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ABSTRACT. We consider the generalized Fermat equation (*) x2 + y3 = z25. Using the
known parameterization of the primitive integral solutions to x2 + y3 = z5 (due to
Edwards), we reduce the solution of (*) to the solution of five specific equations of the
form H(u, v) = w5, where H is homogeneous of degree 10 with coefficients in a sextic
number field K, u and v are coprime (rational) integers, and w ∈ K.

1 Introduction

The Generalized Fermat Equation

(1.1) x2 + y3 = zn, n ≥ 6

is conjectured to have only finitely many non-trivial primitive solutions (a, b, c) ∈ Z3

when the “Catalan” solutions (±3)2+(−2)3 = 1n are counted only once; here non-trivial
means abc ̸= 0 and primitive means that gcd(a, b, c) = 1. (This is a special case of the
more general conjecture that there are only finitely many non-trivial primitive solutions
to all equations xp + yq = zr with 1/p+ 1/q+ 1/r ≤ 1.)

Since any integer n ≥ 6 is divisible by 6, 8, 9, 10, 15, 25 or a prime p ≥ 7, to study
equation (1.1) it suffices to consider these exponents. The cases n = 6, 7, 8, 9, 10 and 15
have been fully resolved and the case n = 11 has been solved assuming GRH. For a more
detailed discussion of (1.1), including a list of the known solutions and references to
all solved cases, we refer the reader to the introduction of [FNS20].

In this paper we focus on the last remaining non-prime case for n, that is, the equation

(1.2) x2 + y3 = z25 .

We base our attempt at solving (1.2) on the complete parameterization of the coprime
solutions to x2 + y3 = z5 obtained by Edwards in [Edw04]. More precisely, using
this parameterization, we reduce the resolution of (1.2) to the resolution of several
related equations that we proceed to solve using different methods to compute rational
points. Unfortunately, we are left with five equations that are out of reach of current
methods and computational resources even when assuming GRH. Our main result is
the following.

Theorem 1.1. If five specific equations of the form

H(u, v) = w5 ,

where H is homogeneous of degree 10 with coefficients in a sextic number field K (depend-
ing on the equation), u and v are coprime (rational) integers and w ∈ K, have only the
expected solutions (see Table 1 below), then the only primitive integer solutions to (1.2)
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are the trivial solutions (±1,−1, 0), (±1, 0, 1), (0, 1, 1), (0,−1,−1) and the non-trivial
Catalan solutions (±3,−2, 1).

The assumption above can be verified (or shown to be false) if we are able to determine the
sets of L-rational points on five genus 2 curves given by an equation of the form

Y2 = X5 +A

(with A ∈ L), where L is a number field of degree 12 (depending on the equation; it is a
quadratic extension of K above).

After recalling Edwards’ parameterization in Section 2, which leads to the consideration
of 27 equations of the form z5 = −hi(u, v), where hi is a binary form of degree 12,
we determine in Section 3 the various possible factorization types of hi over Q and
over Q(

√
5). We then eliminate some forms by local considerations; see Section 4.

In Section 5 we determine which of the forms in Edwards’ list give rise to points on
which twist of X(5); these twists correspond to either symplectic or anti-symplectic
5-congruences with an elliptic curve from the list of seven curves obtained in [FNS20].

In the remaining Sections 6, 7, 8 and 9, we deal with the various factorization types in
turn. In all cases but the last (when hi is irreducible over Q(

√
5)), we are able to deter-

mine all solutions to (1.2) arising from each form hi of the corresponding factorization
type, using a variety of methods. Some of the last set of forms can also be excluded,
and the remaining ones lead to the equations mentioned in Theorem 1.1 above.

In terms of the classification obtained in Section 5, our result is summarized in Table 1.
We give the corresponding curve from the list in [FNS20] (where “reducible” refers to
the case of reducible 5-torsion) and the symplectic type as “+” or “−”. In the equations
Hi(u, v) = w5 below, i is the number of an Edwards form, Hi is a binary form of
degree 10 with coefficients in a sextic number field K depending on i, u and v are
coprime (rational) integers, and w ∈ K.

curve solutions to (1.2) condition

reducible (±1,−1, 0) —
27a1+ (±1, 0, 1) —
54a1− — H22(u, v) = w5 =⇒ (u, v) = (±1, 0)

96a1+ — H6(u, v) = w5 =⇒ (u, v) = (0,±1)

288a1+ ±(0, 1, 1) —
864a1+ — H24(u, v) = w5 =⇒ (u, v) = (±1, 0)

864a1− — —
864b1+ (±3,−2, 1) H5(u, v) = w5 =⇒ (u, v) = (0,±1)

864b1− — —
864c1+ — H16(u, v) = w5 =⇒ (u, v) = (0,±1)

864c1− — —

TABLE 1. Summary of the main result.

The number fields K are given in terms of the minimal polynomial of a generator in
Table 2. How the forms Hi can be obtained is explained in Section 9.
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i minimal polynomial

5 x6 + 10x3 + 24x+ 5

6 x6 − 2x5 − 6x− 3

16 x6 + 10x3 − 15x2 + 18x− 10

22 x6 + 3x5 − 10x3 + 12x− 4

24 x6 − 10x3 − 6x+ 5

TABLE 2. Coefficient fields of the degree 10 forms.

A Magma script verifying the computational claims in the paper is available on GitHub
at [Sto25].
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2 The Edwards Parameterization

We base our attempt at solving the equation x2 + y3 = z25 in coprime integers on the
complete parameterization of the coprime solutions to x2+y3 = z5 obtained by Edwards
in [Edw04], which we now quickly summarize.

In the following, the notation h = [α0, α1, . . . , α12] means that h is the binary form

h(u, v) =

12∑
i=0

(
12

i

)
αiu

iv12−i .

We define binary forms h1, . . . , h27 as given in Table 3.

For i ∈ {1, . . . , 27}, let

gi =
1

1322

(
∂2hi

∂u2

∂2hi

∂v2
−

∂2hi

∂u∂v

∂2hi

∂u∂v

)
and fi =

1

240

(
∂hi

∂u

∂gi

∂v
−

∂hi

∂v

∂gi

∂u

)
.

Note that fi, gi and hi are binary forms with integral coefficients, of degrees 30, 20
and 12, respectively.

Theorem 2.1 (Edwards [Edw04, pages 235–236]). Suppose a, b, c are coprime rational
integers satisfying a2+b3+c5 = 0. Then for some i ∈ {1, . . . , 27}, there is a pair of coprime
rational integers u, v and a choice of sign ± such that

a = ±fi(u, v) , b = gi(u, v) , c = hi(u, v) .

Suppose that we have a primitive solution (x, y, z) to equation (1.2). Then Theorem 2.1
implies that there are coprime integers u and v satisfying

(2.1) Ci : z
5 = −hi(u, v) .

