
RATIONAL POINTS ON CURVES

MICHAEL STOLL

In these lectures we will discuss how to determine the set of rational points on a curve
of genus at least 2 over Q. We will use hyperelliptic curves throughout as our main
examples, since they are fairly well amenable to explicit computations. Most of the
statements and techniques generalise to arbitrary curves and to curves over arbitrary
number fields, at least in principle. Practical computations tend to become prohibitive
pretty soon, however, when leaving the realm of hyperelliptic curves of moderate genus
and coefficients of moderate size over Q.

As a good reference for the topic we recommend the survey paper [Sto11].

1. How to show that a hyperelliptic curve has no rational points

In this section, we sketch various possibilities of showing that a given hyperelliptic curve
has no rational points.

1.1. Hyperelliptic Curves.

A hyperelliptic curve C over a field k not of characteristic 2 is the smooth projective
curve associated to an affine plane curve given by an equation of the form

y2 = f(x) ,

where f is a squarefree polynomial of degree at least 5. If the degree of f is 2g + 1
or 2g + 2, then the curve has genus g (this is also true for deg(f) < 5). In the former
case, we have to add one (k-rational) point∞ at infinity, in the latter case, there are two
points ∞±s at infinity (where s is a square root of the leading coefficient of f), which
are k-rational if and only if s ∈ k, i.e., the leading coefficient of f is a square in k. We
write C(k) for the set of k-rational points on C; then C(k) consists of the zero, one, or
two k-rational points at infinity, together with the affine points (ξ, η) ∈ k × k such that
η2 = f(ξ).

We can realise C as a smooth curve in the weighted projective plane P1,g+1,1: Homogenise
f to obtain F (x, z) of degree 2g + 2 such that f(x) = F (x, 1). Then the equation
y2 = F (x, z) is homogeneous of degree 2g+2 if we give x and z weight 1 and y weight g+1.
The projective curve C is covered by the two affine charts y2 = f(x) = F (x, 1) and
v2 = F (1, u).

Recall the following fact.

Theorem 1.1 (Faltings [Fal83]). If C is a smooth, projective and absolutely irreducible
curve over Q of genus g ≥ 2, then C(Q) is finite.

So at least in principle, we can write down the finite set C(Q). To do so in practice for
a given (hyperelliptic, say) curve C remains a major open problem. However, there are
reasons to hope for a solution.
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Consider a hyperelliptic curve C : y2 = f(x) over Q. By scaling y, we can arrange that
f has integral coefficients. We define the height of the equation y2 = f(x) with f ∈ Z[x]
(squarefree) to be the maximum of the absolute values of the coefficients of f . It is clear
that the number of such equations of height ≤ X is finite, so we can define (upper/lower)
densities and averages by looking at the relevant fractions or averages for equations of
height ≤ X and then taking the (upper/lower) limit as X →∞.

In this sense, one expects heuristically that 100% of all hyperelliptic curves of fixed genus
g ≥ 2 have no rational point. (Bhargava has shown [Bha13] that the lower density is
1− o(2−g); we will come back to this at the end of this lecture.)

So in most cases, the problem of writing down C(Q) means proving that C(Q) = ∅. In
this first lecture, I will explain several possible ways of doing that.

1.2. Local Solubility.

C(Q) 6= ∅ implies that C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p. This prompts the
following definition.

Definition 1.2. Let C be a curve (or, more generally, a variety) over Q. Then C is said
to be everywhere locally soluble or ELS, if C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p.

We then have the obvious implication

(1.1) C is not ELS =⇒ C(Q) = ∅ .

Examples 1.3.

(1) If C : y2 = −x6 − x2 − 17, then clearly C(R) = ∅, so C(Q) = ∅ as well.

(2) For C : y2 = −x6−3x5 +4x4 +2x3 +4x2−3x−1, we have C(F11) = ∅ (the polynomial
on the right remains squarefree when reduced mod 11, so we obtain a hyperelliptic
curve over F11), which implies C(Q11) = ∅ (since every Q11-rational point must reduce
to an F11-rational point) and then C(Q) = ∅.

Why do we consider the ELS property? The general idea here is that ‘local’ (i.e., over the
completions R and Qp of Q) properties are usually ‘easy’ to check or understand, whereas
‘global’ ones (over Q) are often difficult. This is illustrated by the following result.

Proposition 1.4. There is an algorithm that decides if a given (hyperelliptic, say)
curve C is ELS or not.

Sketch of proof.

(1) We have C(R) = ∅ if and only if f has no real roots and the leading coefficient of f
is negative.

(2) For any given prime p, we can use Hensel’s Lemma to reduce checking if C(Qp) = ∅
to checking the solubility mod pn for some n ≥ 1 (which is a finite problem).

(3) If p + 1 > 2g
√
p and p does not divide the discriminant of f , then C reduces to a

smooth hyperelliptic curve of genus g over Fp, which by the Weil bounds has Fp-
rational points (and all these points are smooth). By Hensel’s Lemma, a smooth
Fp-point lifts to a point over Qp, so C(Qp) 6= ∅.

(4) The previous observation allows us to reduce to R and finitely many Qp, and for each
of these, we can effectively check for local points. �
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If the genus is zero, then the converse of (1.1) holds, too (‘Hasse Principle’). This is no
longer true for g ≥ 1, however.

For fixed g, the subset of hyperelliptic curves that are ELS has a density 0 < δg < 1,
see [PS99]. For example, δ2 ≈ 0.84–0.85. The density δg seems to increase with g, but
stays away from 1. So for a large fraction of the curves without rational points, we will
not be able to prove C(Q) = ∅ by showing that C is not ELS. So we need some other
methods.

