Cassels-Tate pairing on 2-Selmer groups of elliptic curves

Himanshu Shukla

Mathematisches Institut, Universität Bayreuth

Oberseminar Arithmetic Geometry

10th December, 2020

Outline

(1) Background
(2) Higher descents and the Cassels-Tate pairing
(3) Definition I
(4) Effectively computing CTP
(5) Definition II
(6) Our contribution

Some notations

- Fix a number field k.
- $f:=X^{3}+a X+b=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right) \in k[X]$, with $e_{1} \neq e_{2} \neq e_{3} \neq e_{1} \in \bar{k}$.
- Define

$$
\begin{equation*}
E:=Y^{2}=f(X) \tag{1}
\end{equation*}
$$

- For a place v of k, k_{v} denotes its completion with respect to v and \mathfrak{k}_{v} the residue field.
- Let E_{v} denote the curve E defined over k_{v}.
- G_{F} we will denote the absolute galois group of the field F.

Some theoretical aspects

Theorem (Mordell-Weil)

$$
E(k) \cong E(k)_{\text {tors }} \oplus Z^{r_{E}},
$$

where $\# E(k)_{\text {tors }}<\infty$
Theorem (Lutz-Nagell)
$P:=(x, y) \in E(\mathbb{Q})_{\text {tors }}$, then $x, y \in \mathbb{Z}$, and $y^{2} \mid 4 a^{3}-27 b^{2}$ or $y=0$.

- A faster way to compute $E(k)_{\text {tors }}$ is to use the injection $E(k)_{\text {tors }} \hookrightarrow \bar{E}_{v}\left(\mathfrak{k}_{v}\right), \bar{E}_{v}$ denotes E over \mathfrak{k}_{v} for a place of good reduction.
- No unconditional algorithm to compute r_{E} is known.
- Assuming BSD, r_{E} may be computed using ord $(L(E, s=1))$.

Upper and lower bounds

- Lower bound: Find points and check for independence.
- Upper bound: Use descent.
- See if they match!

The Kummer sequence:

$$
\begin{equation*}
0 \longrightarrow E[n] \hookrightarrow E \longrightarrow E \longrightarrow 0 \tag{2}
\end{equation*}
$$

Applying galois cohomology:

Descent sequence

We have the n-descent sequence.

$$
\begin{equation*}
0 \longrightarrow \frac{E(k)}{n E(k)} \hookrightarrow \operatorname{Sel}^{(n)}(E) \longrightarrow \amalg[n] \longrightarrow 0, \tag{3}
\end{equation*}
$$

where $n^{\text {th }}$ Selmer group

$$
\operatorname{Sel}^{(n)}(E)=\operatorname{ker}(\alpha)
$$

and the Tate-Shafarevich group

$$
\amalg:=\operatorname{ker}\left(H^{1}\left(G_{k}, E\right) \longrightarrow \prod_{v} H^{1}\left(G_{k_{v}}, E_{v}\right)\right)
$$

- $\operatorname{Sel}^{(n)}(E)$ is finite and effectively computable in principle.
- $\operatorname{rank}_{\mathbb{F}_{p}}\left(\operatorname{Sel}^{(p)}(E)\right)$ bounds the $\operatorname{rank}_{\mathbb{F}_{p}}\left(\frac{E(k)}{p E(k)}\right)$.
- If $\amalg[n]$ is trivial then $\operatorname{Sel}^{(n)}(E) \cong \frac{E(k)}{n E(k)}$.

Higher descent

- If $(m, n)=1, \operatorname{Sel}^{(m n)}(E) \cong \operatorname{Sel}^{(n)}(E) \times \operatorname{Sel}^{(m)}(E)$.
- If $I \geq 2$, then $\mathrm{Sel}^{p^{p}}(E)$ is known as higher p-descent.
- We have the following commutative diagram:

$$
\begin{gather*}
\frac{E(k)}{p^{\prime} E(k)} \\
\stackrel{\operatorname{Sel}^{\left(p^{\prime}\right)}(E)}{\downarrow} \downarrow_{\frac{E(k)}{p^{I-1} E(k)}}^{\downarrow} \longleftrightarrow \operatorname{Sel}^{\left(p^{\prime-1}\right)}(E) \tag{4}
\end{gather*}
$$