Thus, we have reduced the initial problem to the determination of the triples (u, v, z),
with u and v coprime, satisfying one of the 27 possible equations Ci.

3



h1 = [0, 1, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−20736, 0]

h2 = [−1, 0, 0,−2, 0, 0, 80/7, 0, 0, 640, 0, 0,−102400]

h3 = [−1, 0,−1, 0, 3, 0, 45/7, 0, 135, 0,−2025, 0,−91125]

h4 = [1, 0,−1, 0,−3, 0, 45/7, 0,−135, 0,−2025, 0, 91125]

h5 = [−1, 1, 1, 1,−1, 5,−25/7,−35,−65,−215, 1025,−7975,−57025]

h6 = [3, 1,−2, 0,−4,−4, 24/7, 16,−80,−48,−928,−2176, 27072]

h7 = [−10, 1, 4, 7, 2, 5, 80/7,−5,−50,−215,−100,−625,−10150]

h8 = [−19,−5,−8,−2, 8, 8, 80/7, 16, 64, 64,−256,−640,−5632]

h9 = [−7,−22,−13,−6,−3,−6,−207/7,−54,−63,−54, 27, 1242, 4293]

h10 = [−25, 0, 0,−10, 0, 0, 80/7, 0, 0, 128, 0, 0,−4096]

h11 = [6,−31,−32,−24,−16,−8,−144/7,−64,−128,−192,−256, 256, 3072]

h12 = [−64,−32,−32,−32,−16, 8, 248/7, 64, 124, 262, 374, 122,−2353]

h13 = [−64,−64,−32,−16,−16,−32,−424/7,−76,−68,−28, 134, 859, 2207]

h14 = [−25,−50,−25,−10,−5,−10,−235/7,−50,−49,−34, 31, 614, 1763]

h15 = [55, 29,−7,−3,−9,−15,−81/7, 9,−9,−27,−135,−459, 567]

h16 = [−81,−27,−27,−27,−9, 9, 171/7, 33, 63, 141, 149,−67,−1657]

h17 = [−125, 0,−25, 0, 15, 0, 45/7, 0, 27, 0,−81, 0,−729]

h18 = [125, 0,−25, 0,−15, 0, 45/7, 0,−27, 0,−81, 0, 729]

h19 = [−162,−27, 0, 27, 18, 9, 108/7, 15, 6,−51,−88,−93,−710]

h20 = [0, 81, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−256, 0]

h21 = [−185,−12, 31, 44, 27, 20, 157/7, 12,−17,−76,−105,−148,−701]

h22 = [100, 125, 50, 15, 0,−15,−270/7,−45,−36,−27,−54,−297,−648]

h23 = [192, 32,−32, 0,−16,−8, 24/7, 8,−20,−6,−58,−68, 423]

h24 = [−395,−153,−92,−26, 24, 40, 304/7, 48, 64, 64, 0,−128,−512]

h25 = [−537,−205,−133,−123,−89,−41, 45/7, 41, 71, 123, 187, 205,−57]

h26 = [359, 141,−1,−21,−33,−39,−207/7,−9,−9,−27,−81,−189,−81]

h27 = [295,−17,−55,−25,−25,−5, 31/7,−5,−25,−25,−55,−17, 295]

TABLE 3. Definition of the forms hi, 1 ≤ i ≤ 27.

The following observation is important and will be used several times.

Remark 2.2. We note that by construction, all hi are GL2(C)-equivalent to the icosahe-
dral Klein form uv(u10 + 11u5v5 − v10). This implies that when K is a number field over
which hi splits off a linear factor, hi will actually have a factorization of the form

hi(u, v) = ℓ1(u, v)ℓ2(u, v)(Aℓ1(u, v)
10 + Bℓ1(u, v)

5ℓ2(u, v)
5 + Cℓ2(u, v)

10) ,

where ℓ1 and ℓ2 are linear forms over K and A,B,C ∈ K (with (B/11)2 = AC). We will
make use of this in the following way. Since u and v are coprime, if −hi(u, v) = z5, we
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will have that

Aℓ1(u, v)
10 + Bℓ1(u, v)

5ℓ2(u, v)
5 + Cℓ2(u, v)

10 = αw5

for some α,w ∈ K, where α is in a finite set (that has to be determined first). We can
write this as either(

2A
(ℓ1(u, v)
ℓ2(u, v)

)5

+ B
)2

= 4αA
( w

ℓ2(u, v)2

)5

+ B2 − 4AC

or (
2C

(ℓ2(u, v)
ℓ1(u, v)

)5

+ B
)2

= 4αC
( w

ℓ1(u, v)2

)5

+ B2 − 4AC .

So a solution gives rise to K-rational points on two genus 2 curves over K,

Y2 = 4αAX5 + (B2 − 4AC) and Y2 = 4αCX5 + (B2 − 4AC)

where the points are obtained from

X =
w

ℓ2(u, v)2
, Y = 2A

(ℓ1(u, v)
ℓ2(u, v)

)5

+ B

for the first curve, and similarly (with (ℓ1, A) swapped with (ℓ2, C)) for the second curve.
(One can scale the X and Y coordinates to obtain a curve of the form Y2 = X5 + γ if
desired.)

Note that both curves will be conjugate over the field over which the product ℓ1ℓ2 can
be defined when ℓ1 and ℓ2 are not yet defined over the base field. So in this case they
will provide the same information.

3 Factorization Types

Let G ∈ Q[u, v] be a binary form, and let K be a number field. We say G has factorization
type [d1, d2, . . . , dn] over K if it factors as a product G = G1G2 · · ·Gn, where the binary
forms Gj ∈ K[u, v] are irreducible over K of degree dj. Table 4 records the factorization
types of hi over Q or Q(

√
5) for i ∈ {1, 2, . . . , 27} \ {7, 11, 19}. Note that we will show

in the next section that the forms associated to i ∈ {7, 11, 19} (which are irreducible
over Q(

√
5)) cannot lead to primitive solutions of (1.2).

factorization type of hi i ∈ I

[1, 1, 10] over Q 1, 20, 25

[4, 8] over Q 3, 4, 12, 17, 18, 27

[6, 6] over Q(
√
5) 2, 10, 26

[12] over Q(
√
5) 5, 6, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24

TABLE 4. Factorization types

In the remainder of this work we will study the solutions of (2.1) by applying a strategy
that is adapted to each factorization type.
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4 Local Primitive Solutions

We can check for which pairs (u, v) of coprime p-adic integers equation Ci above has
a solution in Zp that comes from a primitive p-adic solution of Equation (1.2). In
particular, we find the following.

Lemma 4.1. When i ∈ {7, 11, 19}, a solution to equation 1.2 in coprime 2-adic integers
cannot give rise to a solution of equation Ci in 2-adic integers.