1.3. Descent.

Consider a hyperelliptic curve C : y2 = f(x) such that we have a factorisation f(x) =
f1(x)f2(x) with at least one of deg(f1) and deg(f2) even. If we have a point P = (ξ, η) ∈
C(Q), then f1(ξ) 6= 0 or f2(ξ) 6= 0 (or both), so there are a unique squarefree integer d
and η1, η2 ∈ Q such that f1(ξ) = dη2

1 and f2(ξ) = dη2
2. We can describe this situation in

geometric terms by saying that P lifts to a rational point on the curve

Dd : dy2
1 = f1(x), dy2

2 = f2(x)

under the morphism πd : Dd → C, (x, y1, y2) 7→ (x, dy1y2). (This also works for the points
at infinity, as one can see by considering the other affine chart. Note that we need the
condition on the parity of the degrees of f1 and f2 to make sure that Dd is smooth at
infinity.)

Assume that f1 and f2 have integral coefficients and let R denote their resultant. If the
prime p does not divide R, but divides d, then a p-adic point on Dd would have vp(f1(x))
and vp(f2(x)) both odd (or one of them infinite). Assuming x ∈ Zp, this leads to the
contradiction that the reductions of f1 and f2 mod p have a common root. For x /∈ Zp,
the same argument with an affine chart around infinity gives a contradiction again. This
shows that the possible squarefree d are products of −1 and primes dividing R; this gives
an explicit finite set T of possible values for d such that Dd might be ELS.

We can now check, for each d ∈ T , whether Dd is ELS. If it turns out that no Dd is ELS,
then Dd(Q) = ∅ for all d, so a rational point on C cannot lift anywhere, hence C(Q) = ∅.

Example 1.5. Consider

C : y2 = (−x2 − x+ 1)(x4 + x3 + x2 + x+ 2) = f1(x)f2(x).

One can check the following (Exercise!).

(1) C is ELS.

(2) The resultant of the two factors is 19; this gives T = {±1,±19}.
(3) If d < 0, then Dd(R) = ∅ (note that f2 is positive on R).

(4) If d ≡ 1 mod 3, then Dd(F3) = ∅, hence Dd(Q3) = ∅.

We conclude that C(Q) = ∅.

We note that π1 : D1 → C is an unramified covering. The approach described here in
this special case generalises to arbitrary unramified coverings π : D → C such that the
extension Q̄(C) ⊂ Q̄(D) of function fields is Galois: There is a finite number of twists
πd : Dd → C (coverings of C that over Q̄ become isomorphic to π) such that each rational
point on C lifts to a rational point on one of these twists. See [Sto07] for a detailed
discussion.
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1.4. The fake 2-Selmer set.

What can we do if the polynomial f does not factor over Q (most polynomials don’t)?

We can try to consider all possible factorisations (which will in general not be defined
over Q, but over some number fields) simultaneously. Since the Galois group of Q per-
mutes them, the whole setting is again ‘defined over Q’. For this, we consider a ‘generic’
linear factor of f and look at its class modulo squares. Since the degree of this linear
factor is odd, we also have to disregard scaling by rational numbers (this is plausible
when looking at the homogenised polynomial: scaling the projective coordinates scales
the linear factor correspondingly).

Set L := Q[x]/〈f(x)〉 and Lv := Qv[x]/〈f(x)〉 for v = p a prime or v =∞ with Q∞ := R.
We write T for the image of x in these étale algebras. We further set

H := {αL�Q× : cNL/Q(α) ∈ Q�} ⊂ L×

L�Q×
,

where c is the leading coefficient of f (which we assume has even degree). Here L� and Q�

denote the subgroups of squares in L× and Q×, respectively. We define Hv analogously
with Lv and Qv in place of L and Q. Then we have natural maps ρv : H → Hv.

Next, we define the ‘x− T map’

δ : C(Q) −→ H ,


(ξ, η) 7−→ (ξ − T )L�Q× if η 6= 0

(ξ, 0) 7−→ (ξ − T + f1(T ))L�Q× where f(x) = (x− ξ)f1(x)

∞±s 7−→ L�Q×

(the first definition does not work when η = 0, since then x − T is not invertible in L)
and define δv : C(Qv) → Hv analogously. Note that cNL/Q(ξ − T ) = f(ξ) = η2, so that
the image of δ really is contained in H (and similarly for δv).

Now we consider the following commutative square:

C(Q)
δ //

��

H

(ρv)v
��∏

v C(Qv)
∏

v δv //
∏

vHv

Definition 1.6. Let C be a hyperelliptic curve over Q as above. The fake 2-Selmer set
of C is the subset

Selfake
2 (C) := {α ∈ H : ∀v : ρv(α) ∈ im(δv)}

of H.

Since clearly δ restricts to a map C(Q) → Selfake
2 (C), it follows that C(Q) is empty if

Selfake
2 (C) = ∅.

Theorem 1.7 ([BS09]). The set Selfake
2 (C) is finite and computable.

Sketch of proof. In a similar way as in the previous section, one can reduce to a finite
subset HS of H, where S is the set of places of L that are archimedian or divide 2c disc(f)
and

HS := {αL�Q× : vp(α) ∈ 2Z for all p /∈ S} .
(To show that HS is indeed finite, one uses the finiteness of the ideal class group and
the finite generation of the unit group of a number field; to actually compute an F2-basis
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of HS, one needs to find generators of (the 2-torsion of) the class group and of the units
modulo squares.) For sufficiently large primes p not dividing c disc(f), one shows that
im(δp) equals the part of Hp that comes from p-adic units, which contains ρp(HS), so
no information is obtained from these primes. The remaining finitely many places v can
be dealt with by a finite computation each. (But note that the bound for these primes
gets quite large with increasing genus. Already for genus 2, it is 1153. The growth is
exponential in g.) �

Remarks 1.8.

(1) There is a 2-Selmer set Sel2(C) of C (without the ‘fake’). It classifies ELS ‘2-coverings’
of C, see [Sto07]. There is a surjective map Sel2(C)→ Selfake

2 (C), which is sometimes
a bijection and usually a 2–1 map. We can distinguish between these two cases by
looking at the factorisation of f over Q and over quadratic number fields, see [BS09].

(2) Manjul Bhargava [Bha13] has actually shown the following: As g → ∞, the (fake)
2-Selmer set is empty for a set of hyperelliptic curves of genus g (with integral coeffi-
cients, ordered by height as above) of lower density 1−o(2−g). So this method comes
close to being always successful!

