
THE SURFACE PARAMETRIZING CUBOIDS
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ABSTRACT. We study the surface S̄ parametrizing cuboids: it is defined by the equations
relating the sides, face diagonals and long diagonal of a rectangular box. It is an open
problem whether a ‘rational box’ exists, i.e., a rectangular box all of whose sides, face
diagonals and long diagonal have (positive) rational length. The question is equivalent
to the existence of nontrivial rational points on S̄.

Let S be the minimal desingularization of S̄ (which has 48 isolated singular points).
The main result of this paper is the explicit determination of the Picard group of S,
including its structure as a Galois module over Q. The main ingredient for showing
that the known subgroup is actually the full Picard group is the use of the combined
action of the Galois group and the geometric automorphism group of S (which we also
determine) on the Picard group. This reduces the proof to checking that the hyperplane
section is not divisible by 2 in the Picard group.

We use our explicit knowledge of the Picard group, together with that of a K3 sur-
face obtained as a quotient of S, to study curves of low degree on S̄. In this way, we
completely classify all integral curves of degree at most 6 on S̄.

1 Introduction

Let P6 be the projective space over Q with homogeneous coordinates a1, a2, a3, b1, b2,
b3, c; let S̄ be the surface in P6 defined by

(1.1)


a21 + b21 = c2

a22 + b22 = c2

a23 + b23 = c2

a21 + a22 + a23 = c2

and note that the equations in (1.1) are equivalent to the equations

(1.2)


a21 + a22 = b23

a21 + a23 = b22

a22 + a23 = b21

a21 + a22 + a23 = c2.

These equations encode the relations between the three sides a1, a2, a3, the three face
diagonals b1, b2, b3 and the long diagonal c of a three-dimensional rectangular box.

The interest in this surface comes from a famous open problem:

Does there exist a ‘rational box’?

A rational box is a (non-degenerate) rectangular box all of whose sides, face diagonals
and long diagonals have rational length. The existence of a rational box is therefore
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equivalent to the existence of a rational point on S̄ with a1a2a3 ̸= 0. See van Luijk’s
undergraduate thesis [vL00] for a summary of the literature on this problem.

In this paper, we hope to make progress toward a better understanding of the rational
box surface by proving some results on its geometry. This extends results obtained
in [vL00].

The surface S̄ has 48 isolated A1 singularities. We let S denote the minimal desingular-
ization of S̄. Then we show the following.

Theorem 1. AutQ(S) = AutQ(S̄) is an explicitly given group G of order 1536. Its action
on S̄ extends to a linear action on the ambient P6.

This group comes from the obvious independent sign changes on all coordinates and
the equally obvious simultaneous permutations of the a and b coordinates, together
with a less obvious automorphism. This leads to an exact sequence

1 −→ µ72/µ2 −→ G −→ S4 −→ 1 ,

where the kernel comes from the sign changes and the action of the S4 quotient can be
visualized as the action of the symmetry group of the tetrahedron in the diagram below
(where an edge x y z corresponds to one of the rank 3 quadrics x2 + z2 = y2

defining S̄).

(1.3)

a1

b3
ic

ib1

ib2 ib3

a2 b1 a3

b2

See Section 2 for details. The group was already known to van Luijk; we prove here
that it is already the full automorphism group.

Theorem 2. The geometric Picard group of S has maximal rank

rank PicSQ = dim H1,1(S(C)) = 64.

It is generated by an explicitly known set of curves on S̄ together with the exceptional
divisors. The discriminant of the intersection pairing on the Picard group is −228.

We can take a suitable subset of 64 of the following curves (together with the 48 excep-
tional divisors) as generators (see Definition 6).

• The 32 strict transforms of the conics in the four hyperplanes a1 = 0, a2 = 0, a3 = 0,
c = 0;

• the 12 strict transforms of the genus 1 curves contained in the three hyperplanes
b1 = 0, b2 = 0, b3 = 0;

• the 48 strict transforms of the genus 1 curves contained in the twelve hyperplanes
aj = εaj+1 (where we set a4 := a1) or aj = εic, where j ∈ {1, 2, 3} and ε ∈ {1,−1}.

See Section 3. It is not hard to show that the geometric Picard rank is 64, since one
easily finds enough curves to generate a group of that rank. These curves are already
in [vL00]. The hard part is to show that the known curves generate the full Picard group
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and not a proper subgroup of finite index. Since 2 is the only prime number dividing
the discriminant of the known subgroup, it remains to show that no primitive element
of the known subgroup is divisible by 2. We use the known action of the automorphism
group together with the action of the absolute Galois group of Q to reduce the proof
of saturation to the statement that the single element corresponding to the hyperplane
section is not divisible by 2. This claim is then fairly easily established.

This technique, especially the arguments in the proof of Theorem 8, may be helpful
in similar situations, when one has a fairly large group acting on the Picard group.
Indeed, A. Várilly-Alvarado and B. Viray [VAV11] use this technique to compute the
Picard groups of various Enriques surfaces.

Several papers investigate restrictions that curves of geometric genus 0 or 1 on a sur-
face must satisfy. The work of Bogomolov in [Bog77] highlighted the importance of
symmetric differentials.

In [BTVA22], the authors study global sections of symmetric differentials on certain
surfaces of general type. They establish what effect the singularities of the surface have
on the sections that they determine. In turn, this allows them to deduce lower bounds
for the number of singularities that the curves must contain, as well as information
about dimensions of the linear spaces that the singularities must span. In particular,
when they apply their methods to the surface of cuboids [BTVA22, Theorem 1.2], they
conclude that any rational curve, other than the known conics, must pass through at
least 7 nodes spanning the ambient P6. See the corresponding paper for more details.

In [GFU20], the authors also study symmetric differentials, but, rather than finding
several explicit sections, they focus on solving the implied algebraic differential equa-
tions that they impose on curves of genus at most 1. This method was pioneered by
Vojta [Voj00]. When they apply their methods to the surface of cuboids [GFU20, The-
orem 1.2], they conclude that all curves of genus at most 1 on S̄ must contain at
least 2 singular points. Moreover, apart from the exceptional curves and the curves
contained in a1a2a3c = 0, every rational curve on S̄ must contain at least 8 singular
points (counted with multiplicity). See the corresponding paper for more details.

We obtain a similar result with our methods (see Lemma 21): Any rational curve C on S̄
that is not a conic must satisfy C · E ≥ 8, where E is the exceptional divisor (and we
identify C with its strict transform), and any curve C of geometric genus 1 on S̄ must
satisfy C · E ≥ 4 (this gives an improvement over the result in [GFU20]).

In [FSM16], the authors study the surface of cuboids using theta-functions. They ex-
ploit the fact that the surface is a divisor in a Siegel modular variety and determine
explicitly a modular group associated to the surface. In particular, they find an explicit
product of modular curves that covers the surface of cuboids. This allows them to find
bounds for the degree of a unibranch curve on the surface in terms of the genus of the
curve: see [FSM16, Theorem 3.1]. For instance, unibranch rational curves on S̄ must
have degree at most 176. See the corresponding paper for more details.