Proof. This is an easy calculation: for two pairs of coprime residue classes mod 2, the
value of −hi(u, v) has 2-adic valuation 1 and therefore cannot be a fifth power, and for
the third coprime residue class, the values of fi, gi and hi are all even, so we do not
obtain a primitive solution. □

By the same kind of computation, we obtain restrictions on the location of the point
(u : v) ∈ P1(Qp) for p = 2 and 3. These conditions are recorded in Table 5.

5 The Frey curve and X±
E (5)

As explained in [FNS20, PSS07], to a primitive solution (a, b, c) of the generalized
Fermat equation

(5.1) x2 + y3 = zn,

where n ≥ 5 is an integer, we can attach the Frey curve

E := E(a,b,c) : y2 = x3 + 3bx− 2a.

We write ρE,p to denote the mod p Galois representation attached to E. The following
lemma improves the conclusion of [FNS20, Proposition 2.4] under additional 2-adic
and 3-adic hypotheses.

Lemma 5.1. Let (a, b, c) be a primitive solution to (5.1) with exponent n ≥ 7. Assume at
least one of the following conditions:

(i) a is even or b ̸≡ 0,−1, 4 mod 8;
(ii) a ̸≡ ±1 mod 9 or b ̸≡ −1 mod 3.

Then for all primes p ≥ 5, the representation ρE,p is absolutely irreducible.

Proof. Observe that if 3 | c, then 32 | 3n | a2 + b3. Therefore, a ̸≡ ±2,±4 mod 9 if
b ≡ −1 mod 3 as otherwise a2 + b3 would be divisible by 3 but not by 9. It follows that
(a mod 9, b mod 3) must satisfy one of the congruence conditions in [FNS20, Table 2].
From the proof of this table in loc. cit., we conclude that the Frey curve E = Ea,b,c is
isomorphic over Q3 to a quadratic twist of the curve(s) listed in the fifth column of the
same row of the table. Note that except for the curve 96a1, all the curves W in the table
have conductor NW satisfying v3(NW) = 3, hence they have semistability defect e = 12
and a supercuspidal (hence irreducible) inertial type at 3 (see [DFV24, Table 1]). Since
p ≥ 5 does not divide e = 12, we conclude that the inertial type remains irreducible
after reduction, that is, ρE,p|I3 is irreducible (here I3 ⊂ GQ is an inertia subgroup at 3).
So ρE,p is irreducible if we avoid 96a1, that is, when a and b satisfy the 3-adic conditions
in the statement.

We now apply a similar argument using the Frey curve E/Q2 using [FNS20, Table 1].
Indeed, except for the curve 54a1 or the case that E has a quadratic twist with good

6



non-excluded residue classes of (u, v)
i p = 2 p = 3

1 (8u, 1) (81u, 1)

2 (u, 1) (3u, 1), (3u+ 2, 1), (1, 3v)

3 (2u, 1), (1, 2v) (u, 1)

4 (2u, 1), (1, 2v) (u, 1)

5 (2u, 1), (1, 2v) (3u, 1), (3u+ 2, 1), (1, 3v)

6 (u, 1) (1, 81v+ 51)

8 (u, 1) (3u, 1), (3u+ 2, 1), (1, 3v)

9 (2u, 1), (1, 2v) (u, 1)

10 (u, 1) (3u, 1), (3u+ 1, 1), (1, 3v)

12 (1, v) (3u+ 2, 1), (1, 3v), (3u, 1)

13 (1, v) (3u+ 1, 1), (3u, 1), (1, 3v)

14 (2u, 1), (1, 2v) (3u+ 1, 1), (3u, 1), (1, 3v)

15 (2u, 1), (1, 2v) (u, 1)

16 (2u, 1), (1, 2v) (3u+ 2, 1), (3u+ 1, 1), (1, 3v)

17 (2u, 1), (1, 2v) (u, 1)

18 (2u, 1), (1, 2v) (u, 1)

20 (8u, 1) (1, 81v)

21 (2u, 1), (1, 2v) (3u+ 2, 1), (3u, 1), (1, 3v)

22 (1, 8v+ 6) (u, 1)

23 (1, v) (1, 81v+ 66)

24 (u, 1) (3u+ 1, 1), (3u, 1), (1, 3v)

25 (2u, 1), (1, 2v) (81u+ 80, 1)

26 (2u, 1), (1, 2v) (u, 1)

27 (2u, 1), (1, 2v) (3u+ 2, 1), (3u, 1), (1, 3v)

TABLE 5. Residue classes of solutions.

reduction (curve 27a1 or the last row of the table1) all the curves W in the table have
semistability defect e = 8 and v2(NW) = 5. As above, this yields an irreducible inertial
type after reduction. We conclude that ρE,p is irreducible if a and b satisfy the 2-adic
conditions in the statement.

Our assumptions on (a, b) let us avoid at least one of the two bad cases above, thus ρE,p

is irreducible, hence absolutely irreducible since Q is totally real. □

From Table 4 we see that for

i ∈ I = {5, 6, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24}

1Note that [FNS20, Table 1] says this case is impossible; however that is proved with a global argu-
ment using irreducibility of ρE,p which is what we are trying to prove. For our local argument the last
row of the table cannot be excluded.
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the corresponding forms are irreducible over Q and also over Q(
√
5).

Let now (a, b, c) be a primitive solution to (1.2) arising from a triple (±fi, gi, hi) with
i ∈ I, and write E for the associated Frey curve.

For each i ∈ I and for all u, v ∈ Z/8Z, not both even, we compute the pairs

(a, b) =
(
±fi(u, v) mod 4, gi(u, v) mod 8

)
and verify in which row (indexed by i2) of [FNS20, Table 1] it falls. Similarly, for each
i ∈ I and for all u, v ∈ Z/9Z, not both divisible by 3, we compute the pairs

(a, b) =
(
±fi(u, v) mod 9, gi(u, v) mod 3

)
and verify in which row (indexed by i3) of [FNS20, Table 2] it falls. Combining
this information with [FNS20, Table 3], we can associate to each i ∈ I an elliptic
curve Wi with Cremona label in {54a1, 96a1, 864a1, 864b1, 864c1}; this correspondence
can be found in Table 6. The twists listed in Table 6 come from intersecting the twists
in [FNS20, Tables 1 and 2]; note that, for each pair (a, b) as above, the required twist d
may differ.

