LATTICE CONTEXTS — A GENERALIZATION IN FORMAL
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RALF GUGISCH

ABSTRACT. We generalize formal contexts to lattice contexts using a galois
connection between two lattices. The galois connection defines derivation op-
erators, yielding the concept lattice. The connection to the classical one-valued
contexts is revealed. In particular, a method is presented to obtain a one-valued
context with isomorphic concept lattice.

As an application, we define fuzzy contexts as well as many-valued contexts
as subclasses of lattice contexts. In particular, for many-valued contexts, this
construction allows to define derivation operators directly on the context (i.e.
without using scales).

1. INTRODUCTION

The original definition of formal contexts (also known as one-valued contexts), on
which the formal concept analysis is founded according to [GaWi99], is only partly
applicable to real world problems. This led to several extensions, like the many-
valued contexts ([GaWi99, ch.1.3]), triadic contexts ([LeWi95]), fuzzy contexts and
fuzzy-valued contexts ([Um94]).

The strategies to handle these extensions were two folded: On one hand, one tried to
find one-valued contexts corresponding to the generalization in question, like using
scales in the case of many-valued contexts. On the other hand, one introduced
equivalent structures (derivation operators, concept lattice, ...) directly, as in the
case of fuzzy contexts. But the solutions found were always specific for only one
extension, either for the many-valued contexts, or for the fuzzy contexts.

The intent of this article is to provide one general structure, the lattice context,
which contains each of the above mentioned extension as a special subclass. Even
the one-valued context itself — in this article henceforth termed classical context —
is just a special case of this lattice context.

This general definition of a context will provide derivation operators, yielding a
concept lattice. Furthermore, we will study the relation between lattice contexts
and classical contexts. In particular, for each lattice context, we will give a classical
context having an isomorphic concept lattice.

Using proper subclasses of lattice contexts, one can introduce other extensions of
formal contexts. We will clarify this strategy with fuzzy contexts and many-valued
contexts: Both can be defined as special lattice contexts. (Therewith, we specify in
particular a derivation operator for many-valued contexts.)

This article presents part of the results of the diplomarbeit [Gu97]. Especially the
applications of the lattice context to fuzzy contexts and to many-valued contexts
are described there in more detail.
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2. GENERALIZED CONTEXTS

Definition 2.1. A tripel K = (X, Y, ¢) is called generalized contezt, or order con-
text, iff (X, <) and (Y, <) are ordered sets, and the mapping ¢: X — Y has a dual
adjoint pd: Y — X, ie. (p,9%) is a galois connection. Further, K is called lattice
context, iff X and Y are complete lattices and K is called power set context, iff
X =PB(G) and Y =‘P(M) are power sets.

We call 2’ := o(z) the derivation of z € X and y' := ¢%(y) the derivation of y € Y.

Lemma 2.2. In the generalized context K = (X,Y, ) with z,z1,z2 € X and
Y,Y1,Y2 €Y, the following holds:

(1) &1 <zy =2y <) oy <ge=y, <y
(2) z<z" 2.y <y’
(3) wl — $/Il 3,' yl — y/II
@) z<yey<az
Proof. These are basic properties of galois connections. ([

In a generalized context, we can define formal concepts as follows:

Definition 2.3. Let K = (X,Y, ) be a generalized context. A pair of elements
(z,y) € X XY is called concept of K, iff 2’ = y and y' = z. Here, z is the extent
and y the intent of the concept (z,y). B(K) denotes the set of all concepts of the
context K.

Lemma 2.2 implies, that B(K) = {(z",2')|z € X} = {(¢/,¥")|ly € Y} C ¢4(Y) x
©(X). So we have natural isomorphisms (z,y) — z and (z,y) — y from B(K) to
©4(Y) and to ¢(X), respectively.

As a consequence, we can define an order on B(K) via
(21, 41) < (22,92) & 21 S22 (& Y1 > 42).

In particular, the mapping (z,y) — z defines an isomorphism between the ordered
sets B(K) and ¢4 (Y), as well as (z,y) — y defines an antiisomorphism between the
ordered sets B(K) and ¢(X).

In the case of (z1,y1) < (22, y2), we call (x1,y1) a subconcept of (z2,y2), and (z2,y2)
a superconcept of (z1,y1).

Example 2.4. The (classical) formal context according to [GaWi99] is defined as a
tripel K = (G, M, I) with two sets G and M and an incidence relation I C G x M.
The derivations for subsets A € B(G) and B € P(M) are given as

A" := {m € M|(g,m) € I, Vg € A},
B' := {g € G|(g,m) € I, Vm € B}.

