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Abstract. We propose an approach to many-valued contexts using for-
mal descriptions instead of scaling. The underlying idea is the philosph-
ical definition of a concept as a set of objects together with the most
precise description.
We introduce a formal description as a mapping from the set of at-
tributes to the power set of the values (which is extended appropriately
to empty cells), assigning to each attribute the set of allowed values.
Descriptions are naturally ordered by preciseness. Using this, we can in-
troduce extent and intent according to the philosophical idea, and thus
we define concepts. We present a way to restrict the amount of concepts
for a many-valued context by preselecting some descriptions of inter-
est. Furthermore, we introduce implications on descriptions, allowing to
investigate relationships between attributes.
Within this approach, we reformulate the known theory under a different
point of view. It certainly does not provide a better analysis than scaling,
but it allows to avoid the generation of a huge one-valued context.

1 Many-valued Contexts

Recall the definition of many-valued contexts:

Definition 1. A many-valued context IK = (G,M,W, I) is a set of objects
G, a set of attributes M , a set of possible values W , and a ternary relation
I ⊆ G×M ×W , with

(g,m,w) ∈ I, (g,m, v) ∈ I =⇒ w = v .

(g,m,w) ∈ I indicates, that object g has the attribute m with value w. In this
case, we also write m(g) = w, regarding the attribute m as a partial function
from G to W .

We can consider in particular each data base as a many-valued context, thus
formal concept analysis appears as a tool of knowledge discovery and data-
mining. Within this paper, we will consider the following small example (taken
from [7]), representing some facts from algebra:
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Example 1. Let IK = (G,M,W, I) be the many-valued context with the set
of real number objects G = {2,√2, 3

√
2, π} together with the set of attributes

M = {i, a, t}, where “i” means irrational, “a” algebraic and “t” transcendental.
The set of values is W = {×}∪ IN, and the incidence relation is specified by the
table below.

i a t
2 1√
2 × 2

3
√

2 × 3
π × ×

Irrational and transcendental are one-valued attributes, i.e. an “×” within the
table indicates, that the given number has the corresponding property. But the
attribute algebraic is many-valued: n ∈ IN indicates, that this number is algebraic
of degree n, i.e. it is a root of a polynomial over Q of degree n, n being minimal
with this property. If the given number is not algebraic, then we have an empty
cell in the row of this number and in the column of the attribute “a”.

Formal concept analysis ([4]) was inspired by the fact that we are thinking in
terms of concepts consisting of extent and intent. The extent is a set of objects
and the intent is the set of attributes, which all these objects do have (according
to the “logic of Port-Royal”, see [1]). We want to keep this orientation also for
many-valued contexts, but we want to avoid the transformation of many-valued
attributes into one-valued attributes.

For this purpose we quote Arnauld and Nicole, who write at the end of
chapter VI:

“I call the intent of the idea (=concept) the (set of) attributes, which
the idea comprises and which one cannot remove without destroying the
idea,...”

This was meant for one-valued attributes. The known strategy to handle a many-
valued context is, to scale it into a one-valued context (plain scaling) and to
analyse the latter one considering concepts via extent and intent.

We want to present here an alternative method. It certainly yields the same
results as plain scaling, but it gives a different (philosophically founded) inter-
pretation to the concept lattices. Thus strictly speaking, we should not consider
the present work as a “new strategy” or a “generalization” of formal concept
analysis, rather than as a new interpretation of an already known strategy.

2 Descriptions

Considering many-valued contexts, we have, of course, to generalize the definition
of concepts, and we should like to replace it by the following rough description
of what we intend to make more precise later on:

A concept is a set of objects, together with the most precise description
of them.
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To begin with, let us briefly describe, where the problems are. Consider, for
example, the attribute “red color”. It is by definition one-valued. An object
either has the attribute “red color”, or not.

But if you want to do knowledge discovery and data-mining within a data
base, you most often need to analyse attributes having several values. Instead
of saying, that an object has a red color, we can also say that the color of the
object is red. In the first case, we consider the one-valued attribute “red color”.
In the latter form, objects can have different values in the many-valued attribute
“color”: red, green, blue, etc. For data analysis, such many-valued attributes are
better applicable than one-valued attributes.

But what is a description? For example, we may describe a car in a way like
this: “It is a blue Ford Fiesta, 60-horsepower”. For computer representation, we
would reformulate this information: “color: blue; model: Ford Fiesta; horsepower:
60”. In this way, we could store objects of type car within a data base, using the
many-valued attributes color, model and horsepower.