This paper contains a number of computational results. We provide a Magma [BCP97]
script at [Sto25] that contains code that checks most of the computational claims we
make (set quick := false to also run checks that take more time). We also provide
a transcript of a Magma session where we have computed equations for the fibrations
given in Section 5.
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2 The Automorphism Group

Throughout the paper, unless stated explicitly, all objects will be considered over Q̄
(or C). In particular, PicS denotes the geometric Picard group and Aut(S) the geometric
automorphism group of S.

In this section, we determine the automorphism group of S and S̄. We begin with some
basic geometric properties of S̄.

Lemma 3. The scheme S̄ is a geometrically integral complete intersection of dimension
two and multidegree (2, 2, 2, 2) in P6 with 48 isolated A1 singularities.

Proof. Every irreducible component of S̄ has dimension at least two, since S̄ is defined
by four equations. If S̄ had a component of dimension at least three, then the inter-
section of S̄ with any hyperplane would have a component of dimension at least two.
Let C be the hyperplane defined by the vanishing of c. The scheme S̄ ∩ C is the union
of eight smooth conics defined over the field Q(i) by

c = 0, b1 = ε1ia1, b2 = ε2ia2, b3 = ε3ia3, a21 + a
2
2 + a

2
3 = 0

for ε1, ε2, ε3 ∈ {±1}. In particular it is pure of dimension one, so that every irreducible
component of S̄ has dimension two; note also that S̄ ∩ C is reduced. It follows that S̄ is
the complete intersection of the equations in (1.1).

Thus S̄ is Cohen-Macaulay of dimension two, and to prove that it is integral it suffices
to show that the singular locus of S̄ has codimension at least two. Since S̄ ∩ C is
reduced, no component of dimension one of the singular locus of S̄ is contained in C.
Let p = [α1, α2, α3, β1, β2, β3, γ] be a point in S̄ \ C. Examining the equations of S̄ we
see immediately that if α1α2α3 ̸= 0 or β1β2β3 ̸= 0, then the rank of the Jacobian of
the equations at p is four and such points are therefore smooth. We conclude at once
that the singular points of S̄ are the points for which all three coordinates appearing in
one of the six rank three quadrics in (1.1) or (1.2) vanish; in particular, the surface S̄
has only finitely many singular points. The fact that the singular points are 48 and that
they are of type A1 is immediate from the equations. □

As a corollary, we deduce that S̄ is Cohen-Macaulay, Gorenstein, reduced, normal and
projectively normal. By the adjunction formula, the canonical sheaf on S̄ is the sheaf
OS̄(1). Since S̄ is projectively normal we deduce also that pg(S̄) = 7; it is an easy
calculation to see that χ

(
S̄,OS̄

)
= 8. Let b : S → S̄ be the blow-up of S̄ at its 48

singular points; thus S is smooth and it is the minimal desingularization of S̄. Denote
by KS a canonical divisor of S; we have OS(KS) ≃ b∗OS̄(1) and (KS)

2 = 16. Since the
singularities of S̄ are rational double points, we have χ

(
S,OS

)
= χ

(
S̄,OS̄

)
= 8 and also

pg(S) = 7 and q(S) = 0. Using Noether’s formula we finally deduce that the Hodge
diamond of S is

1
0 0

7 64 7
0 0

1

It follows from the above that the rational map associated to the canonical divisor KS
on S is a morphism and that it is the contraction of the 48 exceptional curves of b,
followed by the inclusion of S̄ into P6. Therefore the canonical divisor on S is big
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and nef, so that S is a minimal surface of general type and S̄ is its canonical model:
there are no curves on S with negative intersection with the canonical divisor, and, in
particular, there are no (−1)-curves on S. Moreover, the 48 exceptional curves of b are
the only (−2)-curves on S. Since the morphism S → P6 is the morphism associated to
the canonical divisor, the automorphism groups of S and S̄ coincide; denote this group
by G. The group G is naturally identified with the subgroup of Aut(P6) preserving the
subscheme S̄, since the canonical divisor class of S is G-invariant.

The symmetric group S3 on {1, 2, 3} acts on P6 and S̄ by permuting simultaneously the
indices of a1, a2, a3 and b1, b2, b3 and fixing c. Note that also the linear automorphism
of order two

σ :


a1 7→ a1 b1 7→ −ib2
a2 7→ a2 b2 7→ ib1
a3 7→ −ic b3 7→ b3
c 7→ ia3

of P6 preserves S̄ and therefore induces an automorphism of S. Let G ′ ⊂ G be the
subgroup generated by S3, σ and all the sign changes of the variables.

Proposition 4. The group G = Aut(S) is equal to G ′.

Proof. First, we show that the rank three quadrics vanishing on S̄ are the six rank three
quadrics appearing in (1.1) and (1.2). For j ∈ {1, 2, 3}, let

qj := a
2
j + b

2
j − c

2 and rj := a
2
1 + a

2
2 + a

2
3 − a

2
j − b

2
j ,

and let Qj := V(qj) and Rj := V(rj). Let

q4 := a
2
1 + a

2
2 + a

2
3 − c

2,

and let q be an equation of a quadric vanishing on S̄. Since the ideal of S̄ is generated by
the equations in (1.1), we have q = λ1q1+λ2q2+λ3q3+λ4q4, for some λ1, λ2, λ3, λ4 ∈ Q.

If at least two of the coefficients λ1, λ2, λ3 are non-zero, then we easily see that q has
rank at least four. Thus at most one of the coefficients λ1, λ2, λ3 is non-zero, and we
conclude that the rank three quadrics vanishing on S̄ are q1, q2, q3, r1, r2, r3. It follows
that the set Q := {Q1, Q2, Q3, R1, R2, R3} is fixed by the induced action of G.

Second, we show that G ′ acts transitively on Q. This is immediate: the group S3

acts transitively on {Q1, Q2, Q3} and {R1, R2, R3}, while σ acts transitively on {Q1, R2}
and {Q2, R3} (and it fixes Q3 and R1).

Third, we show that the stabilizer of Q1 in G is the same as the stabilizer of Q1 in G ′;
from this the result follows since G and G ′ act transitively on Q. Let τ ∈ G be an
automorphism of P6 stabilizing S̄ and Q1. In particular τ stabilizes Qsing

1 , the singular
locus of Q1, and Qsing

1 ∩ S̄. The (underlying set of the) intersection Qsing
1 ∩ S̄ is the

set of eight points
{
[0, 1, ε1, 0, ε2i, ε3i, 0] : ε1, ε2, ε3 ∈ {1,−1}

}
. Clearly the actions of the

stabilizers in G and G ′ are transitive on this set, since both groups contain arbitrary sign
changes of the variables, and if an automorphism of V(a1, b1, c) ≃ P3 fixes the eight
points above, then it is the identity (the points for which ε1ε2ε3 = 1 are essentially the
characters of (Z/2Z)2, and therefore the corresponding points span P3). Thus, we may
assume that τ acts as the identity on V(a1, b1, c) ⊂ P6. Hence τ fixes the variable c, up
to a sign, since it fixes a2, b2; similarly it fixes a1 and b1 up to signs, since it fixes a2, b3
and a2, a3 respectively, and we conclude that G ′ = Aut(S̄) = Aut(S). □
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To compute the size of the group G, note that each element of G = G ′ induces a per-
mutation of the set {a21, a

2
2, a

2
3,−c

2} and every permutation is obtained. This gives a sur-
jective group homomorphism G→ S4. The subgroup ⟨S3, σ⟩ permutes {a1, a2, a3,−ic}.
One can check that the kernel of ⟨S3, σ⟩ → S4 consists of maps that fix b21, b

2
2, b

2
3. So

the kernel of G→ S4 consists exactly of the automorphisms that change the signs of a
subset of the variables. This shows that

#G = 27−1#S4 = 64 · 24 = 1536.