These derivation operators define a galois connection between the power sets of G
and M:

¢: P(G) > P(M), A A,
%: P(M) - B(G), B~ B
Hence, we can view K as the power set context (PB(G), B(M), ¢).

Vice versa, we can identify every power set context K = (B(G), B(M), ) with a
classical context (G, M, I) with

ICGxM,(g,m)el:=mep({g}).

Thus, the classical contexts are exactly the power set contexts.
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In order to have some classification of contexts, we need an idea of isomorphy on
contexts. We call two contexts isomorphic iff their sets of concepts are isomorphic:

Definition 2.5. Let K; = (X;,Y;, ¢;) (¢ = 1,2) be two generalized contexts. Then
K; is isomorphic to Ky, in short K; = Ky, iff their exists an order isomorphism
between the ordered sets B(K;) and B(Ks).

From now on, we restrict ourself to lattice contexts, i.e. contexts (X,Y, ¢), where X
and Y are complete lattices. As these contexts have rich structure, we can develop
further propositions.

Lemma 2.6. If K= (X,Y, ) is a lattice context, then for AC X and B CY, the
derivations of the suprema are as follows:

(VA) = N='|z € A},
(VB) = N{y'ly € B}.

Proof. This, too, is a well known property of galois connections. (]

Having this result, we can generalize the first part of the basic theorem on concept
lattices (|[GaWi99, Theorem 3, p. 20]):

Theorem 2.7. Let K = (X,Y, ) be a lattice concept. Then B(K) is a complete
lattice. Infimum und supremum for a subset of concepts {(z;,y:)|i € I} C B(K)
(with an arbitrary set of indices I) is given via:

Nzi,yi) = (Azi, (Azi)') = (Azi, (Vy:)") s
V(zi,yi) = (Av)s Awvi) = (V)" Awi) -

Proof. B(K) is isomorphic to ¢%(Y"), which is, by a well known property of galois
connections on complete lattices, a complete lattice. The given representations of
infimum and supremum follow from Lemma 2.6. a

3. INCIDENCE RELATIONS

The success of classical concept analysis is attributed to a large amount to the
fact, that it is not necessary to store the incidence information for every element
of the power sets P(G) and P(M). It is solely necessary to store information for
the singletons (which can be identified with the elements ¢ € G and m € M,
respectively). There exists an efficient algorithm to decide, if an element A € P(G)
stands in relation with an element B € PB(M): Just test if (9,m) € [ forallge A
and for all m € B.

Our next question is, how we can generalize this idea of storing only as little infor-
mation as necessary without loosing any information. We will do this by considering
supremum-dense subsets of a lattice X. A set G C X is supremum-dense in X, iff
one can represent each element z € X as a supremum of elements of G:

‘v’a:eX:a::v{gEG|g§z}.

In most cases relevant to practice, we will have a nice supremum-dense subset,
namely the set IV(X) of all V-irreducible elements of X. (An element z € X is
called V-irreducible, iff it cannot be represented as a supremum of strictly smaller
elements.) If IV(X) is supremum-dense, it is the best possible supremum-dense
subset of X in the sense, that it is the smallest one with this property. For example,
if X is finite, then I'V(X) is always supremum-dense.

In power sets P(G), for example, we can represent each element (i.e. each subset
of G) as a union of singletons (which are isomorphic to the elements of G). The
singletons in turn are exactly the V-irreducible elements of the power set. We
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FIGURE 3.1. Ilustration of the arrow operators
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specify a classical context, by giving a relation between the elements of G and M,
i.e. between the V-irreducible elements of PB(G) and P(M).

In the case of a lattice context (X,Y, ¢), we will show, that it is sufficient, to store
the incidence information between two supremum-dense subsets G C X and M C Y.
Thus, every lattice context (X,Y, ¢) can be represented as a relation I C G x M.

Hence, within this section, we will always consider two complete lattices X and Y,
having supremum-dense subsets G C X respective M C Y.

For a relation I C G x M, we introduce two operators 7: G —Y and *: M — X
(see also Figure 3.1):

g7 = \/{m e M|(g,m) € I},
m< = \/{g € G|(g,m) € I}.

Using these arrow operators, we define a special class of relations on G x M:

Definition 3.1. Let X and Y be complete lattices, and let G C X and M C Y
be supremum-dense subsets. The relation I C G x M is called incidence relation
(between X and Y, resp. G and M), iff for all g € G and m € M the following
conditions are satisfied:

m<g” = (9,m)€l,
g<m* = (g,m) €l

Example 3.2.