We have

$$
\begin{equation*}
\frac{E(k)}{p E(k)} \subseteq \operatorname{pSel}^{\left(p^{2}\right)}(E) \subseteq \operatorname{Sel}^{(p)}(E) \tag{5}
\end{equation*}
$$

Cassels-Tate pairing (CTP)

- CTP (denoted by $\langle.,\rangle C$.$T) was defined by J.W.S. Cassels for elliptic$ curves.
- John Tate generalized it to abelian varieties.
- CTP has following properties:
- $\langle., .\rangle_{C T}: \amalg \times \amalg \longrightarrow \mathbb{Q} / \mathbb{Z}$.
- CTP is an anti-symmetric pairing.
- For $\alpha \in \amalg[n],\langle\beta, \alpha\rangle_{C T}=0 \Longleftrightarrow \beta \in n \amalg$.

Pulling back $\langle., .\rangle_{C T}$ on $\operatorname{Sel}^{(n)}(E)$, we have:
Theorem (Cassels)
$\langle\alpha, \beta\rangle_{C T}=0$ for all $\beta \in \operatorname{Sel}^{(n)}(E), \Longleftrightarrow \alpha \in n \operatorname{Sel}^{\left(n^{2}\right)}(E)$.

Weil-pairing based definition

- Consider the "evaluation" based pairings:
- $\langle., .\rangle_{1}:\left(\operatorname{Princ}(E) \times \operatorname{Div}^{0}(E)\right)^{\perp} \longrightarrow \bar{k}^{\times}$,
- $\langle., .\rangle_{2}:\left(\operatorname{Div}^{0}(E) \times \operatorname{Princ}(E)\right)^{\perp} \longrightarrow \bar{k}^{\times}$, with $\langle\operatorname{div}(f), D\rangle_{1}=\langle D, \operatorname{div}(f)\rangle_{2}=\prod_{P} f(P)^{v_{P}(D)}$.
- $\langle., .\rangle_{1}=\langle., .\rangle_{2}$ on $(\operatorname{Princ}(E) \times \operatorname{Princ}(E))^{\perp}($ Weil-reciprocity! $)$.
- Let $e_{n}(.,):. E[n] \times E[n] \longrightarrow \mu_{n}$, denote the Weil-pairing with

$$
e_{n}(P, Q)=\langle n \mathfrak{p}, \mathfrak{q}\rangle_{1}-\langle\mathfrak{p}, n \mathfrak{q}\rangle_{2},
$$

where $\mathfrak{p}, \mathfrak{q}$ denote the representatives of P, Q (resp.) in $\operatorname{Div}^{0}(E)$.

- Let \cup denote the cup product on $H^{*}\left(G_{k}, E[n]\right)$ induced by Weil-pairing.

Weil-pairing based definition (cont.)

Let $\alpha, \alpha^{\prime} \in \operatorname{Sel}^{(n)}(E)$.

- Global part:
- Lift α, α^{\prime} to $\mathfrak{a}, \mathfrak{a}^{\prime} \in Z^{1}\left(G_{k}, E[n]\right)$.
- Let $a \in C^{1}\left(G_{k}, E\left[n^{2}\right]\right)$, with $n a=\mathfrak{a}$.
- $\partial a \cup \mathfrak{a}^{\prime} \in Z^{3}\left(G_{k}, \bar{k}^{\times}\right) \Longrightarrow \partial a \cup \mathfrak{a}^{\prime}=\partial \epsilon$, for $\epsilon \in C^{2}\left(G_{k}, \bar{k}^{\times}\right)$.
- The above statements follow from galois cohomology on

$$
0 \longrightarrow E[n] \hookrightarrow E\left[n^{2}\right] \longrightarrow E[n] \longrightarrow 0
$$

and that $H^{3}\left(G_{k}, \bar{k}^{\times}\right)$is trivial.