The group G ′ is described in [vL00, p. 25] as a subgroup of the automorphism group
of S̄. The new statement here is that it is already the full automorphism group.

3 The Picard Group

In this section, we determine the (geometric) Picard group of S. We first show that the
hyperplane section of S̄ is not divisible in the Picard group. Recall that the canonical
class of S is the pull-back of the hyperplane class of S̄.

Lemma 5. The canonical divisor class of S is a primitive vector in PicS.

Proof. Let KS be a canonical divisor of S; since (KS)
2 = 16, it suffices to show that there

is no divisor R on S such that KS ∼ 2R. We argue by contradiction and suppose that
such a divisor R exists. By the Riemann-Roch formula we deduce that

h0(S,OS(R)) + h
2(S,OS(R)) ≥ 6,

and from Serre duality it follows that h2(S,OS(R)) = h
0(S,OS(R)); thus

h0(S,OS(R)) ≥ 3.

Note also that 2dim |R| ≤ dim |2R| = 6, and therefore h0(S,OS(R)) ∈ {3, 4}. The image
S ′ of S under the rational map determined by the linear system |R| is an irreducible, non-
degenerate subvariety of |R|∨. Let k be the number of independent quadratic equations
vanishing along S ′. The image of Sym2 H0(S,OS(R)) in H0(S,OS(KS)) is an Aut(S)-
invariant subspace. We easily see that the non-trivial Aut(S)-invariant subspaces of P6
are V(a1, a2, a3, c) and V(b1, b2, b3). It follows that the image of Sym2 H0(S,OS(R)) in
H0(S,OS(KS)) has dimension (

h0(S,OS(R)) + 1

2

)
− k

and that this number must be in {0, 3, 4, 7}.

Case 1: h0(S,OS(R)) = 3, so that S ′ ⊂ P2.
Since S ′ is irreducible and non-degenerate, we deduce that S ′ cannot be contained in
two independent quadrics, or it would be degenerate. Thus S ′ must be defined by k ≤ 1
quadrics, and this is incompatible with the previous constraints.

Case 2: h0(S,OS(R)) = 4, so that S ′ ⊂ P3.
Thus k ≥ 3. Since S ′ is irreducible and non-degenerate, any quadric vanishing on S ′

must be irreducible. Hence, any two independent quadrics vanishing along S ′ intersect
in a scheme of pure dimension one and degree four. Since S ′ is non-degenerate, its
degree is at least three. Because there are at least three independent quadrics van-
ishing on S ′, this implies k = 3, and S ′ is a twisted cubic curve. But then the map
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Sym2 H0(S,OS(R)) → H0(S,OS(KS)) is surjective, which implies that the image of S un-
der KS factors through the image under R. So S̄ would have to be a curve, contradicting
the fact that it is a surface.
Thus the class of the canonical divisor KS is not the double of a divisor class on S, and
the proof is complete. □

Next we prove that PicS is a free abelian group of rank 64 and find a set of generators
of a subgroup of finite index.

Definition 6. We list some sets of curves on S (we let a4 := a1, to simplify the notation).

(1) G0 — the 48 exceptional curves of the resolution S → S̄ (24 defined over Q, 24
defined over Q(i));

(2) G1 — the 32 strict transforms of the conics in the four hyperplanes a1 = 0, a2 = 0,
a3 = 0, c = 0 (24 defined over Q, 8 defined over Q(i));

(3) G2 — the 12 strict transforms of the genus 1 curves contained in the three hyper-
planes b1 = 0, b2 = 0, b3 = 0 (defined over Q(i));

(4) G3 — the 48 strict transforms of the genus 1 curves contained in the twelve hyper-
planes aj = εaj+1 or aj = εic, where j ∈ {1, 2, 3} and ε ∈ {1,−1} (24 defined over
Q(

√
2), 24 defined over Q(i,

√
2)).

These curves are already described in [vL00, p. 48]. Denote by G = G0 ∪ G1 ∪ G2 ∪ G3
the set consisting of the above 140 curves.

Proposition 7. The geometric Picard group of S is a free abelian group of rank 64, and
the curves in G generate a subgroup of finite index.

Proof. Since h1(S,OS) = 0, the Picard group is finitely generated. Moreover, each
torsion class in the Picard group determines an unramified connected cyclic covering
π : S̃ → S that is trivial if and only if the class in the Picard group is trivial. Any
such cover induces a similar cover on S̄: the inverse image under π of each (−2)-curve
in S consists of a disjoint union of (−2)-curves in S̃, which can be contracted to ra-
tional double points, thus obtaining an unramified connected cyclic cover of S̄. By
[Dim86, Thm. 2.1] we have H1(S̄,Z) = 0, and hence the cyclic covering is trivial. We
obtain that all torsion classes in PicS are trivial, and PicS is torsion free.
From the calculation of the Hodge numbers of S, we deduce that the rank of PicS
is at most 64. Thus, to conclude, it suffices to show that the intersection matrix of
the curves in G has rank 64. By the adjunction formula, we easily see that the self-
intersection of the divisor class of a conic or a genus one curve in our list is −4 (in both
cases, we mean the strict transform in S of the corresponding curve). The evaluation
of the remaining pairwise intersection numbers of the curves above is straightforward,
tedious, and preferably done by computer. We check using a computer that the rank
of the intersection matrix of the 140 curves in G is 64, concluding the proof of the
proposition. □

Theorem 8. The Picard group of S is a free abelian group of rank 64, and it is generated
by the classes of curves in G.
The discriminant of the intersection pairing on PicS is −228.