(1) Figure 3.2 shows two lattices X and Y with supremum-dense subsets G =
{1,2,3} of X and M = {a,b,c} of Y, as well as an incidence relation I and
a further relation J between G and M. J is not an incidence relation, as
we have: b <c¢=27, but (2,b) ¢ J.

(2) If X = P(G) and Y = P(M) are power sets, then every relation I C
IV(P(G)) x IV(P(M)) = G x M is an incidence relation between PB(G) and
PB(M) (in the sense of Definition 3.1), as for example, {g} C {m}* ={g €

G|({g},{m}) € I} implies, that ({g},{m}) € I.
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There is a close connection between incidence relations and galois functions: We will
show, that the incidence relations between X and Y (resp. arbitrary supremum-
dense sets G and M) describe exactly the galois functions between X and Y.

Lemma 3.3. If I is an incidence relation, then we know about the arrow operators
7:G—oYand“: M- X:
(1) For all g € G and all m € M we have:
m<g” g<m*.

(2) The arrow operators are antitone.

Proof.
1. For the incidence relation I are equivalent:
m<g’ & (g,m) €I, aswellas
g<m* & (g,m) el
(“«<=” follows from the definition of the arrow operators, and “=" are the demanded

properties of incidence relations.)
2. If g1,92 € G with g; < ga, then, for every m € M:

m<gy =g <m" =g <m" =>m<g.
Therewith, and with the supremum-density of M, it follows for arbitrary y € Y:
y<gy = m<gy,¥m<y
= m<g,Vm<y
= y=\/{meMm <y} <g’

Thus, g7 > g5°- It follows, that — is antitone. Analoguously we can show, that <
is antitone, too. (Il

Thus, in the case of incidence relations, the arrow operators have similar properties
as a galois connection. The difference is, that the domains of the arrow operators
are the sets G and M instead of the whole lattices X and Y.

We will now specify a bijection between the set of all galois functions from X to Y,
and the set of all incidence relations between X and Y resp. G and M.
Definition 3.4. Let X, Y, G and M be as in 3.1.

(1) f p: X — Y is a galois function, we call IRg m(¢) C G x M, defined by

(ga m) € IRG,M(SO) = m < Qa(g)a

the incidence relation corresponding to ¢ (resp. G and M).
(2) If I C G x M is an incidence relation, we call GFx y(I): X — Y, defined
by

GFx,y(I)(z) = \{9”lg € G,g <z},
the galois function corresponding to I (between X and Y).
Lemma 3.5. Let X, Y, G and M be as in 3.1.
(1) If ¢ : X = Y s a galois function, then I := IRg m(p) is an incidence
relation, and for all g € G and m € M, we have:

—

g v(9),

m* = ¢%(m).
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(2) If I C G x M is an incidence relation, then ¢ := GFx y(I) is a galois
function, and for all g € G and m € M, we have:
o(9) =97,
pl(m) = m*.

Proof.
1. Let ¢ be a galois connection and I := IRg, m(¢). Because of the supremum-
density of G and M, and because of 2.2(4) (needed for the second equation), we
have:

9”7 = V{m € Mlm < ¢(9)} = ¢(g),
m* = V{g € GIm < ¢(9)} = V{g € Glg < ¢p?(m)} = ¢*(m).
Hence, we can show, that I fulfills the conditions of incidence relations:
m<g” = m < p(g) = (g,m) € I.
g<m” = g<¢i(m)=m<p(g) = (9,m) €l

2. Vice versa, let I C G x M be an incidence relation, and let ¢ := GFx y(I). We
will show, that ¢ has the dual adjoint :

Py /\{m‘_|m€ M, m < y}.

For all z € X and y €Y, the following equations are equivalent (Again, we use the
supremum-density of G and M, and Lemma 3.3(1)):

z < Y(y),

\/{geG|g§w} < /\{m‘_|m€M,m§y},
g < m* VgeG:9g<z,VYme M :m <y,
m < g~ VgeG:g<z,VYmeM:m<y,
V{meMm<y} < N\{g7lgeG:g<a},
y < p().

Thus, (¢,) is a galois connection. Additionally, because of the antitony of ~ and
¢ (Lemma 3.3(2)), we see, that for all g € G:

elg)= MNg’lgeG,g<g}t =g,
Y(m) = AN{m*<|m € M, <m} =m*.