- Local part:
- $\alpha_{v}=0 \Longrightarrow \exists P_{v} \in E_{v}$, with $\partial P_{v}=\alpha_{v}$.
- Choose $Q_{v} \in E_{v}$, with $n Q_{v}=P_{v}$ and let $\mathfrak{q}_{v}:=\partial Q_{v}$.
- $a_{v}-\mathfrak{q}_{v}$ take values in $E[n]$.
- Define $\gamma_{v}:=\left(a_{v}-\mathfrak{q}_{v}\right) \cup \mathfrak{a}_{v}^{\prime}-\epsilon_{v} \in Z^{2}\left(G_{k_{v}},{\overline{k_{v}}}^{\times}\right)$.

Weil-pairing based definition (contd.)

γ_{v} represents some class $c_{v} \in H^{2}\left(G_{k v}, \bar{k}_{v}^{\times}\right) \cong \operatorname{Br}\left(k_{v}\right)$.
Definition
For $\left(\alpha, \alpha^{\prime}\right) \in \operatorname{Sel}^{(n)}(E) \times \operatorname{Sel}^{(n)}(E)$ we have:

$$
\left\langle\alpha, \alpha^{\prime}\right\rangle_{C T}=\sum_{v} \operatorname{inv}_{v}\left(c_{v}\right)
$$

Effectiveness of CTP: Cassels effectively defined a pairing $\langle., .\rangle_{C_{a s}}$ on $\operatorname{Sel}^{(2)}(E) \times \operatorname{Sel}^{(2)}(E)$, with properties same as CTP.

Known results

- Fischer, Schaefer and Stoll, showed that $\langle., .\rangle_{C_{a s}}=\langle., .\rangle_{C T}$ on $\operatorname{Sel}^{(2)}(E) \times \operatorname{Sel}^{(2)}(E)$.
- Swinnerton-Dyer extended this approach to compute CTP between $\operatorname{Sel}^{(2)}(E)$ and $\mathrm{Sel}^{\left(2^{n}\right)}(E)$.
- Fischer and Newton computed CTP on $\operatorname{Sel}^{(3)}(E)$.
- van Beek and Fischer compute CTP on Selmer groups of odd prime degree isogeny.
- The above computations were based on Weil-pairing based definition.

Known results (contd.)

- Fischer and Donelly used homogenous space based definition to compute CTP on $\operatorname{Sel}^{(2)}(E)$.
- Tom Fischer has a similar approach to compute CTP on $\operatorname{Sel}^{(3)}(E)$ using homogenous space definition.
- CTP can be defined in general for $\amalg(A) \times \amalg\left(A^{\vee}\right)$, for an abelian variety A and its dual A^{\vee}.
- We compute CTP using Albanese-Albanese definition given by Poonen and Stoll.
- We aim to compute CTP on jacobians of genus 2 curves.

Albanese-Albanese defintion

Let $\alpha, \alpha^{\prime} \in \operatorname{Sel}^{(n)}(E)$.

- Global part:
- Lift α, α^{\prime} to $\mathfrak{a}, \mathfrak{a}^{\prime} \in C^{1}\left(G_{k}, \operatorname{Div}^{0}(E)\right)$.
- $\partial \mathfrak{a}, \partial \mathfrak{a}^{\prime}$ take values in $\operatorname{Princ}(E)$.
- Let $\eta:=\left\langle\partial \mathfrak{a}, \mathfrak{a}^{\prime}\right\rangle_{1}-\left\langle\mathfrak{a}, \partial \mathfrak{a}^{\prime}\right\rangle_{2} \in Z^{3}\left(G_{k}, \bar{k}^{\times}\right) \Longrightarrow \eta=\partial \epsilon$, for $\epsilon \in C^{2}\left(G_{k}, \bar{k}^{\times}\right)$.
- The above statements follow using the galois cohomology on Kummer sequence and on

$$
0 \longrightarrow \operatorname{Princ}(E) \hookrightarrow \operatorname{Div}^{0}(E) \longrightarrow \operatorname{Pic}^{0}(E) \longrightarrow 0
$$

and using $H^{3}\left(G_{k}, \bar{k}^{\times}\right)$is trivial.