Example 1.9. In [BS08], we considered all curves of genus 2 (they are all hyperelliptic)
of height at most 3. There are close to 200, 000 isomorphism classes. All but about 1, 500
either

(1) have a (fairly small) rational point,

(2) are not ELS, or

(3) have empty 2-Selmer set.

The remaining ones can be dealt with a further technique called the Mordell-Weil Sieve,
see [BS10], which we will say more about in the last lecture of this series.

1.5. Exercises.

(1) Work out the proof of Proposition 1.4 and formulate a detailed algorithm for checking
the ELS property.

(2) Construct other examples like Example 1.5. Generalise the method to factorisations
into more than two factors and find an example where this is needed to prove that
there is no rational point.

(3) Show that if the approach as in Example 1.5 is successful, then the fake 2-Selmer set
is empty.

(4) Compute the fake 2-Selmer set for some hyperelliptic curve, e.g., for

y2 = −23(x3 − x2 + 1)(x3 − x+ 1).

Hint. You may want to use that Q(α) has trivial class group, ring of integers Z[α]
and fundamental unit α, where α3 − α + 1 = 0.

2. The Jacobian

In this lecture we give an overview over the main facts concerning the Jacobian variety
of a (hyperelliptic) curve.
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2.1. Divisors and divisor classes.

Let K be a perfect field; we write GK for the absolute Galois group of K. If C is a ‘nice’
(i.e., smooth, projective and geometrically irreducible) curve over K, then we define its
group of divisors DivC to be the free abelian group generated by the set C(K̄) of all
points of C defined over the algebraic closure K̄ of K. Its elements are divisors on C, so
a divisor D is a formal integral linear combination of points. D is said to be effective if
all its coefficients are nonnegative.

The group GK acts on C(K̄) in a natural way; this induces an action on DivC by group
automorphisms. Divisors that are invariant under this action are said to be K-rational ;
we write DivC(K) for the subgroup of K-rational divisors.

Example 2.1. Let C : y2 = f(x) be a hyperelliptic curve over K. Fix ξ ∈ K and let
η ∈ K̄ be such that η2 = f(ξ). Then Dξ = (ξ, η) + (ξ,−η) is a K-rational divisor on C.
Similarly, we can define D∞ =∞s +∞−s ∈ DivC(K).

A divisor has a degree, which is the sum of its coefficients:

if D =
∑
P

nPP , then deg(D) =
∑
P

nP ∈ Z.

This gives a (surjective) group homomorphism deg : DivC → Z; its kernel is Div0
C , the

subgroup of divisors of degree zero. We also write Div0
C(K) for the group of K-rational

divisor of degree zero.

If f ∈ K̄(C)× is a rational function on C, then we can associate to it a divisor

div(f) =
∑
P

vP (f) · P ∈ DivC .

Here vP (f) denotes the order of vanishing of f at the point P (which is the negative of
the pole order if f has a pole at P ). Any nonzero function on C has only finitely many
zeros and poles, so div(f) is indeed a divisor. Any such divisor is said to be principal.
We obtain a group homomorphism

div : K̄(C)× −→ DivC ,

whose image (which is the group of principal divisors) we denote by PrincC . The cokernel
of div is the Picard group

PicC = DivC /PrincC .

It is clear that div is equivariant with respect to the natural actions of GK , which implies
that if f ∈ K(C)×, then div(f) ∈ DivC(K).

Lemma 2.2.

PrincC ⊂ Div0
C .

Sketch of proof. Consider any non-constant morphism π : C → P1. This induces homo-
morphisms π∗ : DivC → DivP1 and π∗ : K̄(C)× → K̄(P1)× = K̄(x)× (the latter is the
norm map associated to the extension π∗ : K̄(x) → K̄(C) of function fields) that are
compatible with the formation of principal divisors. It follows that for any f ∈ K̄(C)×,
deg(div(f)) = deg(π∗(div(f))) = deg(div(π∗(f))). So we reduce to the case C = P1,
where it is easy to check that all principal divisors have degree zero. �
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So deg descends to deg : PicC → Z with kernel

Pic0
C = Div0

C /PrincC .

We say that two divisors D and D′ are linearly equivalent, D ∼ D′, if they have the same
image in the Picard group, which means that their difference is a principal divisor. We
denote the image of D in PicC by [D] and call it the divisor class of D.

Since div is GK-equivariant, PrincC is a GK-invariant subgroup of DivC (or Div0
C), and

we obtain an induced GK-action on PicC and Pic0
C . We write again PicC(K) and Pic0

C(K)
for the subgroups of GK-invariant divisor classes and say that they are K-rational.

Example 2.3. The divisors Dξ from Example 2.1 are all linearly equivalent, since

Dξ −Dξ′ = div
( x− ξ
x− ξ′

)
and D0 −D∞ = div(x).

The class [Dξ] is a K-rational divisor class of degree 2.

Remark 2.4. It is not true in general that every K-rational divisor class can be repre-
sented by a K-rational divisor.

This is true, however, when C(K) 6= ∅, or when K = Q and C is ELS.

The most important fact in this context is that the group Pic0
C together with the GK-

action on it can be realised as the set of K̄-points of a suitable projective group variety
(an abelian variety) defined over K.

Theorem 2.5. Let C be a nice curve over K. Then there is an abelian variety J over K
such that there is an isomorphism of GK-modules Pic0

C → J(K̄). The dimension of J
agrees with the genus of C.

This abelian variety J is called the Jacobian variety or just the Jacobian of C. We usually
identify J(K̄) and PicC . In particular, we have J(K) = Pic0

C(K).

Examples 2.6. If C is a curve of genus zero, then J is trivial (just a point).

If C is a curve of genus one, then J is a one-dimensional abelian variety, hence an elliptic
curve. If C has a K-rational point (so is an elliptic curve itself), then J and C are
isomorphic. Otherwise, C and J cannot be isomorphic, since J always has a K-rational
point, namely the zero of the group law.