As summary of this chapter, we formulate the following theorem:

Theorem 3.6. Let X, Y, G and M be as in 3.1. Then IRg,m and GFxy are
inverse bijections between the set of all galois functions from X to Y, and the set
of all incidence relations between X and Y resp. G and M.

Proof.
1. Let ¢: X — Y be a galois function, and I := IRg,m(p). Considering GFx v (I),
we can show for each =z € X:

GFxy(I)(z) = /\{g”|g €G,g<z}
= Ne(9)lg € G,g <z}

¢(\/{g € Glg < =})
= 30(117),
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using Lemma 3.5, Lemma 2.6, and the supremum density of G.
2. Let I C G x M be an incidence relation and ¢ := GFx y(I). Then, we can
specify IRg,m(p) by:

(g,m) €eIRg,m(p) © m<p(g) & m<g~ & (g,m) €l

Altogether, we have shown, that IR¢ »r and GF x y are inverse bijections. O

As a consequence, we can represent each galois function ¢ between complete lattices
X and Y — and herewith each lattice context (X,Y, ) — by a cross table, like it is
common for classical contexts. As rows, we take a (preferably small) supremum-
dense subset G C X, and as columns a supremum-dense subset M C Y. We enter a
cross into the cell (g, m), iff m < ¢(g). Then, we can retrieve the derivations from
this cross table: ' = A{g7|g < z} and ¥’ = A{m*“|m < y}.

The close connection between the power set context K = (B(G), B(M), ¢) and the
classical context (G, M,IRg m(yp)) was already shown in Example 2.4. (It is not
difficult to see, that the relation specified there is equal to IRg m(p), and that the
operators — and ¢ describe the classical derivation operators.) It follows, that the
concept lattices of the power set context and the classical context are isomorphic.

Thus, what we have done in this section is, that we have generalized the former
considerations, which applied only to power set contexts, to more general lattice
contexts: Now, we can associate to each lattice context (X,Y, ¢) a classical context
(G, M,IR¢ m(p)), whereas G C X and M C Y are supremum-dense subsets.

4. INCIDENCE-ISOMORPHIC CONTEXTS

We could now assume, that the concept lattices of a lattice context and of the
associated classical context are isomorphic — as it is the case for power set contexts.
We will prove this assumption within this section by considering a certain relation
between lattice contexts based on IRg 3 (¢): the incidence-isomorphy. In order to
do this, we first introduce isomorphisms between incidence relations:

Definition 4.1. For : = 1,2 let X; and Y; be complete lattices, G; C X;, M; CY;
respectively supremum-dense subsets, and I; C G; X M; incidence relations. Then,
I, and I, are called isomorphic, in short I; = I, iff there exist two bijections
vx : G1 = G2 and vy : M7 — M> such, that

(ga m) eh & (7X(g)a7Y(m)) € I.
In this case, v := (yx,7y) is called incidence-isomorphism.

Example 4.2. Let X and Y be complete lattices, G C X and M C Y supremum-
dense, and I C G x M an incidence relation. Consider the power set lattices P(G)
and P(M), and the incidence relation I, C IV(P(G)) x IV(P(M)) between the
singletons of G and M, with

({g},{m}) € I, :& (g,m) € I.

Then, both incidence relations I and I, are isomorphic. The two bijections are
given by v, : g — {g} and v, : m — {m}.

Using the isomorphy between incidence relations, we introduce incidence-isomorphy
between lattice contexts:

Definition 4.3. Let K; = (X1,Y1,¢1) and Ky = (X3, Y2, 2) be lattice contexts.
Then K; and Ko are called incidence-isomorphic, iff there exist supremum-dense
subsets G; C X; and M; C Y; (i = 1,2), such that the incidence relations corre-
sponding to ; are isomorphic, i.e. iff

IRGl,Ml (()01) = IRGz,Mz ((P2)
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FIGURE 4.1. The lattices X; and X, are incidence-isomorphic, as
well as X5 and X3, but X; and X3 are not.

Using the corresponding incidence-isomorphism v = (yx, vy ), we then define two
new functions pux : X7 — Xo and py : Y7 — Y5 as follows:

px (@) = \/{x(9)lg € G1,9 < z},

py(y) == \{rv(m)lm € Mi,m <y}.

We call p:= (pux, py) the concept isomorphism between K; and K.
Warning 4.4.