Moreover, the previous calculations also show that the resulting pairs (a, b) always
satisfy the hypotheses of Lemma 5.1, hence ρE,5 is absolutely irreducible. We now
apply [FNS20, Lemma 2.3] to E[5] and conclude that there is a quadratic twist E(d) of E
for some d ∈ {±1,±2,±3.± 6} such that the the 5-torsion module E(d)[5] is isomorphic
to Wi[5] as given by Table 6. Note that [FNS20, Lemma 2.3] as stated applies only to
the p-torsion representations ρE(a,b,c),p

with p ≥ 7 a prime, but we can also apply it in
our setting. Indeed, we observe that

(i) the conductor calculations in its proof work for any integer exponent n ≥ 7 (as
used in the proof of Lemma 5.1 above) so, in particular, it holds for our exponent
n = 25;

(ii) if ρE,5 is absolutely irreducible, then the level lowering and twisting parts of the
argument carry through in the same way.

Since ρE,5 has non-abelian image, by [FK22, Theorem 2.1], the symplectic type of the
isomorphism E(d)[5] ≃ Wi[5] of GQ-modules is well defined. That is, either all such
isomorphisms are symplectic or all are anti-symplectic (i.e., either all raise the Weil
pairing to a power with square exponent or all raise it to a non-square exponent). Thus
we obtain a rational point on X+

Wi
(5) or X−

Wi
(5), respectively, but not on both. To decide

which of these is the case for each i, we apply two symplectic criteria.

For i = 22 we have W22 = 54a1 and both W22 and the Frey curve E = E
(d)
(a,b,c) have

multiplicative reduction at 2, so we can apply [FK22, Theorem 1.20]. The minimal
discriminants of E and W22 are, respectively, ∆(E) = 2−633d6c25 and ∆(W22) = −2339;
thus v2(∆(E)) ≡ −2v2(∆(W22)) mod 5, and since −2 is a non-square mod 5, we conclude
from [FK22, Theorem 1.20] that the isomorphism E[5] ≃ W22[5] is anti-symplectic. Now
observe that, for all i ̸= 22, the curve Wi has semistability defect e = 8 and conductor Ni

with 2-adic valuation v2(Ni) = 5, so we can apply [FK22, Theorem 1.13(A)]. To this
end we used a Magma implementation of this theorem. The results can be found in the
last column of Table 6.

For completeness we include also in Table 7 the forms that give rise to primitive solu-
tions whose associated Frey curve E = E

(d)
(a,b,c) is mod 5 congruent to the two CM curves
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in the statement of [FNS20, Lemma 2.3], namely 27a1 and 288a1. As above, the irre-
ducibility of ρE,5 follows from the inertial types at 2 or 3, and the level lowering and
twisting arguments are exactly the same. From [FNS20, Theorem 5.1] we know that
we only have to consider the ‘+’ type in all cases; note that although this theorem is
stated for p ≥ 11, the part of its proof required here applies for p = 5 since we know
that ρE,5 is irreducible.

i W d type

5 864b1 ±2,±6 +

6 96a1 ±3 +

8 864c1 ±2,±6 −

9 864b1 ±2,±6 −

13 864b1 ±1,±3 +

14 864c1 ±1,±3 +

i W d type

15 864a1 ±2,±6 −

16 864c1 ±2,±6 +

21 864a1 ±1,±3 −

22 54a1 1,−3 −

23 96a1 ±6 +

24 864a1 ±2,±6 +

TABLE 6. Correspondence for i ∈ I

i W d type

2 27a1 ±2,±6 +

3 288a1 ±1,±3 +

4 288a1 ±2,±6 +

10 27a1 ±2,±6 +

12 288a1 ±2,±6 +

i W d type

17 288a1 ±1,±3 +

18 288a1 ±2,±6 +

26 27a1 ±2,±6 +

27 288a1 ±2,±6 +

TABLE 7. Correspondence to CM curves

6 Factorization type [1, 1, 10] over Q

Here i ∈ {1, 20, 25} and the polynomial hi factors over Q as the product of two linear
factors and a factor of degree 10. This is a case where the associated mod 5 representa-
tions are reducible.

We apply Remark 2.2 over Q to the three relevant forms. We have

h1(u, v) = −12uv(124u10 + 11 · 122u5v5 − v10)

h20(u, v) = −12uv(28u10 + 11 · 122u5v5 − 34v10)

h25(u, v) = −3(u+ v)(u− v)
(
(u+ v)10 + 11 · 32(u+ v)5(u− v)5 − 34(u− v)10

)
Using the coprimality of u and v and the congruence conditions from Table 5, we find
that α = 12, 12, 1, respectively (where we take (ℓ1, ℓ2) = (u, v) or (u + v, u − v)). The
recipe of Remark 2.2 then gives the following pairs of genus 2 curves (after scaling the
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coordinates).

i = 1 : Y2 = X5 + 28 · 53 and Y2 = X5 + 26 · 34 · 53
i = 20 : Y2 = X5 + 28 · 34 · 53 and Y2 = X5 + 26 · 53
i = 25 : Y2 = X5 + 28 · 53 and Y2 = X5 + 28 · 36 · 53

Using the Magma function MordellWeilGroup, we determine that the group of rational
points on the Jacobian variety of the first curve, Y2 = X5 + 28 · 53, is infinite cyclic.
Then Magma’s Chabauty function, applied to a generator of this group, shows that the
only rational points on this curve are the point at infinity and a pair of points with
x-coordinate −4.

For h1, these points correspond to (u, v) = (0, 1) and (0, 1) (one point does not lift), of
which the first gives the trivial solution (−1,−1, 0) and the second does not give rise to
a primitive solution to the original equation.

For h25, these points correspond to (u, v) = (1, 1) and (1,−1) (again, one point does
not lift), both of which do not lead to a primitive solution.

Similarly, we find that the group of rational points on the Jacobian of the curve Y2 =
X5 + 26 · 53 is trivial, which implies that the point at infinity is the only rational point
on that curve. It corresponds to taking (u, v) = (1, 0) in h20, which does not give a
primitive solution.

So the only primitive solutions of Equation (1.2) that arise from this case are the trivial
solutions (±1,−1, 0).

7 Factorization type [4, 8] over Q

The mod 5 Galois representation of the associated Frey curves is isomorphic to that of
288a1. Here i ∈ {3, 4, 12, 17, 18, 27} and the polynomial hi factors over Q as

hi(u, v) = hi,4(u, v)hi,8(u, v),

where hi,4 and hi,8 are factors in Z[u, v] of degree 4 and 8, respectively. With a computer
we easily verify the following.

(1) The prime divisors of the resultant of hi,4 and hi,8 are 2, 3, 5. Thus, the prime
divisors of gcd(hi,4(u, v), hi,8(u, v)) belong to {2, 3, 5} when u and v are coprime
integers.

(2) For p = 2 and p = 3 we see that p does not divide hi,4(u, v) when u and v satisfy
the conditions in Table 5.

(3) Similarly, p = 5 never divides hi,8(u, v) when (u, v) gives rise to a 5-adically primi-
tive solution.