Even though J is a projective variety, it is not of much use to try to work with explicit
equations defining J as a subset of some projective space, since any fairly natural realisa-
tion will require a projective space of large dimension and lots of equations. For example,
the Jacobian of a curve of genus two has a natural embedding into P15, whose image
is described by 72 quadratic equations (which are explicitly known, due to Cassels and
Flynn). To my knowledge, no explicit equations are known for Jacobians of curves of any
genus ≥ 3. For practical purposes, it is much more convenient to represent points on J
by divisors on C.

However, it is still useful to know that Pic0
C can be realised geometrically, since this allows

us to use geometric constructions. For example, we have the following fact.
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Proposition 2.7. Let C be a nice curve over K of genus g ≥ 1 and with Jacobian J , and
let [D0] be a K-rational divisor class of degree 1 (for example, D0 could be a K-rational
point on C). Then

i[D0] : C −→ J, P 7−→ [P −D0]

is an embedding of K-varieties.

The basic idea to approach C(Q) is now to use such an embedding i of C into J , then i
induces a bijection between C(Q) and the intersection of J(Q) with i(C). We can hope
to make use of the additional (group) structure of J to help us determine C(Q).

2.2. The Mordell-Weil theorem. We know that J is an abelian variety, so J(K̄)
and J(K) are abelian groups. The following famous theorem tells us more.

Theorem 2.8 (Mordell [Mor22], Weil [Wei29]). Let K be Q (or, more generally, a number
field, or even a field finitely generated over its prime field) and let J be the Jacobian of a
nice curve over K. Then the abelian group J(K) is finitely generated.

By the structure theorem for finitely generated abelian group, we therefore have

J(K) ∼= J(K)tors × Zr,
where J(K)tors denotes the (finite) torsion subgroup of J(K) and the rank r is a nonneg-
ative integer.

The proof is in two parts. The first step is to show that J(K)/2J(K) (or J(K)/mJ(K)
for some m ≥ 2) is finite (‘Weak Mordell-Weil Theorem’). The second step uses the fact
that there is a suitable ‘height function’ on J(K) to deduce from the result of the first
step that J(K) is indeed finitely generated.

If we grant that we know that J(K) is finitely generated, then knowledge of J(K)tors

(or just the 2-torsion J(K)[2]) and a bound on the order of J(K)/2J(K) will give us an
upper bound on the rank r, since

J(K)/2J(K) ∼= J(K)tors/2J(K)tors × (Z/2Z)r ∼= J(K)[2]× (Z/2Z)r.

We obtain lower bounds on r by finding points in J(K) and checking them for indepen-
dence.

2.3. The torsion subgroup.

We now discuss how one can try to determine J(Q)tors when J is the Jacobian of a (nice)
curve C over Q. Let p be a prime of good reduction for C (this means that we can write
down equations with integral coefficients defining C such that the same equations, with
coefficients reduced mod p, again define a nice curve C̄ of the same genus as that of C).
There is a canonical reduction map C(Q)→ C̄(Fp), P 7→ P̄ .

Proposition 2.9. In this situation, p is also a prime of good reduction for J . The
associated reduction map J(Q) → J̄(Fp) is a group homomorphism. If p ≥ 3, then this
homomorphism is injective when restricted to the torsion subgroup J(Q)tors.

If P0 ∈ C(Q) defines the embedding iP0 : C → J , then the following diagram commutes:

C(Q)
iP0 //

��

J(Q)

��
C̄(Fp)

iP̄0 // J̄(Fp)
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The proof of the first part is based on the fact that (when p > 2) the kernel of the
reduction map on J(Qp) is isomorphic as a group to Zgp and thus torsion-free. The
second part will be useful later.

This result allows us to obtain upper bounds for the order of J(Q)tors, since it implies
that #J(Q)tors divides #J̄(Fp) for all odd primes p of good reduction. We obtain lower
bounds by actually finding torsion points.

Example 2.10. Consider C : y2 = x5 + 1. One can check that [(−1, 0)−∞] ∈ J(Q) has
order 2 (note that 2

(
(−1, 0)−∞

)
= div(x+ 1) is principal) and that [(0, 1)−∞] ∈ J(Q)

has order 5 (since 5
(
(0, 1)−∞

)
= div(y − 1)). So #J(Q)tors is divisible by 10.

On the other hand, p = 3 is a prime of good reduction (for a hyperelliptic curve y2 = f(x)
with f ∈ Z[x], any odd prime p such that f has no multiple roots mod p is a prime of
good reduction), and one can check that #J̄(F3) = 10, so J(Q)tors

∼= Z/10Z.

For odd degree hyperelliptic curves, the 2-torsion subgroup of J(K) has a simple explicit
description.

Lemma 2.11. Let C : y2 = f(x) be hyperelliptic over K with deg(f) = 2g + 1. Let
f = f1f2 · · · fn be a factorisation into irreducible polynomials over K. Then J(K)[2] is
generated by P1, P2, . . . , Pn, where

Pj =
[ ∑
ξ:fj(ξ)=0

(ξ, 0)− deg(fj) · ∞
]

and the only relations are 2Pj = 0 and P1 + P2 + . . .+ Pn = 0.

In particular, dimF2 J(K)[2] = n− 1.

2.4. The 2-Selmer group.

It remains to determine the rank r of J(Q). This is, in general, a rather difficult problem.
In particular, it is not presently known whether there is an algorithm (however inefficient)
that is guaranteed to find r in all cases, not even for curves of genus 2 (or genus 1, for
that matter).

What we can do is to search for points on J(Q) (and test them for independence, for
example by considering the image of the group they generate under a diagonal map
J(Q)→

∏
p∈S J̄(Fp), where S is some finite set of good primes); this will give us a lower

bound on r. The hard part is to get an upper bound. One possibility for this is to
compute the (size of) the 2-Selmer group.