Proof. By Proposition 7, the Picard group is free abelian of rank 64, and the lattice L
generated by the classes of the curves in G is of finite index in the Picard group. It
remains to show that L is already the full Picard group.
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The computation of the intersection matrix shows that the discriminant of L is −228.
Thus the cokernel of the inclusion L → PicS is a finite abelian 2-group. Hence, to
prove the equality L = PicS it suffices to prove that the natural morphism L/2L →
PicS/2PicS is injective; denote by L2 its kernel. The Galois group Gal(Q(i,

√
2)/Q)

acts on the lattice PicS, since the divisors in G are defined over Q(i,
√
2), while S is

defined over Q. Denote by G̃ the group of automorphisms of PicS generated by G
and Gal(Q(i,

√
2)/Q). The action of G̃ on PicS induces an action of G̃ on L, since

G is stable under the action of both G and Gal(Q(i,
√
2)/Q), and hence there is an

action of G̃ on L/2L. The F2-vector space L2 ⊂ L/2L is invariant under G̃ (it is the
kernel of a G̃-equivariant homomorphism). Let G̃2 ⊂ G̃ be a Sylow 2-subgroup. Any
representation of a 2-group on an F2-vector space of positive dimension has a non-
trivial fixed subspace. In particular, there is a non-trivial G̃2-invariant subspace in L2.
Using a computer we check that the subspace of (L/2L)G̃2 coming from classes in L that
have even intersection with L has dimension 1, spanned by the reduction modulo 2 of
the canonical class (note that the canonical class is fixed by the action of G̃ on PicS).
We deduce that if L2 ̸= 0, then the canonical divisor class is divisible by two in PicS.
By Lemma 5 we know that this is not the case. It follows that PicS is generated by the
classes of the curves in G. □

Corollary 9. The intersection pairing on PicS is even; in particular, there are no curves of
odd degree on the surface S.

Proof. By Theorem 8 the Picard group of S is generated by the elements of G; since
all the elements of G have even self-intersection, we deduce that the pairing on PicS
is even. By the adjunction formula, the degree of any curve on S has the same parity
as its self-intersection; since the pairing on PicS is even, we conclude that every curve
on S has even degree. (This latter statement would also follow from the fact that all
curves in G have even degree.) □

As a consequence, also the surface S̄ contains no curves of odd degree; van Luijk had
already shown that there are no lines on S̄, see [vL00, Prop. 3.4.11].

Using the explicitly known structure of PicS as a Galois module, we obtain the following
result.

Theorem 10. The algebraic part of the Brauer group of S is the isomorphic image of the
Brauer group of Q in the Brauer group of S.

Proof. It is well-known that the cokernel of the inclusion of the Brauer group of Q in the
algebraic part of the Brauer group of S is isomorphic to the Galois cohomology group
H1(Q,PicS). Since PicS is torsion free and we found a set of generators of the Picard
group of S defined over Q(i,

√
2), we have

H1(Q,PicS) = H1(Gal(Q(i,
√
2)/Q),PicS).

A computation in Magma [BCP97] shows that the latter cohomology group vanishes,
establishing the result. □

This means that there is no ‘algebraic Brauer-Manin obstruction’ to weak approximation
on S. It would be interesting to investigate the transcendental quotient of the Brauer
group.
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4 The cuboid surface as a modular surface

In the paper [Bea17], Beauville gives a construction of S̄ as a quotient of a product of
curves. We consider the curve X in P4 given by the equations

u2 = 2xy, v2 = x2 − y2, w2 = x2 + y2 .

This is a smooth curve of genus 5, which is a model of the modular curve X(8) whose
non-cuspidal points correspond to elliptic curves E together with a symplectic isomor-
phism Z/8Z × µ8 → E[8]. The geometric automorphism group of X is PSL(2,Z/8Z), a
group of order 192 = 3·26. The canonical epimorphism PSL(2,Z/8Z) → PSL(2,Z/4Z) ∼=
S4 has kernel G0 isomorphic to (Z/2Z)3; in terms of our model, the automorphisms in
the kernel are given by sign changes of u, v and w.

We consider the diagonal action of G0 on X × X. Denoting the coordinates on the first
factor by u1, v1, w1, x1, y1 and on the second factor by u2, v2, w2, x2, y2, invariants of the
action are given by U = u1u2, V = v1v2, W = w1w2, X = x1x2, Y = y1y2 and T = x1y2,
Z = x2y1. We obtain the relations

XY = TZ, U2 = 4XY, V2 = X2 + Y2 − T 2 − Z2, W2 = X2 + Y2 + T 2 + Z2 .

Setting

U = 2b1, V = 2b2, W = 2b3,

X = a1 + c, Y = −a1 + c, T = a2 + ia3, Z = a2 − ia3 ,

this gives the equations

a21 + a
2
2 + a

2
3 = c

2

a21 + b
2
1 = c

2

a21 − a
2
2 + a

2
3 + c

2 = 2b22

a21 + a
2
2 − a

2
3 + c

2 = 2b23 ,

which are equivalent to the equations defining S̄. Note that the isomorphism (X ×
X)/G0

∼=→ S̄ is defined over Q(i) and not over Q.

We have X/G0 ∼= X(4) ∼= P1. The action of (G0 × G0)/G0 ∼= G0 (with G0 embedded
diagonally) on the quotient (X × X)/G0 ∼= S̄ is via sign changes on u1u2 = 2b1, v1v2 =
2b2 and w1w2 = 2b3. Therefore the quotient S̄/G0 is obtained by projecting away from
the linear subspace spanned by these coordinates; it is the quadric

Q : a21 + a
2
2 + a

2
3 = c

2

in P3, which splits over Q(i), so that Q ∼= P1 × P1.
A point on X× X = X(8)× X(8) corresponds to a pair of elliptic curves with full level-8
structure. Since S̄ maps to X(4) × X(4), the points on S̄ give rise to a pair of elliptic
curves with full level-4 structure; dividing by the diagonal action of G0 corresponds to
only keeping the induced isomorphism between the 8-torsion subgroups. Therefore, a
point on S̄ corresponds to a pair of elliptic curves E and E ′ with isomorphisms ϕ and ψ
as in the following diagram:

Z/4Z× µ4
ϕ→ E[4] ⊂ E[8] ψ→ E ′[8] .

This holds for all fields containing a square root of −1. To find out what the correct
moduli problem is over Q, we observe that the sign change a3 7→ −a3 on S̄ lifts to the
automorphism of X × X that switches the two factors. This implies that over Q, S̄ is
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isomorphic to the quotient of RQ(i)/QXQ(i), the Weil restriction of scalars down to Q of X
base-changed to Q(i), by G0. The quadric Q is then RQ(i)/Q(X(4)Q(i)). A rational point
on S̄ then corresponds to an elliptic curve E over Q(i) with a basis P1, P2 of E[4] such
that there is an isomorphism ψ : E[8] → Ē[8] with ψ(P1) = P̄1 and ψ(P2) = −P̄2, where
the bar denotes the action of the nontrivial automorphism of Q(i).

Let G+
0 be the subgroup of G0 whose elements perform sign changes on an even number

of variables. Then X/G+
0 is the genus 2 curve

C : y2 = 2(x5 − x) .

The quotient Y = (X × X)/G+
0 is a smooth surface that is a double cover of S̄, ramified

exactly in the 48 singularities of S̄. On the other hand, Z = S̄/G+
0 has C×C as a double

cover (over Q(i)). Over Q we find RQ(i)/QCQ(i) as a double cover of Z. The surface Z in
turn is a double cover of the quadric Q, branched over a divisor of type (6, 6), so Z is
still of general type.