(1) There may exist elements g, h € G; with g > h, but yx(g) ? vx(h). Then
ux(9) > vx(9) Vyx(h) > vx(g)- So, we then have in particular an element
g9 € Gy with: px(g) # vx(9)-

(2) Incidence-isomorphy is not transitive:
Consider for example the lattices X1, X2 and X3 in Figure 4.1, together
with a convenient complete lattice Y, a supremum-dense subset M C Y
and convenient galois functions ¢; (i = 1,2,3). We therewith have three
lattice contexts K; := (X;,Y, ;).
There are isomorphic, supremum dense subsets G; := {a;} C X; and
G2 := {b2} C Xs, thus the two lattice contexts K; and K, are incidence-
isomorphic, if for all m € M holds: m < ¢;i(a1) & m < @a(b2). Further-
more, there are isomorphic supremum-dense subsets G} := {az,b2} C X>
and G5 := {bs,cs} C X3. Thus K, and K3 are incidence-isomorphic, too,
if for all m € M holds: m < pa(az) <& m < p3(bs) and m < pa(by) & m <
¢3(cs3). But K; and K3 can’t be incidence-isomorphic, as there does not
exist any supremum-dense subset of X3, which is isomorphic to a supremum-
dense subset of X.

We still need to show, that the concept isomorphism p is really an isomorphism
between the concept lattices B(K;) and B(K;3) of two lattice contexts.

As we will need the following inequalities several times, we formulate them in a
separate lemma;:

Lemma 4.5. Let K; = (X1,Y1,¢1) and Ko = (X3, Y2, ¢2) be incidence-isomorphic
lattice contexts. Let further be v = (vx,vy) the incidence-isomorphism between
the corresponding incidence relations IRg, (1) and IRg, a,(p2), as well as
u = (px,py) the corresponding concept isomorphism.

Then for all g € Gy, m € My and for all x € X1, y € Y1 we have:

)
m

Yy & vx(9) < py(y)
' & yy(m) < px(z)

INIA

Proof.

1. For all g € G; and m € M; holds g < m' & vx(g) < vy(m)":

g < m' is equivalent to (g,m) € IR@, a (K1) and thus, because of the defini-
tion of the incidence-isomorphism ~, it is in turn equivalent to (yx(g),vy(m)) €
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IRg,,m, (K2), thus to vx(g) < yy(m)'.
2. For all g € Gy and y € Y; are equivalent:

gy

9 < (\/{m e Mijm < y})

9 < N{m'Im € My, m <y}

g<m VYm € M; mit m <y
vx(9) < vy (m)' VYm € M; mit m<y
1x(9) < Nw(m)'|m € My,m <y}
vx(9) < (\{rv(m)lm € My, m < y})

vx(9) < py(y)
One can show the second inequation analoguously. (I

Theorem 4.6. Let K; = (X;,Y:,9:), Gi, M; (i = 1,2), as well as v and p like
in 4.5. Then the derivation operators of the contexts are compatible with u, i.e. for
z € Xy and y € Yq holds:

px(z) = py(z')
py (y) = px(y')

Proof. We consider px(z)":

Because of the supremum-density of M, this is equal to \/{ms € My|ms < px(z)'}.
As vy : My — Ms is bijective, there exists to each ms € M> exactly one m € M;
with vy (m) = mg. Further, we have, according to 4.5, yv(m) < ux(z)' © m < z'.
Altogether, we thus have: px(z) = \/{yyr(m)|m € M1,m < z'} = py(z'). O

Corollary 4.7. p: X1 x Y7 — X3 X Yy maps concepts onto concepts.

Proof. Let (z,y) € B(K;) be a concept. Then ' = y and y' = z. Thus for
w(z,y) = (px (), py(y)) holds: px(z)" = py(z') = py(y) and py (y)’ = px(y') =
px (). O
Theorem 4.8. Let K; = (X;,Y:,9:), Gi, M; (i = 1,2), as well as v and p like
in 4.5. Then p is an order-isomorphism between B(K1) and B(K2), and so the
contexts K1 and Ko are isomorphic.

Proof.
1. First, we show, that for z1,zs € p%(Y1) C X; holds

z1 < 29 & px(z1) < px(z2) :

z; can be represented as \/{g € Gi|g < z1}, and for z5 holds: z§ = z5. Thus,
z; < x5 is equivalent to g < 2 for all g € G; with g < z;. Here, we can apply 4.5,
determining yx(g) < py(z4)" for the same g’s. Forming the supremum on the left
sides, as well as 4.6 leads to px(z1) < py(zh) = px(z§) = px(z2). The steps of
this proof are reversible, and so the equivalence holds.

2. The bijectivity of pux : ¢%(Y1) — ¢%(Y2) follows from the symmetry of the
definition:

If K; 2 Ky, then as well Ky & K;, thus we have besides ux : X; — Xs a further
function vx : X9 — Xy:

vx (@) := \/{1x'(9)lg € Mz, g < z}.