Let C : y2 = f(x) be a hyperelliptic curve over Q; we assume that f has odd degree 2g+1
and is monic to simplify things. Recall the algebra L = Q[x]/〈f〉 and the map δ : C(Q)→
L×/L� (when deg(f) is odd there is no need to also factor out Q×), which is given on
points P = (ξ, η) with η 6= 0 by δ(P ) = (ξ − T )L�, where T is the image of x in L.
We extend this to K-rational divisors: if D =

∑
P nP · P is a K-rational divisor whose

support avoids ∞ and the points with y = 0, then

δ(D) =
∏
P

(x(P )− T )nPL� = (−1)deg(a)a(T )L�,

where a =
∏

P (x − x(P ))np ∈ Q(x). One can extend this to include divisors whose
support meets ∞ or one of the points (ξ, 0) and obtains a group homomorphism

δ : DivC(Q) −→ H = {αL� : NL/Q(α) ∈ Q�} ⊂ L×/L�.
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The same construction works over any field K instead of Q.

Lemma 2.12. δ is trivial on PrincC(K): for any f ∈ K(C)×, we have δ(div(f)) = L�.
In particular, δ induces a homomorphism δ : J(K) = Pic0

C(K)→ H.

Proposition 2.13. The kernel of δ on J(K) is exactly 2J(K).

This tells us that the image of δ is isomorphic to J(K)/2J(K). This does not immediately
help, but it allows us to obtain an upper bound on #

(
J(Q)/2J(Q)

)
by comparing with

‘local’ information. We write Q∞ = R and use v as a variable running over the places of Q
(the primes and ∞). Then we have δv : J(Qv)→ Hv for each v. There is a commutative
diagram

J(Q)
δ //

��

H∏
v resv

��∏
v J(Qv)

∏
v δv //

∏
vHv

and we define the 2-Selmer group of J to be

Sel2(J) = {α ∈ H : ∀v : resv(α) ∈ im(δv)}.

The first assertion in the following theorem actually gives the proof of the ‘Weak Mordell-
Weil Theorem’.

Theorem 2.14. The 2-Selmer group is a finite-dimensional F2-vector space; it is explic-
itly computable. It gives the upper bound

r ≤ dimF2 Sel2(J)− dimF2 J(Q)[2].

Sketch of proof. One can again reduce to a finite group

HS = {αL� : vp(α) ∈ 2Z for all p /∈ SL},

where S is the set of primes dividing 2 disc(f) and SL is the set of places of L lying above
a prime in S. (The proof that HS is finite is again based on finiteness of class groups
and finite generation of unit groups of algebraic number fields. A basis of HS can be
computed.) This already shows finiteness. One can then show that

Sel2(J) = {α ∈ HS : resv(α) ∈ im(δv) for all v ∈ S ∪ {∞}}.

The further fact that

dimF2 J(Qv)/2J(Qv) = dimF2 J(Qv)[2] +


0 if v 6=∞, 2,

g if v = 2,

−g if v =∞

allows us to determine im(δv) by picking random points in J(Qv) until their images
generate a subspace of the correct dimension. �

If we can find as many independent points in J(Q) has specified by the upper bound
coming from the 2-Selmer group, then we have determined the rank r, and we know a
set of generators of a subgroup of J(Q) of finite index. This is what we need as input to
Chabauty’s method and the Mordell-Weil sieve in the next lecture.
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2.5. Exercises.

(1) Construct an example for the first statement in Remark 2.4.

(2) Let C : y2 = f(x) be hyperelliptic over K with deg(f) = 2g+ 1 odd. Show that there
is a bijection between J(K) and the set

{(a, b) : a, b ∈ K[x], a monic, deg(a) ≤ g, deg(b) < deg(a), a | f − b2},

which associates to (a, b) the class of the divisor

D =
n∑
j=1

(
αn, b(αn)

)
− n · ∞

when a = (x− α1) · · · (x− αn).

Hint. The Riemann-Roch Theorem might be helpful here. What are the functions
whose only possible pole is at ∞?

Note that this gives a way of representing rational divisor classes in terms of rational
data.

(3) Let C : y2 = f(x) be of genus 2 over K (all curves of genus 2 are hyperelliptic).

(a) Show that every point 0 6= P ∈ J(K) can be uniquely written as P = [DP ]− [Dξ]
with DP ∈ DivC(K) effective of degree 2 (Dξ is as in Example 2.1).

Hint. You may want to use the Riemann-Roch Theorem. Note that [Dξ] is the
class of canonical divisors.

(b) Now take K = Fp (with p ≥ 3). Show that

#J(Fp) =
#C(Fp2) + #C(Fp)2

2
− p.

(c) Determine J(Q)tors for

C : y2 = 4x6 + 4x5 − 7x4 − 4x3 + 8x2 + 8x+ 4.

Hint. Determine div(hj) for the following functions:

h1 = y − (2x3 + x2 − 2x), h2 = y + (2x3 + x2 + 2x+ 2), h3 = y + (2x3 + x2 − 2x− 2)

and use them to determine the order of [∞2 −∞−2].

(4) Try to compute the dimension of the 2-Selmer group (and, if possible, the rank) of
the Jacobian of some hyperelliptic curve, for example of the form

y2 = x(x− a1)(x− a2)(x− a3)(x− a4)

with distinct (small) integers a1, a2, a3, a4 6= 0, for example 1, 2, 5, 6.

3. Methods for determining the set of rational points on a curve

Let C be a nice curve over Q of genus g ≥ 2. We now assume that we have found a
rational point P0 ∈ C(Q) and that we want to determine the finite set C(Q). We remark
that one expects the rational points on C to be reasonably ‘small’ (in terms of a suitable
height, say) relative to the coefficients of the defining equation(s), so that usually it is
easy to actually find all the rational points. The hard part is then to prove that the list
is indeed complete.

11



The methods we describe in this lecture are based on the embedding

i = iP0 : C −→ J, P 7−→ [P − P0]

that identifies C(Q) with the subset of the Mordell-Weil group J(Q) consisting of points
in the image i(C) of the curve in J . We will assume that we know explicit generators of
a subgroup of J(Q) of finite index.