5 Fibrations in curves of genus 5

We have observed earlier that there are exactly six quadrics of rank 3 that contain S̄. In a
similar way, one easily sees that there are exactly eleven quadrics of rank 4 containing S̄.
These are diagonal quadrics involving all possible subsets of size 4 of the variables that
do not contain one of the sets of three variables corresponding to the rank 3 quadrics.
Explicitly, the eleven quadrics are given by

a21 + a22 + a23 − c2 = 0

a21 − a22 + b21 − b22 = 0

a23 − b21 − b22 + c2 = 0

a22 − a23 + b22 − b23 = 0

a21 − b22 − b23 + c2 = 0

−a21 + a23 − b21 + b23 = 0

a22 − b21 − b23 + c2 = 0

2a21 + b21 − b22 − b23 = 0

2a22 − b21 + b22 − b23 = 0

2a23 − b21 − b22 + b23 = 0

b21 + b22 + b23 − 2c2 = 0

They can be associated in the given order to the tetrahedron in (1.3), its six edges,
and its four vertices. This partition corresponds to the orbits under the automorphism
group G.

Projecting away from the space spanned by the remaining variables, each of these gives
rise to a rational map from S̄ onto a quadric in P3. Since S̄ does not meet the first
and the last four of these planes, the corresponding rational maps are morphisms. The
first of these is the morphism S̄ → Q, where Q is the quadric mentioned in Section 4.
On the other hand, S̄ does meet the planes corresponding to the remaining six rank 4
quadrics (in eight singular points each), so to obtain a morphism, one has to blow up
these points.

10



Over a field that splits the quadric, we can post-compose with one of the projections
to P1. The fibers of the resulting map S̄ → P1 are curves of arithmetic genus 5 and de-
gree 8; the generic fiber is a smooth irreducible curve canonically embedded into the P4
it spans. In this way, each of the eleven rank 4 quadrics gives rise to two complemen-
tary (in the sense that the sum of the classes of their fibers is the hyperplane section)
fibrations of S̄ in curves of genus 5. The first pair of these, which are defined over Q(i),
are isotrivial and correspond to the fibrations induced from the product X × X in Sec-
tion 4. The other fibrations are not isotrivial. (We can check this by considering one of
the genus 1 quotient fibrations and verifying that the j-invariant is not constant.) Since
the quadrics are invariant under the sign changes of the three variables not occurring
in them, the corresponding group (Z/2Z)3 acts on all the fibers. Quotienting out by
subgroups, we obtain surfaces fibered in hyperelliptic (two simultaneous sign changes)
or non-hyperelliptic (simultaneous sign change of all three variables) curves of genus 3
or in curves of genus 2 (even number of sign changes). We also find quotients fibered
in genus 1 curves (one sign change). Dividing by the full (Z/2Z)3, we get S̄ as a Galois
cover of P1×P1 (at least geometrically). For the first quadric, the genus 2 fibration is Z
in the notation of Section 4; we saw there that this quotient is of general type, which
implies that the hyperelliptic genus 3 fibration quotients covering it are of general type
as well.

There is a similar construction starting from a rank 3 quadric. Projecting away from the
space spanned by the four variables not occurring in the quadric, we map S̄ onto a conic.
Here we have eight (singular) points of S̄ in the base locus, so to get a morphism, we
have to blow them up. Post-composing with an isomorphism between the conic and P1
(this is always possible already over Q), we obtain maps S̄ → P1 again. The fibers
(in S̄) are again generically smooth canonical curves of genus 5, but this time, we get
only one fibration from each rank 3 quadric. Here, twice the class of the fiber (on S)
is the hyperplane section minus the eight exceptional curves coming from blowing up
the singularities in the base locus. The genus 5 curves occurring as fibers are given by
diagonal quadrics; we get an action of (Z/2Z)4 on them. This leads to more quotients
fibered into curves of genus 1, 2 or 3.

In total, we obtain 6+ 2 · 11 = 28 such fibrations.

The (isotrivial) fibrations coming from the first rank 4 quadric above have six bad fibers
each (for the fibration given by [a1+ia2, a3+c], they are above the points 0,∞,±1,±i),
which each consist of one of the genus 1 curves in G2 taken twice. The 12 curves in G2
each occur exactly once in this way.

The fibrations coming from the next six quadrics of rank 4 also have six bad fibers each
(again over the same points, for [a1+a2, b1+b2], say). Two of them consist of two of the
genus 1 curves in G3 joined by four of the exceptional curves, the other four bad fibers
consist of two conics from G1, each with multiplicity 2 and joined by two exceptional
curves. The curves in G3 show up exactly once in this way, whereas each conic in G1
occurs in three of the fibrations.

The fibrations coming from the last four quadrics of rank 4 have six fibers each splitting
into two curves from G3 as above and twelve fibers that are hyperelliptic curves of
genus 3 with two nodes (at singular points of S̄). These curves form an orbit of size 96
under Aut(S) and are birational to the curve

y2 = 9x8 + 20x6 + 86x4 + 20x2 + 9 .
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The fibrations coming from the six quadrics of rank 3 each have four fibers splitting
into four conics (from G1), four fibers splitting into two genus 1 curves from G3 and two
fibers splitting into two genus 1 curves from G2.

We list equations for the fibers of some representatives of the four different types of
fibrations described above.

• The rank 3 quadric a21 + b
2
1 = c

2 with t = (a1 + c)/b1:

(t2 + 1)a1 − (t2 − 1)c = 0

(t2 + 1)b1 − 2tc = 0

(t2 + 1)2a22 − (t2 + 1)2b23 + (t2 − 1)2c2 = 0

a23 + b
2
3 − c

2 = 0

(t2 + 1)2b22 + (t2 + 1)2b23 − 2(t
4 + 1)c2 = 0

• One of the two fibrations associated to a21 + a
2
2 + a

2
3 = c

2

with t = (c+ a1)/(a2 + ia3) = (a2 − ia3)/(c− a1):

(t2 + 1)a1 − 2ita3 − (t2 − 1)c = 0

(t2 + 1)a2 + i(t
2 − 1)a3 − 2tc = 0

a23 + b
2
3 − c

2 = 0

(t2 + 1)2b21 + 4t
2b23 + 4it(t

2 − 1)a3c− 8t
2c2 = 0

(t2 + 1)2b22 + (t2 − 1)2b23 − 4it(t
2 − 1)a3c− 2(t

2 − 1)2c2 = 0

• One of the two fibrations associated to a21 − a
2
2 + b

2
1 − b

2
2 = 0

with t = (a1 + a2)/(b2 + b1) = (b2 − b1)/(a1 − a2):

2ta1 − (t2 − 1)b1 − (t2 + 1)b2 = 0

2ta2 − (t2 + 1)b1 − (t2 − 1)b2 = 0

2(t4 − 1)b1b2 − (t2 − 1)2b23 + 2(t
4 + 1)c2 = 0

b21 + b
2
2 + b

2
3 − 2c

2 = 0

a23 + b
2
3 − c

2 = 0

• Finally, one of the two fibrations associated to b21 + b
2
2 + b

2
3 = 2c

2

with t = (b1 + ib2)/(
√
2c+ b3) = (

√
2c− b3)/(b1 − ib2):