If we want to describe a set of objects (for example the cars, we want to take
into consideration for our next buy), we could specify the set of allowed values for
each attribute. If we prefer, for example, the models VW Golf, or perhaps again
a Ford Fiesta, we assign to the attribute “model” the set {“VW Golf”, “Ford
Fiesta”}. If we state that our next car should have at least as many horsepowers
as the old one, we assign an open interval [60,∞) to the attribute “horsepower”.
If we do not have any preferences on the color, we assign the whole set of possible
colors to the attribute “color”. (Normally, we would not explicitly mention the
last aspect, as it is not really a restriction on the set of admissible cars.)

From the mathematical point of view, we assigned to each attribute the
set of values, which are allowed for the objects we want to describe. Thus, in
mathematical terms, we can define a description as a mapping from the set
of attributes to the power set of values. (This is not the only possibility for
describing objects, but the most simple one. If we need to consider relationships
between attributes, we need a more powerful description, using a suitable logic.
Work in this direction has been done in logical concept analysis, see [2], [3].)

With this idea of a description, we can specify, in which case an object g
fulfills a description d, or equivalently, d holds for g, iff the value of g in each
attribute m is contained in d(m).

We also know a natural order on the set of descriptions: preciseness. A de-
scription is more precise (greater), iff it applies to less objects, i.e it restricts the
values an object can have in some attribute.

Considering Empty Cells

The definition of descriptions so far would suffice, if each object would have in
every attribute some value. Unfortunately, data bases most often have missing
values. In the theory of formal concept analysis, they are called empty cells. In
formal terms, many-valued contexts may contain pairs (g,m) with

(g,m,w) 6∈ I, ∀w ∈W .
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Such empty cells can have different interpretations: It could be, for example,
that none of the values applies for the given object, or that the value is just not
known.

We could try to handle empty cells just like an additional value, equivalent
to the other ones. But this leads to unsatisfactory results. (In short, the effect
is comparable to the consideration of the dichotomic situation of one-valued
contexts, which is not wanted in every case. It would result in too many concepts.
See [5] for more information.)

Thus, we need to consider empty cells in a different way: If an object g has
no entry at attribute m (i.e. (g,m) is an empty cell), then a description should
only hold for g if it has no restrictions on the values at attribute m. Especially,
we need to distinguish between descriptions allowing all possible values at an
attribute m, and descriptions additionally allowing, that there is no value given
at all (i.e. allowing empty cells). The latter one is more general.

In order to handle this situation mathematically, we extend the power set of
values, P(W ), by adding a special maximal element ∞:

Ṗ(W ) := P(W )∪̇{∞} .

We extend the order on P(W ) given by inclusion to Ṗ(W ) by defining

A ≤ B, ∀A,B ∈ P(W ) with A ⊆ B, and
A <∞, ∀A ∈ P(W ) .

Furthermore, we regard each attribute m ∈M as a mapping from the

m : P(G) → Ṗ(W ),m(A) :=
{{m(g)|g ∈ A} if @ g ∈ A : (g,m) is empty cell,
∞ otherwise.

The notation m(A) is motivated by the fact, that one often regards an attribute
m as a (partial) mapping from G to W . Then, m(A) denotes the image of m on
the subset A ⊆ G. We extended this in order to handle empty cells. Furthermore,
we now identify m(g) with m({g}). This is possible, as for nonempty cells (g,m),
we can identify the element w := m(g) of W with the singleton {w} ∈ Ṗ(W ).
For empty cells (g,m), we have therewith m(g) = ∞.

Finally, we can give a mathematical definition for descriptions:

Definition 2. Let IK = (G,M,W, I) be a many-valued context. A formal de-
scription d in IK is a mapping d : M → Ṗ(W ) from the set M of attributes to
the extended power set Ṗ(W ) of values. D denotes the set of all descriptions in
IK:

D := Ṗ(W )M = {d : M → Ṗ(W )} .
This set is ordered by preciseness:

d1 ≤ d2 :⇐⇒ d1(m) ≥ d2(m), ∀m ∈M ,
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(where d1(m) ≥ d2(m) is defined with respect to the order in Ṗ(W ): either
d1(m) = ∞, or d1(m) 6= ∞, d2(m) 6= ∞ and d1(m) ⊇ d2(m)).
An object g ∈ G fulfills a description d, iff

m(g) ≤ d(m), ∀m ∈M .

(Again ≤ is meant with respect to the order in Ṗ(W )). A description d ∈ D
holds for a set of objects A ⊆ G, iff each object g ∈ A fulfills d.

One can show, that the set D together with the order of preciseness forms a
complete lattice. The supremum

∨
di of a family of descriptions di, i ∈ I is given

by the conjunction of the descriptions, and the infimum
∧
di is given by their

disjunction:
∨
di := m 7→

⋂
di(m) ,

∧
di := m 7→

⋃
di(m) .