According to 4.7, ux(p¢(Y1)) C ¢4(Ys) and vx(p2(Y2)) C ¢%(Y1). We show for
z € pd(Y1), that vx(ux(z)) = z:

At first, for every extent z € ¢%(Y;) of a concept holds z”/ = z. Thus, vx(ux(z)) =
vx(px(2")) = vx(py(z')') because of 4.6. According to the definition of vy, the
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latter is equal to \/{yx (9)lg € G2,9 < py (')} = V{g € G1lvx(9) < uy(z')'}. If
we apply 4.5 to the terms of this set (vx(g) < py(2') < g < z" = z), then we get
vx(px(z)) = V{g € Gilg <z} ==.

Because of symmetry, pux (vx(z)) =z for z € p3(Y3), as well.

3. Due to (1) and (2), px : ¢¢(Y1) — ¢%(Y2) is an order-isomorphism. Further-
more, we have order-isomorphisms B(K;) — ¢¢(Y1),(z,y) — = and ¢$(Y2) —
B(Kz),z — (z,z'). Thus, if the following diagram commutates, then p = (ux, py) :
B(Kp) = B(Ke), (z,y) = (ux(z), #y(y)) is an order-isomorphismus, too:

B(Ky) (z,y)—~p(z,y) B(Ks)
(%y)'—ml Tm—)(z,z’)
piY1) ——— ¢5(Ys)

z—rpx ()

But this commutes because of 4.6:
(kx(z), px(2)) = (ux (2), py (2) = (ux (2), py (y)) = u(z,y). O

A direct consequence of this theorem is, that the information, needed for the concept
lattice, is totally contained in the incidence relation IR a(¢). In particular, if we
have a relation I C G X M, which is incidence relation both, between the lattices
X1 D G and Y; O M, as well as between the lattices Xo O G and Y5 O M, then
the lattice contexts (X1,Y1, GFx, v, (I)) and (X3,Y2 GFx, y,(I)) are isomorphic.
Corollary 4.9. Let K = (X, Y, ¢) be a lattice context, and let GC X and M CY
be respectively supremum-dense. Then, K is isomorph to the classical context

K, := (G, M,IRg,m(¢))
= (B(G), B(M), GFy(q), ) (IRa,m(p))-

Thus, we can use the algorithms already invented for classical contexts, in order to
generate a concept lattice for a lattice context.

In the remainder of this article, we will display two examples, where we will apply
this generalization of the classical context in order to understand two already known
special cases of formal contexts: The fuzzy context and the multi-valued context.
We will see, that one can consider these two types of contexts as special cases of
the lattice context.

5. APPLICATIONS

5.1. Fuzzy contexts.

One possible generalization of contexts are fuzzy contexts, which were introduced in
[Um94]. Because of lack of space, we can’t introduce the underlying theory of fuzzy
sets here. We will just briefly show in short, that lattice concepts are a natural and
useful basic structure for defining fuzzy contexts. In [Gu97| this aspect is worked
out in more detail.

In order to be able to define fuzzy contexts, we need the L-fuzzy algebra, a mathe-
matical structure invented in [We78|. Having a L-fuzzy algebra L, one can introduce
L-fuzzy power sets P, (M) over some universe M. Such L-fuzzy power sets together
with some proper definition of an inclusion operator build complete lattices. Ad-
ditionally, one can introduce (binary) L-fuzzy relations (between two crisp sets G
and M), which are nothing else than L-fuzzy subsets of G x M.

Then, the L-fuzzy context is defined as a triple (G, M, R), consisting of the sets
G (of objects) and M (of attributes), as well as of an L-fuzzy relation R between
G and M. As derivation operators, a galois connection (g, 1)) between the L-fuzzy
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power sets of G and M is introduced, associating each L-fuzzy subset of G with an
L-fuzzy subset of M, and vice versa.

Comparing this definition with our inventions in this article, we can easily see, that
we have two complete lattices 1, (G) and Pr (M) together with a galois connection
in between — and thus a lattice context:

Definition 5.1. Given an L-fuzzy algebra L, two sets G (of objects) and M (of
attributes), and an L-fuzzy relation R between G and L, a fuzzy context (G, M, R)
is defined to be the lattice context (PL(G), BL(M), ¢).

Using this definition, we can specify the concept lattice and, by studying the V-
irreducible elements in L-fuzzy power sets, we have a natural way of getting a
classical context with an isomorphic concept lattice.