2tb1 − (t2 − 1)b3 −
√
2(t2 + 1)c = 0

2tb2 + i(t
2 + 1)b3 + i

√
2(t2 − 1)c = 0

4t2a21 + (t2 − 1)2b23 + 2
√
2(t4 − 1)b3c+ 2(t

4 + 1)c2 = 0

4t2a22 − (t2 + 1)2b23 − 2
√
2(t4 − 1)b3c− 2(t

4 + 1)c2 = 0

a23 + b
2
3 − c

2 = 0

The genus 2 quotient of the third fibration (which is defined over Q) is birational to

y2 = −2(t4 − 1)
(
(t8 − 1)x6 + 4(3t8 + 2t4 + 3)x5 + 30(t8 − 1)x4

+ 8(5t8 − 2t4 + 5)x3 + 30(t8 − 1)x2 + 4(3t8 + 2t4 + 3)x+ (t8 − 1)
)

(whose right hand side splits completely over Q(i)).
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6 K3 quotients

Projecting away from one of the coordinate points in P6, which is equivalent to taking
the quotient under the involution that changes the sign of the corresponding coordi-
nate, we obtain various K3 surfaces given as intersections of three quadrics in P5 that
are doubly covered by S̄. We will denote them by K̄a1 , . . . , K̄c and their minimal desin-
gularizations by Ka1 , . . . , Kc, indexed by the coordinate we ‘forget’. The action of Aut(S̄)
implies that the three Kbj are isomorphic over Q and that the three Kaj are isomorphic
over Q and isomorphic to Kc over Q(i).

We will consider Kc in the following. Its singular model K̄c is defined by

a21 + a
2
2 = b

2
3, a21 + a

2
3 = b

2
2, a22 + a

2
3 = b

2
1 .

There are 12 nodes on this model (whose preimages are 24 of the 48 nodes on S̄; the
other 24 nodes disappear under the quotient map). The cover is branched over the
union of eight conics given by a21 + a

2
2 + a

2
3 = 0. This K3 surface, which parametrizes

‘Euler bricks’, has an extra involution (already known to Euler) given by

[a1, a2, a3, b1, b2, b3] 7−→ [a2a3, a1a3, a1a2, a1b1, a2b2, a3b3] .

This involution of Kc does not descend to K̄c; in particular, it does not lift to an auto-
morphism of S.

Let π : S→ Kc be the the map induced by dividing S by the action of the sign change σc
on c. Note that π factors as S → S/⟨σc⟩ → Kc, where the first map is a double cover
ramified exactly on the eight conics whose image on S̄ is contained in the hyperplane
c = 0, and the second map contracts the images of the exceptional curves corresponding
to singular points with c = 0 on S̄. Let Eπ denote the set of these exceptional curves
on S. From the factorization of π above, we easily deduce the following, which will be
used in Section 7 below.

Lemma 11. For C a class in PicS, we have

π∗π∗C = C+ σc(C) +
∑
E∈Eπ

(C · E)E .

Among the quadrics containing K̄c, there are exactly three of rank 3 (the three defining
ones) and six of rank 4 (of the form a2j −a

2
k+b

2
j −b

2
k = 0 or 2(a2j −b

2
j )+b

2
1+b

2
2+b

2
3 = 0).

In the same way as for the genus 5 fibrations on S, this defines 3 + 2 · 6 = 15 elliptic
fibrations on Kc.

We find that the images on Kc of the curves in G generate a subgroup G of rank 20,
and therefore of finite index, in PicKc. The determinant of the intersection pairing
is −32, so the subgroup is saturated at all primes except possibly 2. We can check that
the natural map π∗ : PicKc → PicS induces an injection G/2G → PicS/2PicS, which
shows that G is also 2-saturated, whence G = PicKc. This proves the following.

Lemma 12. The Picard group of Kc is generated by the images of the curves in G. In
particular, every class in PicKc has even intersection with the class of hyperplane sections.

So there are no curves of odd degree on K̄c.

Regarding curves of degrees 2 and 4, we have the following.

Lemma 13. Let C ⊂ K̄c be an integral curve.
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(1) If C is a plane curve, then C is a conic, and all conics on K̄c are images of curves in G;
there are 44 such conics.

(2) If C spans a P3, then degC = 4 and C is a fiber of one of the 15 elliptic fibrations
mentioned above.

(3) If degC = 4 and C is not contained in a P3, then C is a smooth rational normal curve
that meets the branch locus transversally in eight points. There are 56 such curves
on K̄c.

Proof.

(1) If C is a plane curve, then C is (contained in) an intersection of quadrics in the
plane it spans. Since there are no curves of odd degree on K̄c, C must be a conic.
By enumerating all elements C of PicKc with C · H ′ = 2 (where H ′ is the hyper-
plane class) and C2 = −2 and excluding those with negative intersection with the
curves we know, we find that the only conics on K̄c are those obtained as images
of curves in G. There are three different kinds (each forming one orbit under the
subgroup of Aut(Kc) induced by Aut(S)), namely (i) the eight conics whose union
is the branch locus, (ii) twelve conics in the hyperplanes aj = 0, and (iii) 24 con-
ics obtained as quotients of the genus 1 curves in G that are invariant under the
involution that changes the sign of c.

(2) As before, C is contained in an intersection of quadrics in the P3 it spans. Since
degC is even and conics span planes, we must have degC = 4 and pa(C) = 1, so
C2 = 0. By enumerating all relevant elements of PicKc as before, we find that they
all correspond to fibers of one of the 15 fibrations.

(3) Any curve of degree 4 that spans P4 is a rational normal curve. We then have
C2 = −2. We can enumerate the relevant elements again and check that their
intersection with the branch locus is 8. There are 80 such classes, falling into orbits
under Aut(K) of sizes 8, 24 and 48. The orbit of size 8 comes from the images of the
conics in the branch locus under the extra involution. The orbit of size 24 does not
come from curves, since its elements have intersection multiplicity 2 with one of the
exceptional curves (so the curve would have to have a singularity there). The orbit
of size 48 comes from curves in hyperplane sections given by a1+

√
2ia2+a3+b2 = 0

and their images under sign changes and permutations. □

If C ⊂ K̄c is an integral curve of degree 6 contained in a P4, then the residual intersec-
tion with any hyperplane that contains C is a conic. If the conic is not contained in the
branch locus, then it meets four of the eight branch conics transversally in one point
each. So the residual sextic also has to meet these four branch conics transversally in
one point each (note that the branch locus is disjoint from the singularities of K̄c). (It
will also meet the other four branch conics with multiplicity 2.) The pull-back of the
sextic to S̄ will be irreducible of degree 12 unless the sextic meets the branch locus with
even multiplicity in each intersection point. So, for the sextic to lift to a sextic on S̄, it
has to pass through two points in which two of the branch conics intersect. This means
that the hyperplane has to pass through these points as well. Note that the four branch
conics split into two pairs such that the conics in each pair intersect in two distinct
points, whereas the conics in distinct pairs do not intersect.