(The used order is dual to the order normally taken when considering conjunction
and disjunction. This perhaps confusing definition is motivated by the fact, that
we are now able to introduce concepts like in standard formal concept analysis,
specifying a Galois connection.)

3 The Concept Lattice

Now having an idea of what a description is, we can introduce concepts as pairs
of extent and intent. Therefore, we associate with each set A ⊆ G of objects its
intent A′ ∈ D, the most precise description holding for each g ∈ A. Vice versa,
we associate with each description d ∈ D its extent d′ ⊆ G, the set of objects
fulfilling d:

A′ := M → Ṗ(W ),m 7→ m(A) ,
d′ := {g ∈ G | m(g) ≤ d(m), ∀m ∈M} .

The two mappings ϕ : A 7→ A′ and ψ : d 7→ d′ form a Galois connection
between the power set of G and the lattice D of all descriptions (see [5] for a
proof of this and the following results). Thus, we have a similar situation, as
with one-valued contexts, and we can introduce the concept lattice as usual.

Definition 3. Let IK = (G,M,W, I) be a many-valued context, and let D be the
set of descriptions in IK. A formal concept of the context IK is a pair (A, d),
with A ⊆ G, d ∈ D, A′ = d and d′ = A. We call A the extent and d the intent
of the concept (A, d). B(IK) denotes the set of all concepts of the context IK.

The set of concepts is ordered by extent (which is dual to the order given by in-
tent). In the case of (A1, d1) ≤ (A2, d2), we call (A1, d1) a subconcept of (A2, d2),
and (A2, d2) a superconcept of (A1, d1). Furthermore, B(IK) together with this
order forms a complete lattice:
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Theorem 1. B(IK) is a complete lattice. Infimum und supremum for a subset
of concepts {(Ai, di) | i ∈ I} ⊆ B(IK) (with an arbitrary set of indices I) is given
by ∧

(Ai, di) = (
⋂
Ai, (

⋂
Ai)′) = (

⋂
Ai, (

∨
di)′′) ,∨

(Ai, di) = ((
∧
di)′,

∧
di) = ((

⋃
Ai)′′,

∧
di) .

Labelling the Concept Lattice

A concept lattice usually is visualized using line diagrams, labelled in a way
allowing to identify the context with the concept lattice. In the following, we
develop a suitable labelling of concept lattices for many-valued contexts.

The labelling with objects can be done in the same way, as with one-valued
contexts: We write each object below the smallest concept, containing that ob-
ject. Thus, we receive the extent of a concept as the union of all objects standing
below a concept less than or equal to the given one.

In order to be able to label the concept lattice with descriptions in a clear way,
we need to introduce a special subset of descriptions, let us call them singular
descriptions. This set shall be large enough to represent each (other) description
as a conjunction of singular ones. Thus, we call a description singular, iff

1. it has no restrictions on any attribute except for one attribute m ∈M , and
2. for this attribute m, the only restriction is either, that it must have some

value (i.e. it disallows empty cells), or that it must have a value unequal to
w ∈W (also forbidding empty cells).

We give to these singular descriptions intuitive names: We call a description
having no restrictions except that one attribute m ∈ M must not be an empty
cell, just like the attribute: m. One has to be a little bit careful with this nomen-
clature, as now m can stand for an attribute as well as for a description. But
it should always be clear from the context, what was meant. Furthermore, if a
description has no restrictions on attributes 6= m, but that m must neither be
an empty cell, nor equal to the value w, we call that restriction m 6=w.

m : M → Ṗ(W ), m(n) :=
{
W if n = m ,
∞ else.

m6=w : M → Ṗ(W ), m 6=w(n) :=
{
W \ {w} if n = m ,
∞ else.

The set of all singular descriptions {m | m ∈M} ∪ {m6=w | m ∈M,w ∈ W}
forms a ∨-dense subset of D, that means, we can represent each description as
conjunction of singular descriptions.

Using this, we can label the concept graph with descriptions, too: We write
the singular descriptions above the greatest concept they appear in. Then we can
get the intent of a concept as conjunction of all singular descriptions standing
above a concept greater or equal to the given one.

The concept lattice of the many-valued context for real numbers from Ex-
ample 1 can be seen in Fig. 1.
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i

π
t

a6=2a6=3

2 3√2
√

2

a6=1

a

Fig. 1. The concept lattice of the context for real numbers

4 Preselection of Descriptions

An analysis of the concept lattice of the example above shows, that it contains
some concepts, we are hardly interested in. For example, the context labeled by
the description a 6=2 contains all algebraic numbers of degree 1 or of degree ≥ 3.
Normally, we are only interested in concepts whose intent restricts the algebraic
degree to some interval.