This implies that for coprime u, v ∈ Z coming from a primitive solution of (1.2) we
always have

gcd
(
hi,4(u, v), hi,8(u, v)

)
= 1 .

It now follows that, if (u, v, z0) satisfies (2.1) for hi, then there is an integer z (not
divisible by 2 or 3) such that

(7.1) z5 = hi,4(u, v) .
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We will now show that solutions of (7.1) give rise to rational points on certain hyperel-
liptic curves. It can be easily checked that, over Q(

√
−1), we have a factorization

hi,4(u, v) = Hi(u, v)H̄i(u, v)

into conjugate degree two polynomials (see Table 8 for explicit expressions for Hi).
Moreover, the resultant of Hi and H̄i is divisible only by primes above 2 and 3. Since
we already know that z above is not divisible by 2 and 3, this implies that Hi(u, v)
(and H̄i(u, v)) must be a fifth power in Z[

√
−1] (note that all units in Z[

√
−1] are fifth

powers.) So there are a, b ∈ Z such that

(7.2) Hi(u, v) = (a+ b
√
−1)5 = (a5 − 10a3b2 + 5ab4) + (5a4b− 10a2b3 + b5)

√
−1 .

Comparing coefficients, this gives

(7.3) a5 − 10a3b2 + 5ab4 = Re(Hi(u, v)) , 5a4b− 10a2b3 + b5 = Im(Hi(u, v)) ,

where Re and Im denote the real and imaginary parts. Now, for each i, we find integers
γi, αi, βi such that

(7.4) γi

(
αi Re(Hi(u, v)) + βi Im(Hi)(u, v)

)
Im(Hi(u, v)) = Si(u, v)

2

for some polynomial S ∈ Z[u, v]. Using (7.3) in (7.4) and writing

(7.5) X =
b

a
and Y =

Si(u, v)

a5
,

we obtain hyperelliptic curves
Mi : Y

2 = Fi(X) ,

where Fi is of degree 10 and factors as

Fi(X) = X(X4 − 10X2 + 5)Gi(X)

with a polynomial Gi of degree 5. Each solution (u, v) of (2.1) (for one of the indices i
considered here) that comes from a primitive solution of (1.2) then gives rise to a
rational point on the corresponding curve Mi.

Up to isomorphism, there are only two curves Mi (which are quadratic twists by −1 of
each other):

F4(X) = 3X(X4 − 10X2 + 5)(X5 + 10X4 − 10X3 − 20X2 + 5X+ 2)

F18(X) = F4(−X)

F12(X) = F17(X) = −F4(X)

F3(X) = F27(X) = −F4(−X)

A summary of the information involved for all i can be found in Table 8.

Note that (0, 0) ∈ Mi(Q) is a rational point for all i. Applying a partial descent over Q as
in [SS12] to M3

∼= M12
∼= M17

∼= M27, we obtain a Selmer set with only one element ξi,
which must correspond to the point (0, 0). Therefore, ξi is of the form (?, 5, ?). Thus,
given a rational point in Mi(Q), there is a rational point with the same X-coordinate on
the genus 1 curve given by

C : 5Y2 = X4 − 10X2 + 5 .

The Jacobian of C is the elliptic curve

E : y2 = x3 + x2 − 83x+ 88 ,

11



i Hi γi αi βi Si(u, v)

3 (3+ 6
√
−1)u2 + v2 3 2 −1 6uv

4 (−3+ 6
√
−1)u2 + v2 3 2 1 6uv

12 (2− 3
√
−1)u2 + 2uv+ 2v2 −3 2 1 3u(u+ 2v)

17 3u2 + (1− 2
√
−1)v2 −3 2 1 6uv

18 3u2 + (−1− 2
√
−1)v2 3 −2 1 6uv

27 (2+
√
−1)u2 + (2− 2

√
−1)uv+ (2+

√
−1)v2 −3 −2 1 3(u2 − v2)

TABLE 8. Data for the hyperelliptic curves Mi.

which satisfies E(Q) ∼= Z/2Z. This implies that

C(Q) = {(0, 1), (0,−1)} ,

which implies in turn that (0, 0) is the only rational point on Mi.

This argument does not work for M4
∼= M18: M4 has in addition rational points with

(1,±12) (on M18, they are (−1,±12)), and the Selmer set correspondingly contains
another element (?,−1, ?). Unfortunately, the Jacobian elliptic curve of

Y2 = −(X4 − 10X2 + 5)

has positive rank, so we cannot conclude in the same way. On the other hand, a 2-
descent on the Jacobian of M4 shows that the Mordell-Weil rank is at most 1, and
the difference P = [(1, 12) − (0, 0)] has infinite order, so the rank is exactly 1 and
P generates a subgroup of finite index. We can therefore use Chabauty’s method to
determine M4(Q); see below. The result is that

M4(Q) = {(0, 0), (1,±12)} and so M18(Q) = {(0, 0), (−1,±12)} .

Consider a rational point (b/a, Si(u, v)/a
5) ∈ Mi(Q). From (7.3), the expression for Hi

and the fact that u and v are coprime, we deduce that a and b are coprime (no non-
trivial fifth power of an integer can divide both Re(Hi(u, v)) and Im(Hi(u, v)))).

We now determine the primitive solutions to equation (1.2) arising from (0, 0) ∈ Mi(Q).
Then b = 0 and a = ±1, so

Re(Hi(u, v)) = ±1 and Im(Hi(u, v)) = 0 .

For i ∈ {12, 17, 17, 27}, this pair of equations has no integral solution, and for i ∈
{3, 4}, the only solutions are (u, v) = (0,±1) or (±1, 0). These give rise to the trivial
solutions (0, 1, 1), (0,−1,−1) and some further non-primitive solutions with a = 0 to
equation (1.2).

We now consider the points (1,±12) ∈ M4(Q). By the above, we have a = b = ±1.
Using this in (7.3), we obtain the impossible equation ±4 = 6u2.

Similarly, the points (−1,±12) ∈ M18(Q) lead to a = −b = ±1 and thence to the
impossible equation ±4 = −2v2.

So the only primitive solutions of (1.2) arising from this factorization pattern are ±(0, 1, 1).

It remains to carry out the Chabauty argument for M4.
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We use the odd degree model

C : y2 = 30x9 + 75x8 − 360x7 − 300x6 + 756x5 + 330x4 − 360x3 − 60x2 + 30x+ 3

of M4, which is obtained by replacing x with 1/x; our goal is then to show that the
rational points of C are the point at infinity and the two points (1,±12). Let J denote
the Jacobian variety of C.

