertical map is a group homomorphism.

C(Z)
ι //

��

J(Z)

��

Z6

αp||zzzzzzzz

C(Fp)
ιp // J(Fp)

The vertical maps are obtained by reducing the coordinates of the points mod p.
The diagonal map αp is again a group homomorphism, determined by the image
of the generators P1, . . . , P6 of J(Z). The following is now clear.

Lemma 5. Let (x, y) ∈ C(Z) and ι(x, y) = n1P1 + · · ·+ n6P6. Then

αp(n1, n2, n3, n4, n5, n6) ∈ ιp
(
C(Fp)

)
.

The subset Λp = α−1
p

(
ιp(C(Fp))

)
⊂ Z6 is (usually, when αp is surjective) a union

of #C(Fp) cosets of a subgroup of index #J(Fp) in Z6. Since one can show that
#C(Fp) ≈ p and #J(Fp) ≈ p2 (reflecting dimensions 1 and 2, respectively), we
see that the intersection of our haystack H with Λp has only about 1/p times as
many elements as the original haystack. This does not yet help very much, but
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we can try to combine information coming from many primes. If S is a (finite,
but large) set of prime numbers, then we set

ΛS =
⋂
p∈S

Λp and obtain ι
(
C(Z)

)
⊂ ΛS ∩H .

If we make S sufficiently large (about a thousand primes, say), then it is likely
that the set on the right hand side is quite small, so that we can easily check the
remaining possibilities. The idea is that the reductions of the haystack size we
obtain from several distinct primes should accumulate, so that we can expect a
reduction by a factor which is roughly the product of all the primes in S.

We have to be careful to select the primes in a good way so that the description of
the sets ΛS we encounter on the way stays within a reasonable complexity. It is,
however, indeed possible to make a good selection of primes and to implement the
actual computation of ΛS in a reasonably efficient manner, so that a standard PC
(standard as of 2008) can perform the calculations in less than a day. We finally
obtain the result we were suspecting from the beginning.

Theorem 6 (Bugeaud, Mignotte, Siksek, Stoll, Tengely).
Let x, y be integers satisfying (

y

2

)
=

(
x

5

)
.

Then x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 15, 19} .

A detailed description of the method (explained using the different example equa-
tion y2 − y = x5 − x) can be found in [2].
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