This effect gets worse, if we consider bigger many-valued contexts. Various
unreasonable concepts would arise and make the concept lattice unnecessary
complex.

The problem is, that our set D of descriptions in IK can contain descriptions
assigning attributes to abnormal sets of allowed values without any reasonable
interpretation. Having such undesired descriptions, we may also get concepts
using them.

But it is known from lattice theory, that we can restrict the derivation oper-
ators to a

∨
-subsemilattice D̄ ⊆ D of the set of descriptions simply by defining

the intent of a set A ⊆ G of objects as the most precise description in D̄ (instead
of the most precise one in D), whereas the definition of the extent remains the
same. This way, we obtain another set of concepts, having only intents from D̄.
These concepts form a

∧
-subsemilattice of the original concept lattice.

Thus we just need to specify an arbitrary subset D̃ ⊆ D, say, a preselection of
descriptions of interest. Then we define D̄ as the closure of D̃ under conjunction:

D̄ := {
∨
B | B ⊆ D̃} .

This way, we can influence the amount of descriptions taken into consideration
as intent for concepts. We can exclude a lot of unreasonable concepts, and we can
do problem oriented analysis into specific aspects of a many-valued context. We
call the resulting subsemilattice of concepts a scaled concept lattice with respect
to the preselection D̃.
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We label a scaled concept lattice with the preselected descriptions d ∈ D̃.
As these are ∨-dense in D̄, and as each intent in the scaled concept lattice is
contained in D̄, this labelling is sufficient. We still receive the intent of each
concept as the conjunction of preselected descriptions standing above concepts
greater than or equal to the considered one.

In order to have intuitive labellings in the scaled concept lattice, we define
some standard descriptions usable in preselections. For most purposes, it will
suffice to consider within preselections only description restricting one attribute
m ∈M , i.e. assigning ∞ to all other attributes.

The easiest kind of such descriptions are nominal descriptions, allowing for
m only one value w ∈W :

m=w : M → Ṗ(W ),m=w(n) :=
{{w} if n = m ,
∞ else.

Furthermore, if an attribute has ordinal values, we can consider ordinal descrip-
tions, allowing open intervals for the attribute m:

m≤w : M → Ṗ(W ), m≤w(n) :=
{

(−∞, w] if n = m ,
∞ else.

m≥w : M → Ṗ(W ), m≥w(n) :=
{

[w,∞) if n = m ,
∞ else.

In the same way, one could define further kinds of standard descriptions if nec-
essary.

3√2

t

√
2

2

a i

a=2 π
a≤1

a≤2

a, a≤3

π
t

i

3√2

√
22

a=1

a=3

Fig. 2. Two scaled concept lattices of the context for real numbers. The embedding
into the total concept lattice is indicated by the small pictures

Reconsider Example 1: Figure 2 shows two possibilities of scaled concept
lattices. In the first one, we allowed only nominal descriptions for the attribute
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algebraic, i.e. we used the preselection D̃1 = {i, a, t, a=1, a=2, a=3}. The second
concept lattice results, if we allow only ordinal descriptions of the type a≤w, i.e.
we used D̃2 := {i, a, t, a≤1, a≤2, a≤3}.
Both scaled concept lattices can be embedded into the original one. This is
indicated in Fig. 2 by the small pictures beside the concept lattices. As one can
recognize, this embedding is infimum-preserving: the infimum of two full nodes
is full, again.
Both scaled concept lattices contain less concepts as the original one, and so
they are less complex. But they emphasize different aspects of the context.

5 Implications

In order to analyse relationships between attributes of a formal context, we
introduce implications between descriptions. Given a many-valued context IK =
(G,M,W, I), an implication a→ b between two descriptions a, b ∈ D holds in
IK, iff each object g ∈ G, which fulfills description a, also fulfills description b.
More formally, we define:

Definition 4. Let IK = (G,M,W, I) be a many-valued context, and let D =
Ṗ(W )M be the set of all descriptions within IK. Furthermore, let a, b ∈ D be
descriptions.
A description d ∈ D respects the implication a→b, if a 6≤ d or b ≤ d. d respects
a set L of implications if d respects every single implication in L. a→ b holds
in a set {d1, d2, . . .} of descriptions if each of the descriptions di respects the
implication a→b. a→b holds in the context IK if it holds in the system of object
intents. In this case, we also say, that a→b is an implication of the context IK
or, equivalently, that within the context IK, a is a premise of b.