We work over Q11 since J(F11) ∼= Z/2Z × Z/2Z × Z/70Z × Z/70Z has relatively small
exponent. Let P = [(1, 12) −∞] ∈ J(Q) be the point of infinite order mentioned above.
Then 70P is in the kernel of reduction mod 11. By a standard computation, the details
of which we omit here as similar computations can be found in the literature (see also
the Magma code at [Sto25]), we determine that the image in Ω1(C/F11) of the space
of differentials in Ω1(J/Q11) that annihilate P is generated by

x− 3

2y
dx ,

x2 − 1

2y
dx and

x3

2y
dx .

The last one of these does not vanish at the point at infinity or at the points (1,±1)
in C(F11). From the computation of the 2-Selmer set of C we know that each rational
point on C must differ from ∞ or (1, 12) by twice an element of J(Q). Checking this
condition mod 11 shows that this implies that every rational point on C reduces mod 11
to either ∞ or a point with x-coordinate 1. The non-vanishing of the reduction of some
annihilating differential on these residue classes implies that there can only be one
rational point in each of the residue classes, which tells us that there cannot be further
rational points.

8 Factorization type [6, 6] over Q(
√
5)

The mod 5 Galois representation of the associated Frey curves is isomorphic to that
of 27a1. Here i ∈ {2, 10, 26}. The argument in this section is similar to the one used in
section 7.

We observe that

−h2(−u/2, v) = −h10(v/2, u) = −h26((u+ v)/2, (u− v)/2)

= 25u12 + 275u9v3 − 165u6v6 − 55u3v9 + v12

=: h(u, v) .

A solution (u, v) in coprime integers to any of the three relevant equations will result in
a solution (−2u, v), (2v, u) or (u+ v, u− v) in coprime integers of z5 = h(u, v) (taking
into account the restrictions modulo 2 from Table 5).

The polynomial h(u, v) is a quartic in u3 and v3 that factors over Q(
√
5) into two con-

jugate quadratics in u3 and v3:

h(u, v) =
(
v6 −

55+ 27
√
5

2
u3v3 − 5u6

)(
v6 −

55− 27
√
5

2
u3v3 − 5u6

)
.

The resultant of the two factors is −318
√
5
12

, so for coprime integers u and v, the gcd
of the two factors on the right hand side is of the form 3e

√
5
e ′

, which implies that each
factor is a unit times 3e

√
5
e ′

times a fifth power. We can assume that e, e ′ ∈ {0, 1, . . . , 4}.
Since the product, which is 32e5e ′ times the fifth power of a rational integer, must be a
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fifth power, it follows that e = e ′ = 0. So there is some α ∈ Z[ε], where ε = (1+
√
5)/2,

and some j ∈ {−2,−1, 0, 1, 2} such that

εjα5 =
(
v6 −

55+ 27
√
5

2
u3v3 − 5u6

)
.

Writing α = a+ b
√
5, we see that

α5 = (a5 + 50a3b2 + 125ab4) + (5a4b+ 50a2b3 + 25b5)
√
5 .

Comparing coefficients, we obtain for j = 0 that

a5 + 50a3b2 + 125ab4 = v6 − 55
2
u3v3 − 5u6 and 5a4b+ 50a2b3 + 25b5 = 27

2
u3v3 .

Taking appropriate Q(
√
−5)-linear combinations, we then have

(a5 + 50a3b2 + 125ab4) −
55± 4

√
−5

27
(5a4b+ 50a2b3 + 25b5) = (v3 ±

√
−5u3)2 .

We take the product of these two (and multiply by 92) to finally obtain

(9(v6 + 5u6))2 = 81a10 − 1650a9b+ 16725a8b2 − 99000a7b3 + 395250a6b4 − 1039500a5b5

+ 1961250a4b6 − 2475000a3b7 + 2128125a2b8 − 1031250ab9 + 215625b10

=: F(a, b) .

This shows that a solution will lead to a rational point on the hyperelliptic curve of
genus 4 given by D0 : y

2 = F(x, 1), with x = a/b and y = 9(v6 + 5u6)/b5.

When j ̸= 0, we have to expand instead εj(a + b
√
5)5 = g1(a, b) + g2(a, b)

√
5 with

homogeneous polynomials g1, g2 ∈ Z[a, b] of degree 5 and then perform a similar com-
putation to arrive at another hyperelliptic curve Dj of genus 4.

We will see below that D2(Q) = D1(Q) = ∅, that D0(Q) consists of the two points at
infinity, and that D−1(Q) and D−2(Q) consist of the two points with x-coordinate 1 (and
y = ±192 and ±96, respectively).

Note that the resultant of the two quadratic forms V2 − 55±27
√
5

2
UV − 5U2 is −36

√
5
4
,

which implies (since 35 is the maximal fifth power of a rational integer that can divide
their gcd when evaluated at the coprime integers u3 and v3; note that if an integer n
divides a and b, then n divides both α and its conjugate, so n5 divides both factors) that
either a, b ∈ Z and gcd(a, b) | 3 or a, b ∈ 1

2
+ Z and gcd(2a, 2b) | 3. So we either have

b = 0 (from the point at infinity of D0) and a ∈ {±1,±3} or a = b ∈ {± 1
2
,± 3

2
,±1,±3}

(from the points with x = 1 on D−1 and D−2). Taking into account that u and v are
integers, this gives that

v6 + 5u6 ∈ {1, 35, 34, 2 · 34, 25 · 34, 26 · 34} .
The only solutions in coprime integers are (u, v) = (0,±1); they correspond to the
trivial solution (1, 0, 1).

So the only primitive solutions to (1.2) arising from this case are the trivial solu-
tions (±1, 0, 1).

We write Jj for the Jacobian of Dj. Using Magma, we can easily check the following
facts about the curves Dj.

(1) For j = 1, 2 the routine TwoCoverDescent returns empty fake Selmer sets. Thus
D1(Q) and D2(Q) are both empty.
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(2) A small search using RationalPoints finds the points (1 : ±9 : 0) on D0, (1,±192)
on D−1 and (1,±96) on D−2.

(3) The routine TorsionBound tells us that Jj(Q) is torsion free for j = 0,−1,−2.
(4) The routine RankBound gives a bound of 2 for the rank of the Mordell-Weil groups

of J−1 and J−2. By taking the difference of the two known points, we get a point in
the Jacobian of infinite order. Thus 1 ≤ rank(Jj(Q)) ≤ 2 for j = −1,−2.

(5) The routine RankBound gives a bound of 4 for the rank of the Mordell-Weil group of
J0. Again, taking the difference of the two known points we get a point of infinite
order. Thus 1 ≤ rank(J0(Q)) ≤ 4.

In Theorem 9.1 of [Sto17], it is shown that D0(Q) = {(1 : ±9 : 0)} using “Elliptic curve
Selmer group Chabauty” (assuming GRH for the necessary class group computations).