3.1. Differentials and integration.

The first method I would like to explain goes back to Chabauty [Cha41], who proved
Mordell’s Conjecture in the case r < g, but the version described here is due to Cole-
man [Col85b]. It is based on p-adic integration of regular differentials on the curve, so
we first have to introduce these concepts.

Let C be a nice curve over a field K. The space of differentials of C over K is a one-
dimensional vector space ΩC(K) over the function field K(C). There is a nontrivial K-
linear derivation d : K(C)→ ΩC(K), i.e., aK-linear map satisfying d(fg) = (df)g+f(dg).
If η, ω ∈ ΩC(K) with ω 6= 0, then there is a unique f ∈ K(C) such that η = fω. We also
write f = η/ω.

Let 0 6= ω ∈ ΩC(K). If P ∈ C(K̄) is a point and t ∈ K̄(C) is a uniformiser at P , then
dt 6= 0 and so ω/dt ∈ K̄(C)×. We define the order of vanishing of ω at P to be vP (ω/dt);
this does not depend on the choice of t. In this way, we can define the divisor of ω,

div(ω) =
∑
P

vP (ω) · P ∈ DivC(K).

Since the quotient of two differentials is a function, it follows that these divisors are
all in the same divisor class (and every K-rational divisor in the class arises from some
ω ∈ ΩC(K)), which is called the canonical class ; any divisor in the canonical class is a
canonical divisor. One can show that the degree of any canonical divisor is 2g − 2.

A differential ω is said to be regular at P if vP (ω) ≥ 0 (this includes the case ω = 0,
where vP (ω) = +∞). ω is regular if it is regular at every point. It is a fact that the
set of regular differentials on C forms a finite-dimensional K-vector space Ωreg

C (K), of
dimension g, the genus of C.

Example 3.1. Let C : y2 = f(x) be hyperelliptic over K of genus g. Then

Ωreg
C (K) =

〈dx
2y
,
x dx

2y
, . . . ,

xg−1 dx

2y

〉
K
,

so that each ω ∈ Ωreg
C (K) can be written uniquely as ω = h(x) dx/2y with a polynomial

h ∈ K[x] of degree at most g − 1.

If K = C, then our regular differentials are regular 1-forms on the Riemann Surface C(C),
which we can integrate along paths. Such an integral depends only on the homotopy
class of the path, but can take different values on non-homotopic paths with the same
endpoints. In contrast to this, it is possible to define integrals of regular differentials over
p-adic fields that depend only on the endpoints.

Theorem 3.2 (Coleman [Col85a]). Let C be a nice curve over Qp that has good reduction.
Then there is an integral that assigns to each pair of points P,Q ∈ C(Q̄p) and each regular
differential ω ∈ Ωreg

C (Q̄p) a value ∫ Q

P

ω ∈ Q̄p

12



and that has the following properties.

(1) For fixed P and Q,
∫ Q
P
ω is Q̄p-linear in ω.

(2) (‘Fundamental Theorem of Calculus’)
Let t be a uniformiser at P that reduces to a uniformiser t̄ at the reduction P̄ of P .
Then we can write

ω = w(t) dt

where w is a power series whose coefficients have bounded (p-adic) absolute value.
Let `(t) be the formal integral of w(t) with vanishing constant term. If Q also reduces
to P̄ , then |t(Q)| < 1, `(t(Q)) converges and we have∫ Q

P

ω = `(t(Q)).

In particular,
∫ P
P
ω = 0.

(3) (Additivity)

For any three points P, P ′, P ′′, we have

∫ P ′

P

ω +

∫ P ′′

P ′
ω =

∫ P ′′

P

ω.

This implies that

∫ Q

P

ω +

∫ Q′

P ′
ω =

∫ Q′

P

ω +

∫ Q

P ′
ω.

It then makes sense to define
∫ D

ω for a divisor D =
∑n

j=1(Qj − Pj) ∈ Div0
C(Q̄p) as∫ D

ω =
n∑
j=1

∫ Qj

Pj

ω.

(4) If D is a principal divisor, then
∫ D

ω = 0.

(5) The integral is compatible with the action of the absolute Galois group of Qp.

We note that the good reduction assumption is unnecessary here, but it simplifies the
statement of property (2). Note that (2) allows us to compute integrals numerically when
the two endpoints are ‘p-adically close’.

From properties (3), (4) and (5) we deduce that

Ωreg
C (Qp)× J(Qp) −→ Qp, (ω, P ) 7−→ 〈ω, P 〉 :=

∫ D

ω,

where D ∈ Div0
C satisfies [D] = P , is well-defined, Qp-linear in ω and additive in P . We

call this the Chabauty-Coleman pairing.

3.2. Chabauty’s Method.

We return to K = Q. Assume that the rank r of J(Q) is strictly less than the genus g
of C. Pick a prime p of good reduction for C. Set

V = {ω ∈ Ωreg
C (Qp) : ∀P ∈ J(Q) : 〈ω, P 〉 = 0};

this is the annihilator of the Mordell-Weil group under the Chabauty-Coleman pairing.
It follows from the properties of the p-adic integral that dimV ≥ g − r > 0, so there are
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nontrivial regular differentials that kill the Mordell-Weil group. For any ω ∈ V and any
P ∈ C(Q) we must then have (recall that P0 ∈ C(Q) was our chosen basepoint)∫ P

P0

ω =

∫ P−P0

ω = 〈ω, [P − P0]〉 = 0,

since [P − P0] = i(P ) ∈ J(Q).

We can compute a basis of V to any desired p-adic accuracy by evaluating
∫ Pj ωi where

(ω1, . . . , ωg) is a basis of Ωreg
C (Qp) and (P1, . . . , Pr) generate a subgroup of J(Q) of finite

index; then we use linear algebra. We can for example pick the Pj such that they are
represented by divisors of the form

∑
m(Q′m−Qm) where Q′m and Qm reduce to the same

point mod p; then the integrals can be evaluated using property (2). Alternatively, one
can use an algorithm worked out by Balakrishnan, Bradshaw and Kedlaya [BBK10].