There are two orbits of non-branch conics under the subgroup of Aut(K̄c) induced
by Aut(S̄). For one of these orbits, the intersection points of the non-branch conic with
the four relevant branch conics are distinct from the intersection points of the branch
conics. So, in this case, we need to consider hyperplanes containing the non-branch
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conics and one intersection point for each pair of branch conics. Of these four hyper-
planes, only two contain a sextic curve (the other two contain another conic), and each
of these sextics meets the branch locus in some points with multiplicity one, and so lifts
to an irreducible curve of degree 12 on S̄.

For the other orbit, the non-branch conic intersects the branch conics at intersection
points of the pairs (one intersection point for each pair). In this case, the hyperplane
must either pass through the other intersection point of a pair or contain the tangent
lines at the intersection point of the two branch conics. Three of the possible four
combinations of conditions lead to a unique hyperplane, whose intersection with K̄ we
can check does not contain an integral sextic curve. The last possibility (which occurs
when the hyperplane contains the tangent lines at both intersection points) leads to a
pencil of hyperplanes. However, the intersection of K̄ with their common P3 already
contains the initial non-branch conic with multiplicity 2, so none of the hyperplanes
can contain a sextic on K̄.

If the conic is a branch conic, then we can check explicitly that no hyperplane containing
the P2 spanned by the conic is tangent to all four branch conics that do not meet the
original one. This again implies that the pull-back to S̄ of the residual sextic ramifies.

We obtain the following result.

Lemma 14. If C ⊂ K̄c is an integral sextic curve that is contained in a P4, then C lifts to
an irreducible curve of degree 12 on S̄.

7 Curves of low degree on S̄

We can use our explicit knowledge of the Picard group to determine the set of curves
on S or S̄ of small degree. We freely identify curves on S̄ with their strict transforms
on S and with their classes in PicS.

Theorem 15.

(1) All conics on S̄ are contained in G.
(2) The surface S̄ does not contain smooth rational curves of degree 4.
(3) All curves of degree 4 and arithmetic genus 1 on S̄ are in G. In particular, all such

curves are smooth and hence of geometric genus 1.

Proof.

(1̧ ) Any conic C in S̄ must be smooth, since S̄ does not contain curves of odd degree.
We have C · KS = 2 and C2 = −4 by the adjunction formula. We can enumerate
all lattice points in the Picard lattice satisfying these two conditions; this results in
2048 elements. If C is a curve, then it has to have nonnegative intersection with
all the curves in G (except possibly itself). Testing this condition leaves only the
32 known conics in G.

(2̧ ) If C is a smooth rational curve of degree 4 on S̄, then C spans a P4 (otherwise
pa(C) = 1, see Theorem 16 below), which we will denote P4. The image of C
in K̄c then either is isomorphic to C and hence a rational normal curve of degree 4.
But these all lift to hyperelliptic curves of genus 3 on S̄ by Lemma 13. Or else the
image spans a P3; this will be the case when P4 contains the point [0, 0, 0, 0, 0, 0, 1].
We can consider Kaj instead of Kc for any j ∈ {1, 2, 3}, so the only remaining cases
are those when P4 contains the P3 given by b1 = b2 = b3 = 0. Projecting away
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from this P3, we obtain the morphism S → Q ∼= P1 × P1 mentioned in Section 4.
Then P4 must be the pull-back of one of the lines on Q, and P4 ∩ S̄ is a fiber of one
of the two corresponding fibrations. But no such fiber contains a rational normal
curve of degree 4.

(3̧ ) This statement is proved in the same way as the result on conics. A curve C of
degree 4 and arithmetic genus 1 satisfies C2 = −4. We can enumerate the relevant
16 160 classes in PicS and check that none of them has nonnegative intersection
with all curves in G. □

We now show that we know all curves on the surface S̄ that are contained in a low-
dimensional linear subspace.

Theorem 16. Let C ⊂ S̄ be an integral curve.

(1) If C is contained in a plane, then C is a conic; in particular, C ∈ G.
(2) If C spans a P3, then C is one of the genus 1 curves in G.
(3) If C spans a P4, then C has degree 8 and is a fiber of one of the 28 fibrations defined

in Section 5. In particular, C is either a smooth canonical curve of genus 5, or else it
is one of the 96 hyperelliptic curves of genus 3 occurring as irreducible singular fibers.

Proof.

(1) Let P2 be the plane spanned by C (C cannot be a line, since there are no curves of
odd degree on S̄). Then C is an intersection of quadrics in P2, so C is a conic. By
Theorem 15, it follows that C ∈ G.

(2) Let P3 be the linear subspace spanned by C. Then C is contained in an intersection
of quadrics in P3; in particular, the degree of C is at most 4 (and even). Since C is
not a plane curve, the degree must be 4, hence by Theorem 15, C ∈ G.

(3) Let P4 be the linear subspace spanned by C. Again C is contained in an intersection
of quadrics, so the degree of C is now 6 or 8. If the degree were 6, then the image
of C on K̄c would be either a cubic (which is impossible) or a sextic contained in a
hyperplane. But Lemma 14 shows that curves of the latter type do not come from
sextics on S̄. So the degree of C is 8, and C is an intersection of three quadrics.
Therefore the four quadrics defining S̄ will be linearly dependent when restricted
to P4, which means that there is a quadric Q containing S̄ that contains P4. But
a quadric in P6 that contains a P4 has rank at most 4. So Q is either one of the
six rank 3 quadrics or one of the eleven rank 4 quadrics vanishing on S̄. In the
former case, P4 is the preimage of a point on the conic obtained by projecting Q,
in the latter case, P4 is the preimage of a line on the quadric in P3 obtained by
projectingQ. In either case, we see that C = S̄∩P4 is a fiber of one of the associated
fibrations. The bad fibers have been described in Section 5. □

Theorem 17. There are no integral curves of degree 6 on S̄.

Proof. Let C ⊂ S̄ be an integral curve of degree 6. By Theorem 16, we know that C
spans a P5 or P6; it follows that pa(C) ∈ {0, 1}, so C2 ∈ {−8,−6}. The image C ′ of C
on K̄c will still be of degree 6 (there are no curves of odd degree on Kc) and span P5,
since by Lemma 14, no curve of degree 6 in a hyperplane section of K̄c is the image of a
sextic on S̄. So pa(C ′) ∈ {0, 1} as well, and (C ′)2 ∈ {−2, 0}. We enumerate all classes C ′

in PicKc having intersection 6 with the hyperplane section and self-intersection −2
or 0, such that C ′ has nonnegative intersection with all curves obtained as images from
curves in G. This results in 1088 such classes with (C ′)2 = 0 and 1680 classes with
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(C ′)2 = −2, which fall into 14 and 20 orbits, respectively, under the group of linear
automorphisms of K̄c. If such a class C ′ is the image of an integral curve C on S̄, then
by Lemma 11, we must have

π∗C ′ = π∗π∗C = C+ σc(C) +
∑
E∈Eπ

(C · E)E = τ(C) ,

where τ : PicS → PicS is the endomorphism defined by the expression above. For a
representative C ′ of each of the relevant orbits, we first check if π∗C ′ is in the image
of τ (otherwise C ′ is not in the image of π∗). If this is the case, then we find the (finitely
many) ‘candidate classes’ C ∈ PicS satisfying (i) τ(C) = π∗C ′, (ii) C2 ∈ {−6,−8}, (iii)
C · D ≥ 0 for all D ∈ G. In all cases, it turns out that the set of candidate classes is
empty. This shows that there are no integral curves of degree 6 on S̄ that span a P5
or P6, which proves the claim. □

Corollary 18. The set G consists precisely of the integral curves C on S such that C·KS ≤ 6.