It remains to show that D−1 and D−2 have only the points mentioned earlier. These
curves are hyperelliptic of genus 4 and the Mordell-Weil rank of their Jacobians is at
most 2. Thus we can hope to find all rational points by applying Chabauty’s method.
This can be done provided that we can find generators of a subgroup of finite index
of Jj(Q).

We first write down the following nicer models for Dj (which are obtained as

SimplifiedModel(ReducedMinimalWeierstrassModel(Dj))

in Magma).

D̃−1 : Y2 = 36X10 − 120X9 + 705X8 − 60X7 + 3060X6 + 3846X5

+ 6390X4 + 5340X3 + 3345X2 + 1230X+ 189

D̃−2 : Y2 = 9X10 − 30X9 + 645X8 + 1860X7 + 6390X6 + 11274X5 + 15660X4

+ 14460X3 + 8805X2 + 3120X+ 516

We write J̃j for their Jacobians. A small search for rational points reveals only the points
at infinity on both curves. These points were expected to be found since they are the
images of the points computed in the previous section under the isomorphism between
the models. For both curves we will denote by ∞+ and ∞− the points at infinity with
positive and negative y-coordinate, respectively. The objective of the remainder of this
section is to show that these two points are indeed all the points in D̃j(Q).

Lemma 8.1. Let P ∈ D̃j(Q). Then the divisor class [P −∞−] is in 2J̃j(Q).

Proof. Applying the routine TwoCoverDescent to D̃j returns a fake 2-Selmer set with
only one element. By construction we have a factorization of the degree 10 polynomials
defining D̃j into two conjugate polynomials over Q(

√
−5). This implies that the fake

2-Selmer set equals the 2-Selmer set. Let C be the unique 2-covering of D̃j that has
points everywhere locally. Any rational point P ∈ D̃j(Q) lifts to a rational point on
some covering having points everywhere locally. Since C is unique, both ∞− and P lift
to a rational point on C. This implies that [P −∞−] ∈ 2J̃j(Q). □
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A computer search reveals the following points Qj,1, Qj,2 ∈ J̃j(Q) given in Mumford
notation.

Q−1,1 = (x4 + 2x3 + 4x2 + 3x+ 1, −60x3 − 90x2 − 90x− 30)

Q−1,2 = (x4 − 53
27
x3 + 4

9
x+ 1

9
, − 52693

243
x3 + 448

3
x2 + 8063

81
x+ 1118

81
)

Q−2,1 = (x4 + 2x3 + 4x2 + 3x+ 1, −30x3 − 45x2 − 45x− 15)

Q−2,2 = (x4 + 1
5
x3 + 23

5
x2 + 21

5
x+ 3

5
, − 683

25
x3 + 321

25
x2 + 1982

25
x+ 666

25
)

We note also that 2Qj,1 = [∞+ −∞−].

Lemma 8.2. The group J̃j(Q) is torsion-free and of rank 2. The points Qj,1 and Qj,2

generate a subgroup Gj ⊆ J̃j(Q) of finite odd index.

Proof. We already know that that J̃j(Q) is torsion-free and of rank at most 2. We check
that in both cases, the image of the subgroup generated by Qj,1 and Qj,2 under J̃j(Q) →
J̃j(F29) → J̃j(F29)/2J̃j(F29) is isomorphic to (Z/2Z)2. This implies the second claim. □

We now want to apply the Chabauty-Coleman method to prove that ∞± are the only
rational points on D̃j. We will use the prime p = 7. Write ρ7 for the mod 7 reduction
maps J̃j(Q) → J̃j(F7) and D̃j(Q) → D̃j(F7). Denote by ι the Abel-Jacobi embeddings

ι : D̃j → J̃j given by ι(P) = [P −∞−] .

Proposition 8.3. Let Gj = ⟨Qj,1, Qj,2⟩ as above. Then ρ7(Gj) = ρ7(J̃j(Q)). Furthermore,

(1) If P ∈ D̃−1(Q), then ρ7(P) ∈ {(1 : 1 : 0), (1 : 6 : 0), (0 : 0 : 1), (1 : 0 : 1)};
(2) if P ∈ D̃−2(Q), then ρ7(P) ∈ {(1 : 3 : 0), (1 : 4 : 0)}.

Proof. The group ρ7(Gj) has index 2 in J̃j(F7). Since Gj has odd index in J̃j(Q), we
conclude that ρ7(Gj) = ρ7(J̃j(Q)).

Now for the second statement. Let P ∈ D̃j(Q). From Lemma 8.1 we know that ι(P) ∈
2J̃j(Q). Thus, we also have ρ7(ι(P)) ∈ ρ7(2J̃j(Q)). With the computer we easily check
that the points P ∈ D̃j(F7) such that [P − ρ7(∞−)] ∈ ρ7(2J̃j(Q)) = 2ρ7(Gj) are those
listed in the statement. □

The embedding ι induces an isomorphism ι∗ from the space of regular 1-forms Ω(J̃j/Q7)

to Ω(D̃j/Q7). This isomorphism is independent of the base-point ∞− in the definition
of ι. Furthermore, there is a well defined integration pairing

Ω(D̃j/Q7)× J̃j(Q7) → Q7 , (ω,D) 7→ ∫D

0

ι∗−1ω.

We need to compute a basis for the differentials that annihilate J̃j(Q) ⊂ J̃j(Q7) under
this pairing. Since the genus of D̃j is 4 and the Mordell-Weil rank of J̃j(Q) is 2, we will
find two differentials in such a basis. We will now sketch how to obtain this basis of
differentials.

We first find two independent points Rj,1, Rj,2 in the intersection of J̃j(Q) and the kernel
of reduction mod 7. We do this because integrals on the kernel of reduction can be
computed via power series. We then compute the integrals

∫Rj,k

0
ι∗−1ω for ω running
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through a basis of Ω(D̃j/Q) to sufficient 7-adic precision and finally find the two ba-
sis differentials by linear algebra. (We omit the details, as similar computations are
described elsewhere in the literature.)

For j = −1, the differentials in the basis reduce mod 7 to

(8.1)
x3 + 5x2

2y
dx and

x+ 4

2y
dx ,

and for j = −2 the reductions mod 7 are

(8.2)
x2

2y
dx and

x+ 4

2y
dx .

We now determine the rational points on D̃−1. We see that the differentials mod 7
above do not both vanish at the points in part (1) of Proposition 8.3. This implies that
there is at most one point in D̃−1(Q) reducing to each of these points. In particular, the
points ∞± are the only rational points in their residue classes. Now let P ∈ D̃−1(F7)
be (0 : 0 : 1) or (1 : 0 : 1). Suppose there is a rational point W = (x : y : z) reducing
to P such that y ̸= 0. Then (x : −y : z) is another rational point reducing to P. But this
is not possible since there can be at most one rational point in these residue classes.
Since there is no rational point with vanishing y-coordinate in these residue classes, we
conclude that there cannot be any other rational points.