Consider a point P̄ ∈ C̄(Fp) and assume we know a point P ∈ C(Q) reducing to P̄ . Let t
be a uniformiser at P as in property (2) above. Then for every Q ∈ C(Q) reducing to P̄ ,
t(Q) ∈ pZp must be a root of `(t) for every ` arising from a differential ω ∈ V . We can
scale ω in such a way that its reduction ω̄ mod p makes sense and is nonzero. Then we
have the following.

Proposition 3.3. Assume that p ≥ 3. Then the number of roots τ ∈ Q̄p of ` such that
|τ |p ≤ |p|p is at most

1 + n+
⌊ n

p− 2

⌋
, where n = vP̄ (ω̄).

In particular, this bound applies to the number of Q ∈ C(Q) with Q̄ = P̄ .

There is also a version for p = 2. The proof uses Newton Polygons and is left as an
exercise.

As a consequence, we have Chabauty’s partial result regarding Faltings’s Theorem in
Coleman’s version.

Corollary 3.4. Let C be a nice curve over Q, of genus g and with Jacobian J . Assume
that the rank r of J(Q) is strictly less than g. Then C(Q) is finite.

More precisely, let p be an odd prime of good reduction for C. Then

#C(Q) ≤ #C̄(Fp) + 2g − 2 +
⌊2g − 2

p− 2

⌋
.

Proof. Under the hypothesis r < g there is 0 6= ω ∈ V . We can scale ω so that ω̄ makes
sense and is nonzero. Then we have

#C(Q) =
∑

P̄∈C̄(Fp)

#{Q ∈ C(Q) : Q̄ = P̄}

≤
∑

P̄∈C̄(Fp)

(
1 + vP̄ (ω̄) +

⌊vP̄ (ω̄)

p− 2

⌋)
≤ #C̄(Fp) + 2g − 2 +

⌊2g − 2

p− 2

⌋
.

The first inequality uses Proposition 3.3 and the second inequality follows from∑
P̄∈C̄(Fp)

vP̄ (ω̄) ≤ deg div(ω̄) = 2g − 2. �
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This version is essentially due to Coleman (who formulated it explicitly under the addi-
tional assumption p > 2g, when the last term vanishes).

By picking the ‘best’ ω ∈ V independently for each point P̄ , the bound can be improved
to

#C(Q) ≤ #C̄(Fp) + 2r +
⌊ 2r

p− 2

⌋
.

See [Sto06]. There is also a version that does not assume that p is a prime of good
reduction. Then #C̄(Fp) has to be replaced by the number of smooth Fp-points on the
special fibre of some regular proper model of C over Zp [KZB13].

In concrete cases these bounds (though fairly reasonable) are rarely sharp. It may then
be helpful to look at each ‘residue class’ (set of points reducing to a fixed point mod p)
separately and to carry out the computations. If g − r ≥ 2, it usually helps to look for
common roots of the various power series coming from differentials forming a basis of V .
The method of the next section can be used to rule out residue classes that appear not
to contain rational points.

Example 3.5. Here is an example where the bound above is actually sharp [Gra94].
Consider the curve of genus 2

C : y2 = x(x− 1)(x− 2)(x− 5)(x− 6).

By computing the 2-Selmer group, one finds that r ≤ 1, and since there is the non-torsion
point [(3, 6)−∞] ∈ J(Q), it follows that r = 1. One finds the ten points

∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120)

in C(Q). The prime 7 is a prime of good reduction, and #C̄(F7) = 8. So

10 ≤ #C(Q) ≤ 8 + 2 + b2/5c = 10,

which tells us that we have found all the rational points on C.

As a final remark, we mention that one can show [PS14] that a 2-adic version of the
argument applies to show that ‘most’ hyperelliptic curves of odd degree have only the
obvious rational point ∞, when the genus gets large.

3.3. The Mordell-Weil Sieve.

The last method we describe here can be used to show that C(Q) is empty (when the
approaches from the first lecture are unsuccessful), but also to show (for example) that
certain residue classes mod p do not contain rational points. We assume that we know
explicit generators of J(Q); with some care, it is however possible to get by knowing only
generators of a subgroup of finite index.

The basic idea is to combine our knowledge of the ‘global’ object J(Q) with ‘local’ (mod q)
information. So let q be a prime of good reduction (again, for simplicity; this assumption
is not strictly necessary). We fix an embedding i : C → J given by some rational divisor
(class) of degree 1. (If we already know a rational point on C, we will use it as our
basepoint for the embedding. If we want to prove that no rational point exists, we have
to use some other divisor of degree 1.) We will write C(Fq) etc. instead of C̄(Fq) etc. for

15



the set of Fq-points on the reduction. Then we have a commutative diagram

C(Q) �
� i //

��

J(Q)

ρq

��
C(Fq) �

� i // J(Fq)

which tells us that i(C(Q)) ⊂ ρ−1
q

(
i(C(Fq))

)
. Now the number of Fq-points on C is

roughly q (more precisely, it is q+ 1± 2g
√
q by the Hasse-Weil theorem) and the number

of Fq-points on J is about qg (more precisely, between (
√
q − 1)2g and (

√
q + 1)2g). So

we can expect ρ−1
q

(
i(C(Fq))

)
to be a union of about q cosets of the kernel of ρq, which

usually will have index about qg. So this mod q information restricts i(C(Q)) to a set of
density roughly q1−g inside J(Q).

We can improve on this by using several primes q together, via

C(Q) �
� i //

��

J(Q)
∏
ρq

��∏
q∈S C(Fq) �

� //
∏

q∈S J(Fq)

where S is a finite set of (good) primes. This gives

i(C(Q)) ⊂
⋂
q∈S

ρ−1
q

(
i(C(Fq))

)
,

which should be of density roughly (
∏

q∈S q)
1−g. If we pick the primes in S in such a way

that the group orders #J(Fq) share many common factors, then there is a good chance
that there is some interaction between the information coming from the various q, with
the result that the intersection above can be written as a union of a fairly small number
of cosets of

⋂
q∈S ker(ρq).