Proof. We know that all curves in G satisfy the conditions. Observe that for an integral
curve C on S, we must have C · KS ∈ {0, 2, 4, . . . }. So if C · KS ≤ 6, we have C · KS ∈
{0, 2, 4, 6}. If the intersection number vanishes, then C is an exceptional curve and so
C ∈ G. If C ·KS = 2, then the image of C on S̄ is a conic, and so C ∈ G by statement (1)
in Theorem 15. If C · KS = 4, then the image of C on S̄ is a curve of degree 4, which
has arithmetic genus either zero (then C is a smooth rational curve), one or three. The
first two cases are taken care of by statements (2) and (3) in Theorem 15, respectively.
In the last case, C is a plane quartic, and this is ruled out by Theorem 16. Finally by
Theorem 17, C · KS ̸= 6. □

Even though there are no plane quartics on S̄, we can find some more curves of genus 3.
For this, we consider the quotient S→ Kc we studied in Section 6. The extra involution
on Kc does not lift to an automorphism of S, which allows us to produce new curves by
projecting a known curve to Kc, applying the involution and pulling the result back to S.
For example, taking one of the conics in the branch locus and applying the involution,
we obtain a smooth rational curve of degree 4 meeting the branch locus in eight points.
Its pull-back to S̄ therefore is a hyperelliptic curve of genus 3. It is of degree 8 and
contained in a hyperplane section cut out by b1 ± b2 ± b3 = 0; the residual intersection
is another one of these hyperelliptic curves. Since the hyperplane c = 0 meets the
curve exactly in the eight Weierstrass points, the curve is bicanonically embedded. It
is smooth and has self-intersection −4. The eight curves obtained in this way together
with the further 24 similar curves obtained from replacing c by one of the aj form an
orbit under the automorphism group. They are all isomorphic to the ‘octahedral’ curve

y2 = x8 + 14x4 + 1 .

Pulling back the other rational quartics from K̄c to S̄ (and similarly from the K̄aj), we
find 192 further smooth hyperelliptic genus 3 curves of degree 8 and spanning a P5.
They sit in hyperplane sections of the form

a1 +
√
2ia2 + a3 + b2 = 0

(modulo the action of Aut(S)) and are isomorphic (over Q(i,
√
2)) to

y2 = x8 + 4x6 + 32x5 + 86x4 + 64x3 + 36x2 + 32x+ 17 .
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We find some further interesting curves by considering images of graphs of automor-
phisms of X under the map X × X → S̄. The centralizer of G0 in Aut(X) has order 32.
There are three times 32 further elements that centralize one of the subgroups of G0
given by sign changes of the type (−,+,+) or (+,−,−). The remaining 64 elements
of Aut(X) only commute with the sign change (−,−,−). This implies that among the
images in S̄ of these 192 curves, we find the 32 conics, three times 16 genus 1 curves
(these are the genus 1 curves in G that are not contained in one of the hyperplanes
bj = 0) and finally 16 curves isomorphic to X divided by the central element, which
results in the Fermat quartic. Its images on S̄ are bicanonically embedded; in particular,
they span a hyperplane, which is of the form a1 ± a2 ± a3 ± ic = 0 and contains two of
these 16 curves. Since they have negative self-intersection, both the hyperelliptic and
the non-hyperelliptic genus 3 curves are not contained in the cone in PicS spanned by
the curves in G.

The partial results above suggest the following question.

Question 19. Are all the curves of (geometric) genus at most 1 on S contained in G?

We can say the following. We write E for the exceptional divisor on S.

Lemma 20.

(1) Any rational curve C on S̄ must satisfy C · E ≥ 6.
(2) Any curve C of geometric genus 1 on S̄ must satisfy C · E ≥ 2.

Proof. Recall that Y as defined near the end of Section 4 is a smooth double cover of S̄
branched exactly above the singular points of S̄. Note that Y maps to a genus 2 curve C2
with fibers that are isomorphic to the curve X of genus 5. So Y does not contain curves
of genus < 2. Let C be a curve of geometric genus g on S̄ and let C̃ → C be its
desingularization. The pull-back C̃ ×C Y must then have geometric genus at least 2, it
must therefore be ramified in at least six points when g = 0 and in at least two points
when g = 1. This translates into the statements on intersection numbers with E. □

In fact, the conics pass through six singularities each, so they lift to 32 sections of the
fibration of Y, whereas the genus 1 curves in G lift to curves of genus 5 or 9 on Y.
Since Y maps to C2×C2, any curve of genus 2 in Y must be isomorphic to C2 (and map
to the graph of an automorphism of C2). If C ′ ⊂ Y is a curve isomorphic to C2, then
its preimage in X × X is a four-fold étale cover of C ′ all of whose components must
have genus at least 5. This implies that the preimage is connected and isomorphic to X,
so it is the graph of an automorphism σ of X (since it cannot be a fiber of one of the
projections). For σ to arise in this way, the group G+

0 must stabilize its graph, which
means that σ is in the centralizer of G0 in Aut(X). This centralizer has order 32, so all
of these curves are accounted for by the lifts of the 32 conics on S̄. This implies that all
other curves must lift to curves of genus at least 3 on Y, and we obtain the following
improvement of Lemma 20.

Lemma 21.

(1) A rational curve C on S̄ that is not a conic must satisfy C · E ≥ 8.
(2) A curve C of geometric genus 1 on S̄ must satisfy C · E ≥ 4.

The first statement recovers a result from [GFU20].
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Note that surfaces of general type are conjectured to have only finitely many curves of
genus at most 1. In general, this is only known in very few cases, for instance, when
Bogomolov’s inequality (KS)

2 > c2(S) holds (see [Bog77]); for surfaces contained in
an abelian variety (see [Fal94]); for very general surfaces of large degree in projec-
tive space (see work of Demailly, Siu, Diverio-Merker-Rousseau, Bérczi on the Green-
Griffiths Conjecture). None of these cases covers the surface S: Bogomolov’s inequality
fails for S since (KS)

2 = 16 < 80 = c2(S); the surface S is simply connected and hence is
not contained in an abelian variety; the surface S is not a surface in P3, since the only
such surfaces of general type with primitive canonical divisor are the surfaces of degree
five, and a plane section of a quintic is a curve of odd degree.

According to the Bombieri-Lang conjecture, the rational points on a variety of general
type are not Zariski-dense. This means that all but finitely many rational points on a
surface of general type lie on a finite set of curves of genus zero or one on the surface.
If the question above has a positive answer, then the only such curves defined over Q
on S̄ are the conics corresponding to degenerate cuboids. So the Bombieri-Lang conjec-
ture would then imply that there are only finitely many distinct rational boxes (up to
scaling).
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