5.2. Many-valued contexts.

We now want to introduce many-valued context (G, M,W,I) as lattice contexts.
In order to keep the complexity small, we restrict here to complete many-valued
contexts, i.e. in every cell of the cross-table should be an entry. The general case
with empty cells is handled in [Gu97].

In order to define a lattice context, we first need two complete lattices X and Y.
As X, we can take the power set B(G) of all objects. The following choice of Y is
inspired by the way we describe objects in everyday life: We give all possible values,
a set of objects can have.

For example, if we want to describe teenagers within the context of all human
beings, using the attributes age and sex, we could say, that their age lies in between
15 and 20 years (or something like that). As the sex does not play any role in order
to classify someone as teenager or not, we could mention, that the teenagers could
be both male and female. So, what we do is, that we assigns to each attribute a
subset of values.

Definition 5.2. Let K = (G, M, W, I) be a many-valued context. A description in
K is a mapping B: M — PB(W) from the set M of attributes to the set W of values.

A description is more precise, i.e. applies to less objects, iff one restricts the amount
of values, which an object can have. Thus we have a natural order on the set of all
descriptions:

Remark 5.3. The set B(W)M of all descriptions in K, together with the order

B, < By :& B](m) D) Bg(m),Vm € M,

forms a complete lattice.

Proof. For an arbitrary index set T, let B, t € T be descriptions in K. Infimum
und supremum of all By, t € T are given by:
/\Bt:mr—> UBt(m) and VBt:mHﬂBt(m). O
teT teT teT teT
In a classical context, the derivation of a set A of objects is the greatest set of
attributes, which is in relation with all objects g € A (A’ = \V/{B C M|gIm,Vm €
B,Vg € A}). Analoguously, we take now the most precise description, which applies
to all g € A: A’ =\/{B|m(g) € B(m),Ym € M,Vg € A}.
Definition 5.4. Let K = (G, M, W, I) be a complete many-valued context. We
define the mappings ¢ : PB(G) — P(W)M and ¢ : B(W)M — PB(G), by specifying
for A € P(G) and B € P(W)M:

¢(A) == M — PB(W),m — m(4),
Y(B) = {g € GIm(g) € B(m), Ym € M}.



12 RALF GUGISCH

As ¢ and 1 are intented to be the derivation operators of our lattice context, we
write in short A’ instead of ¢(A) and B’ instead of ¢(B). But we still have to show,
that these two mappings form a galois connection:

Remark 5.5. The mappings ¢ and 1 form a galois connection between the lattices

P(G) and P(W)M.

Proof. We show this using the criterion A C B’ < A’ > B:
= Let AC B = A'(m)=m(A) Cm(B')C B(m),yme M = A'>B
=" Let A >B = m(A)=A'(m)C B(m),Yme M = ACB O

As a result of our reflectings, we now can interpret the many-valued context as
lattice context:

Theorem 5.6. Let K = (G,M,W,I) be a complete many-valued context. We
identify K with the lattice context

K = (B(G), BW)M, o),

where @ is defined by 5.4.
In this way, we get derivation operators on many-valued contexts, and thus concepts
in K. The set of all concepts B(K) is a complete lattice.

In order to get an incidence-isomorphic classical context, we need supremum-dense
subsets G C PB(G) and M C B(W)M. Then, K = (G, M, W, I) is isomorphic zu

K = (G, M, R¢ y())-
The V-irreducible elements of PB(G), i.e. the singletons {g} with g € G, are

supremum-dense in PB(G):
G =T"(BQ) =G
In order to be able to prescribe the V-irreducible elements of B(W )M, we consider
the following definition:
Definition 5.7. For m € M and w € W, the description m # w is defined by:

WA\{w}if n=m

(m # w)(n) := { w else

Remark 5.8. The V-irreducible elements of (W )M are given by:
IV(PW)M) = {m # wjm € M,w € W}.

This set is supremum-dense in P(W)M.

Proof. The smallest element of the lattice B(W)M is
Oqg(W)M: M — ‘B(W),m — W.