We now determine the rational points on D̃−2. We consider the points in part (2) of
Proposition 8.3. They are the images of the two rational points at infinity. The first of
the two differentials mod 7 given above vanishes there to first order. This implies that
there are at most two rational points on D̃−2 belonging to each of these two residue
classes. To show that there is in fact only one rational point, we take a closer look at
the power series expansion of the integral of the second differential at a point at infinity
in terms of a uniformizer t there. We obtain

I(t) = (13 · 7+O(73))t− (19 · 7+O(73))t2 − (103+O(73))t3 +O(t4) .

Let 0 ̸= a ∈ Z7. Then (taking into account that the coefficient of tm in I(t) has valuation
at least −v7(m)) it follows that

(8.3)
I(7a)

72a
= 13+O(72) − (19 · 7+O(73))a− (103 · 7+O(74))a2 +O(72)

which is always ≡ 6 mod 7, so can never vanish. This shows that t = 0 is the only zero
of I(t) in 7Z7, and so the point at infinity must be the only rational point in its residue
class.

This concludes the proof of

D−1(Q) = {(1,−192), (1, 192)} and D−2(Q) = {(1,−96), (1, 96)}

(for the original models).

9 Forms that are irreducible over Q(
√
5)

The remaining forms we have to deal with are those which are not only irreducible
over Q but also over Q(

√
5), that is i ∈ I = {5, 6, 8, 9, 13, 14, 15, 16, 21, 22, 23, 24}.

In all cases, there is a sextic number field Ki (that only depends on the mod 5 repre-
sentation of the associated Frey curves) such that hi splits as a quadratic form times
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a degree 10 form Hi with coefficients in the ring of integers OKi
of Ki; we choose the

scaling so that Hi is primitive (i.e., its coefficients generate the unit ideal of OKi
).

The resultant of the two factors is divisible only by primes above 2, 3 and 5 with only
one prime above 5 occurring. For i /∈ {6, 22, 23}, we know that c is not divisible by 2 or 3,
where c5 = −hi(u, v) for coprime integers u and v, so Hi(u, v) cannot be divisible by
primes above 2 and 3. For i ∈ {6, 22, 23}, we can show (using the congruence conditions
from Table 5) that any prime above 2 or 3 must show up with an exponent that is a
multiple of 5. The same holds for the possible prime above 5 (which in fact cannot
show up). Since all the relevant sextic fields have trivial class group, this implies that
a primitive solution to our original equation (1.2) that comes from one of the form
considered here must lead to integers u and v such that Hi(u, v) equals a unit times a
fifth power in OKi

. We note that this property is invariant under simultaneous scaling of
u and v by a nonzero factor (as that results in multiplying Hi(u, v) by the tenth power
of the scaling factor).

We now use a sieving procedure to reduce the number of units (which come from a
set of representatives of O×

Ki
modulo fifth powers; the fields Ki have signature (2, 2), so

the unit rank is 3, and we have a priori 53 = 125 different units to consider). If p > 5
is a prime, we can run through representatives of all nonzero pairs (u, v) ∈ F2

p mod-
ulo scaling and check which units are compatible with the resulting value Hi(u, v) ∈
OKi

/pOKi
∼=

∏
p|pOKi

/p. We can also run a similar computation working modulo 25

(which actually leads to quite strong restrictions).

The result of this computation is that all units can be excluded when i ∈ {8, 9, 15, 21}
(these are the forms that correspond to antisymplectic congruences with one of 854a1,
864b1 or 964c1), and in all other cases, only one unit remains. We replace Hi by Hi

divided by the corresponding unit, so that the relevant equation is now

(9.1) Hi(u, v) = w5 with u, v ∈ Z and w ∈ Ki.

When we write below “. . . gives the Frey curve E”, this means that E can be obtained
as a quadratic twist of the Frey curve associated to the given pair (u, v) and index i.
Except for the form with i = 5, the solutions of (9.1) listed below do not give rise to
primitive solutions of the original equation (1.2).

• i = 22: (u, v) = (1, 0) gives the Frey curve 54a2 and leads to a solution of (9.1).
• i = 6, 23: (u, v) = (0, 1) gives the Frey curve 96a1 and leads to a solution of (9.1)

(the equations are equivalent).
• i = 24: (u, v) = (1, 0) gives the Frey curve 864a1 and leads to a solution of (9.1).
• i = 5, 13: (u, v) = (0, 1) gives the Frey curve 864b1 and leads to a solution of (9.1)

(the equations are equivalent). This gives rise to the primitive pair of solutions
(±3,−2, 1) of (1.2).

• i = 14, 16: (u, v) = (1,−1) (for i = 14) and (u, v) = (0, 1) (for i = 16) lead to the
Frey curve 864c1 and to a solution of (9.1) (the equations are equivalent).

Proposition 9.1. If the solutions of (9.1) listed above (for i ∈ {5, 6, 13, 14, 16, 22, 23, 24})
are the only ones, then the Catalan solutions (±3,−2, 1) are the only primitive solutions
to the original equation (1.2) that arise from forms that are irreducible over Q(

√
5).

Proof. Under the assumption made, all primitive solutions to the original equation aris-
ing from one of the remaining eight forms of degree 12 must have (u, v) as in the list
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above (up to a common sign change). The only primitive solution that is obtained when
evaluating the triples of Edwards forms at these values is the Catalan solution. □

Taking into account the fact that three pairs among the eight relevant equations (9.1)
are equivalent, and so only five equations need to be considered, this proves the first
statement in Theorem 1.1 (given that we have already dealt with all other factorization
patterns).

This raises the question how one could try to establish the assumption in the proposition
above. Note that equation (9.1) really describes a curve that is given by six equations
of the form

(degree 10 in u, v) = (quintic in w1, . . . , w6) ,

which are obtained by fixing an integral basis of OKi
, writing w as a linear combination

of this basis with coefficients w1, . . . , w6 and then comparing coefficients with respect
to this basis on both sides. This is a curve of very large genus.

However, one could try to work with the curve over Ki (which by Riemann-Hurwitz has
genus 16) and use the extra condition that u, v ∈ Z at a suitable stage. But this still
seems to be infeasible.

An alternative is to make a further quadratic extension from Ki to Li such that the
quadratic factor in the original factorization of hi over Ki splits over Li. Then we can
use Remark 2.2 to obtain a genus 2 curve over Li of the form Y2 = X5 +A. This proves
the second statement in Theorem 1.1. But if we want to use standard methods to try
and determine the Li-rational points on it, we first need to compute its 2-Selmer group,
which requires information on the class and unit groups of the field Li(

5
√
A) of degree 60

over Q. Unfortunately, this is quite a bit too large for current technology to give a result
in reasonable time, even assuming GRH.
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