We defined an equivalent structure to implications between attributes in one-
valued contexts. The known algorithms and further definitions like the stem
base can be translated in a straightforward way to many-valued contexts and
implications between descriptions, as shown in [5].

We can represent descriptions as conjunctions of singular or preselected ones.
Thus we specify a description d just by listing all singular/preselected descrip-
tions smaller than d.

As an implication a→ b is always equivalent to a→ a ∨ b, we don’t need to
repeat on the right hand side singular/preselected descriptions already standing
on the left hand side of an implication. Thus, we can represent an implication
a → b in a reduced way, listing on the left hand side all singular/preselected
descriptions smaller than a, and on the right hand side all additional ones smaller
than b.

Example 2. Reconsider Example 1 for real numbers. The stem base is:

t → i
a6=1 → i
i, a → a6=1

i, a6=1, t →M
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As already known, we can consider specific aspects of the concept lattice
using a preselection. Then, we also get a different stem base. Below we show
the stem bases resulting from the two preselections using nominal or ordinal
descriptions for the attribute algebraic, as already considered above (Example
4):

t → i
a=3 → i
a=2 → i

i, a, t →M
i, a=1 →M

t → i
a → a≤3

i, a≤3, t →M
i, a≤1 →M

Using implications on descriptions, we can apply attribute exploration directly
on many-valued contexts.

6 Relationship to One-valued Contexts

It is well known, that one can generate one-valued contexts out of many-valued
ones using scales. What is the relationship between these scaled contexts and
the approach on many-valued contexts given in this paper?

First, we can specify for each many-valued context IK = (G,M,W, I) a one-
valued context IK′ = (G′,M ′, I ′) having an isomorphic concept lattice: Just take
the set of objects, G′ := G, as set of attributes M ′ take the singular descriptions,
and let (g, d) be in I ′ iff g fulfills d. If you want to use a preselection D̃, you get
a one-valued context with isomorphic concept lattice by taking the preselected
descriptions as M ′ instead of the singular ones.

A closer look at these one-valued contexts associated with preselections shows,
that one can interpret each plain scaling as a preselection. As a consequence, we
can interpret plain scaling as a subcontext of the many-valued context, having
as concept lattice an

∧
-subsemilattice of the many-valued concept lattice.

On the other hand, preselections can be understood as scaling, thus it pro-
vides no better analysis results.

This approach can be seen as a natural extension of one-valued contexts from
another point of view, too: If we interpret a one-valued context IK = (G,M, I)
as a many-valued one with exactly one value “×”: IK′ := (G,M, {×}, I ′) with

(g,m,×) ∈ I ′ ⇔ (g,m) ∈ I ,

then the concept lattices of IK and of IK′ are isomorphic.
This can be seen as follows: Considering singular descriptions in IK′, the only

nontrivial ones are of the form m,m ∈M , as the descriptions of the form m6=×
do not hold for any object g ∈ G. (If an object g has a value in attribute m, i.e.
(g,m) is no empty cell, it must have the only value ×.) Thus, as we have seen
above, IK′ is isomorphic to the one-valued context IK′′ = (G, {m,m ∈ M}, I ′′)
with

(g,m) ∈ I ′′ ⇐⇒ g fulfills m⇐⇒ (g,m,×) ∈ I ′ ⇐⇒ (g,m) ∈ I .
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Thus I ′′ is equivalent to I, and IK′′ equivalent to IK.
Another point worth to consider is the comparison between implications on

descriptions and implications on one-valued attributes, i.e. scaling a one valued
context and considering implications within the scaled context. The second strat-
egy may lead to trivial implications representing relationships between different
states of one many-valued attribute.

Within our example for real numbers, the stem base of a scaled context
using the ordinal scale for attribute algebraic needs to express implications like
a≤2→ a≤3. Using descriptions, we do not need to express such implications, as
we know the order on descriptions, which means that we know some implicit
background information.

There exists some approach ([8]) considering background information for im-
plications on attributes. Using this, one should obtain similar stem bases with
both strategies. But it remains to do some research on this aspect.

7 Conclusion

We have introduced a theory of many-valued concept analysis using descriptions.
This provides a different way to analyse concepts within many-valued contexts,
besides the possibility of scaling them and analysing the resulting one-valued
context. Thanks to the possibility of preselecting specific descriptions, the new
strategy remains as flexible as scaling, and it turns out, that it is possible to get
equivalent results with both strategies.

One advantage of using descriptions is that we avoid generating huge one-
valued contexts. Furthermore, we are able to consider implications on descrip-
tions, and therefore may apply strategies like attribute exploration directly on
many-valued contexts.
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