L IVBW)M) = {m #wm e M,w € W}

»C“ For each description B # Ogp(pyynm, which is not of the form m # w, we give
two strictly smaller descriptions, whose supremum is equal to B:

As B # Ogp(w)m, there exists a my € M with B(m;) C W. Hence, there is a
wy € W with wi € B(m1). As B # (m1 # wi), there must be another pair
mg € M, wy € W mit wy € B(ms). Thus, the following descriptions are strictly
smaller than B:

Bi:mw— {B(ml)U{wl} ifm=m
B(m) else

32 rme— { B(
B(

ma)U{ws} if m =my
m) else
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Considering the supremum thereof, we easily see, that B = B; V Ba: m +— Bj(m)N
Bs(m), and so, B is not V-irreducible. Of course, the Og(y)n is not V-irreducible,
as Oqg(W)M = V@

»=". The only description, which is strictly smaller than m # w, is the null Oy (yyya.
Thus, m # w has exactly one lower neighbour, and is therefore V-irreducible.

2. Tt is still necessary to show the supremum-density of IV (B(W)M):

This follows from the definition of the descriptions m # w: Every B € B(W)M is
representable as

B:\/{m#w|m€M,w ¢ B(m)}. .

We now know supremum-dense subsets G C PB(G) and M := IV(PW)M) C
P(W)M. In order to get the incidence-isomorphic classical context correspond-
ing to K = (P(G), BP(W)M, ), we still need to analyse the incidence relation
I:=TRg (0)-

A pair (g, m # w) is per definition contained in the incidence relation I, iff (m # w) < ¢(g),
thus (m # w)(n) 2 n(g) for all n € M. This is a real restriction only for n = m,
thus one can prescribe I as follows:

(g,m # w) € I & m(g) # w.

Herewith, we have described an incidence-isomorphic classical context K = (G, M, I):

Theorem 5.9. Let K = (G, M,W,I) be a complete many-valued context. Then,
the concept lattice of K is isomorphic to the concept lattice of the classical context
K = (G, M, I), whereas

M:={m#wmeMweW} and

(g.m # w) € I 165 m(g) £ w.
Example 5.10. As an example, let us consider a complete lattice, which rep-
resents some real numbers together with the attributes irrational, algebraic and
transcendent. Thereby, the attributes irrational and transcendent can have the val-
ues yes or no, whereas algebraic can be no, or a number n € N signifying, that this

number is algebraic of degree n. Thus, we have a complete many-valued context
K = (G, M, W, I) with

G = {2a\/§7 \3/5,”}
M = {j,a,t}
W = {y,n}UN

The classical context K has an infinite number of attributes, as W is infinite. But we
can ignore attributes, which hold for all objects, because they are reducible. m # w
does hold for all objects, if there is no object g € G wich has for the attribute m
the value w. Thus, the context K - and hence K — is isomorphic to:
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FIGURE 5.1. The concept lattice of the many-valued context K.

R AR M s

> @ X
2 X X X X
V2 | x X X x X
Y2 | x X X X x
T | x X X X X

The concept lattice is drawn in Figure 5.1.

CONCLUSIONS

In this article, we introduced a new general idea of contexts, the lattice contexts,
and we briefly showed, how to apply the results to already known extensions of
formal concept analysis like fuzzy contexts or complete many valued contexts.

[Bir73]

[Bly72]
[GaWi96]

[GaWigg]
[Gu97]

[KIYu95]
[KeLe97]

[LeWi95]

[Um94]

[We78]

REFERENCES

Birkhoff, G.: Lattice Theory, third edition. Amer. Math. Soc. Coll. Publ. 25, Providence,
R.I. (1973)

Blyth, T.S., Janowitz, M.F.: Residuation theory. Pergamon Press, New York (1972)
Ganter, B., Wille, R.: Formale Begriffsanalyse — Mathematische Grundlagen. Springer
Verlag, Berlin (1996)

Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer
Verlag, Berlin (1999)

Gugisch, R. Verallgemeinerung der formalen Begriffsanalyse und Anwendung
auf mehrwertige Kontezte. Diplomarbeit, Uni Bayreuth. http://www.mathe2.uni-
bayreuth.de/ralfg /papers/diplom.ps.gz (1997)

Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall PTR, New Jersey (1995)
Kerber, A., Lex, W.: Konterte und ihre Begriffe. http://www.mathe2.uni-
bayreuth.de/kerber/begriffe.ps (1997)

Lehmann, F., Wille, R.: A triadic approach to Formal Concept Analysis. In: Ellis, G.,
Levinson, R., Rich, W., Sowa, J. F., editors, Conceptual structures: applications, im-
plementations and theory. Lecture Notes in Artificial Intelligence 954. Springer, Berlin-
Heidelberg-New York (1995), 3243

Umbreit, S.: Formale Begriffsanalyse mit unscharfen Begriffen. Dissertation, Uni Halle
(1994)

Wechler, W.: The Concept of Fuzziness in Automata and language Theory. Akademie-
Verlag, Berlin (1978)