If we use an embedding i that does not come from a rational point and C(Q) = ∅, then
it may well be the case that the intersection

⋂
q∈S ρ

−1
q

(
i(C(Fq))

)
will be empty for some

choice of S. This then gives a proof that C(Q) = ∅. This approach was successful for
the remaining curves in [BS08] (in some cases one needs to assume the BSD conjecture
to deduce that there is in fact no rational divisor of degree 1, which obviously also gives
a proof that there is no rational point).

In the other situation, we can for example restrict the set of rational points on C we
consider to be the points in some residue class mod p. If there are no such points, then
we may again be able to prove this fact by observing that the relevant intersection is
empty. In this way it is possible to reduce to the set of residue classes that do actually
contain rational points. If we pick the prime p in such a way that there is some ω ∈ V such
that its reduction ω̄ does not vanish at any Fp-point of C, then the results of the previous
section imply that (as long as p ≥ 3) each residue class contains at most one rational
point. So if we can prove that certain residue classes do not contain rational points and if
we find rational points in the remaining residue classes, then we have determined C(Q).
This leads to a quite efficient procedure that finds C(Q) when C has genus 2 and r = 1,
see [BS10].

It is also possible to use the Mordell-Weil Sieve (in combination with ‘Linear Forms in
Logarithms’) to determine the set of integral points on a hyperelliptic curve [BMS+08]
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even when r ≥ g. In this case, one does actually need to know explicit generators of the
full Mordell-Weil group, however, which so far can be provably obtained only for g = 2
and g = 3.

3.4. Exercises.

(1) Work out the proof of Proposition 3.3 (You may first assume that p > n+ 2).

(2) Find C(Q) for

C : y2 = x6 + 2x5 − 3x4 − 6x3 + 6x2 + 8x− 7,

given that J(Q) has rank 1.

Hint. You have to look at the power series expansion of ω around (1, 1) (say) over Q3

to reduce the bound from 3 to 2 on its residue class mod 3.

(3) Let

C : y2 = f(x) = −2x6 + 2x5 + 2x4 + 3x3 − 2x2 − 2x− 3.

Then J(Q)tors is trivial (prove this!) and the free part of J(Q) is generated by

[(
√
−2, 5) + (−

√
−2, 5)−D0]

and[(
1
9
(5
√
−2− 2), 1

729
(418
√
−2− 205)

)
+
(

1
9
(−5
√
−2− 2), 1

729
(−418

√
−2− 205)

)
−D0

]
.

(a) Verify that C is ELS.

(b) (Optional) Verify that the fake 2-Selmer set of C is nonempty.

The polynomial f(x) is irreducible, so you should enlist the help of a Computer
Algebra System like Magma, pari/gp or Sage.

(c) Show that f(x) − x2 factors into two polynomials of degree 3; use this to write
down a rational divisor D0 of degree 1 on C defining an embedding i : C → J .

(d) Verify that the images in J(F3) of J(Q) under the reduction map and of C(F3)
under i do not intersect. Conclude that C(Q) = ∅.
Hint. J(F3) ∼= Z/28Z and the image of J(Q) has index 4.
A Computer Algebra System is helpful for doing the computations.

References

[BBK10] Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya, Explicit Coleman in-
tegration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci.,
vol. 6197, Springer, Berlin, 2010, pp. 16–31, DOI 10.1007/978-3-642-14518-6 6. MR2721410
(2012b:14048) ↑3.2

[Bha13] Manjul Bhargava, Most hyperelliptic curves over Q have no rational points, 2013. Preprint,
arXiv:1308.0395. ↑1.1, 2

[BS08] Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment,
Experiment. Math. 17 (2008), no. 2, 181–189. MR2433884 (2009d:11100) ↑1.9, 3.3

[BS09] , Two-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), no. 268, 2347–
2370, DOI 10.1090/S0025-5718-09-02255-8. MR2521292 (2010e:11059) ↑1.7, 1

[BS10] , The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS
J. Comput. Math. 13 (2010), 272–306, DOI 10.1112/S1461157009000187. MR2685127
(2011j:11118) ↑1.9, 3.3

[BMS+08] Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Inte-
gral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885, DOI
10.2140/ant.2008.2.859. MR2457355 (2010b:11066) ↑3.3

17



[Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à
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(1983), no. 3, 349–366, DOI 10.1007/BF01388432 (German). MR718935 (85g:11026a) ↑1.1

[Gra94] David Grant, A curve for which Coleman’s effective Chabauty bound is sharp, Proc. Amer.
Math. Soc. 122 (1994), no. 1, 317–319, DOI 10.2307/2160877. MR1242084 (94k:14019) ↑3.5

[KZB13] Eric Katz and David Zureick-Brown, The Chabauty-Coleman bound at a prime of bad reduc-
tion and Clifford bounds for geometric rank functions, Compos. Math. 149 (2013), no. 11,
1818–1838, DOI 10.1112/S0010437X13007410. MR3133294 ↑3.2

[Mor22] Louis J. Mordell, On the rational solutions of the indeterminate equation of the third and
fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179–192. ↑2.8

[PS99] Bjorn Poonen and Michael Stoll, A local-global principle for densities, Topics in number
theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht,
1999, pp. 241–244. MR1691323 (2000e:11082) ↑1.2

[PS14] , Most odd degree hyperelliptic curves have only one rational point, Ann. of Math. (2)
180 (2014), no. 3, 1137–1166, DOI 10.4007/annals.2014.180.3.7. MR3245014 ↑3.2

[Sto06] Michael Stoll, Independence of rational points on twists of a given curve, Compos. Math. 142
(2006), no. 5, 1201–1214, DOI 10.1112/S0010437X06002168. MR2264661 (2007m:14025) ↑3.2

[Sto07] , Finite descent obstructions and rational points on curves, Algebra Number Theory
1 (2007), no. 4, 349–391, DOI 10.2140/ant.2007.1.349. MR2368954 (2008i:11086) ↑1.3, 1
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