- Local part:
- There exists $P_{v} \in E_{v}$, with $\partial P_{v}=\alpha_{v}$.
- Lift P_{v} to a degree zero divisor \mathfrak{p}_{v}, and $\mathfrak{a}_{v}-\partial \mathfrak{p}_{v}$ takes values in $\operatorname{Princ}(E)$.
- Consider $\gamma_{v}:=\left\langle\left(\mathfrak{a}_{v}-\mathfrak{p}_{v}\right), \mathfrak{a}_{v}^{\prime}\right\rangle_{1}-\left\langle\mathfrak{p}_{v}, \partial \mathfrak{a}_{v}^{\prime}\right\rangle_{2}-\epsilon_{v}$.

Albanese-Albanese definition (contd.)

γ_{v} represents some class $c_{v} \in H^{2}\left(G_{k_{v}},{\overline{k_{v}}}^{\times}\right) \cong \operatorname{Br}\left(k_{v}\right)$.
Definition
For $\left(\alpha, \alpha^{\prime}\right) \in \operatorname{Sel}^{(n)}(E) \times \operatorname{Sel}^{(n)}(E)$ we have:

$$
\left\langle\alpha, \alpha^{\prime}\right\rangle_{C T}=\sum_{v} \operatorname{inv}_{v}\left(c_{v}\right)
$$

Theorem (Poonen and Stoll)
Weil-pairing based definition and Albanese-Albanese definition of the Cassels-Tate pairing are equal.

We prove the following theorem:
Theorem
Let $\alpha, \alpha^{\prime} \in \operatorname{Sel}^{(2)}(E)$, represented by $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$, $\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)$, with $\beta_{1} \beta_{2} \beta_{3} \in k^{2}$, and $\beta_{1}^{\prime} \beta_{2}^{\prime} \beta_{3}^{\prime} \in k^{2}$ and $\beta_{i}, \beta_{i}^{\prime} \in k\left(e_{i}\right)$.
$(-1)^{2\left\langle\alpha, \alpha^{\prime}\right\rangle_{C T}}=\prod_{v}[\alpha, \alpha]_{v}$, where

$$
[\alpha, \alpha]_{v}=\left\{\begin{array}{lr}
\prod_{i=1}^{3}\left(\delta_{v, i}, \beta_{i}^{\prime}\right)_{k_{v}}, & f \text { splits over } k, \\
\left(\delta_{v, 1}, \beta_{1}^{\prime}\right)_{k_{v}}\left(\delta_{v, 2}, \beta_{2}^{\prime}\right)_{k_{v}\left(e_{2}\right)} & e_{1} \in k \text { and }\left[k\left(e_{2}\right): k\right]=2, \\
\left(\delta_{v, 1}, \beta_{1}^{\prime}\right)_{k_{v}\left(e_{1}\right)} & {\left[k\left(e_{1}\right): k\right] \geq 3,}
\end{array}\right.
$$

where $\delta_{v i} \in k_{v}\left(e_{i}\right)$.

Corollary
The above pairing exactly matches the $\langle.$, . \rangle Cas.

A bottleneck and exploiting freedom of choices!

- An important step is to find $\epsilon \in C^{2}\left(G_{k}, \bar{k}^{\times}\right)$such that $\partial \epsilon=\eta$.
- Solving "skewed" linear equations:

$$
\frac{\sigma \epsilon(\tau, \rho) \epsilon(\sigma, \tau \rho)}{\epsilon(\sigma \tau, \rho) \epsilon(\sigma, \tau)}=\eta(\sigma, \tau, \rho) .
$$

- We exploit the everywhere local solubility of 2-coverings to get global solution to certain norm equations.

A simplification: Consider a different lift of α^{\prime} to \mathfrak{a} with values in $\operatorname{Div}^{0}(E)$.

Exploiting freedom of choices

Assume f splits over k.

$$
\alpha^{\prime}:=\sum_{i=1}^{3} \alpha_{i}^{\prime}
$$

with α_{i}^{\prime} being 1 -cocycles.
This splits

$$
\eta=\sum_{i=1}^{3} \eta_{i}
$$

with $\eta_{i} \in H^{3}\left(G_{k}, \bar{k}^{\times}\right)$using bilinearity of cup-product. Find ϵ_{i}, with

$$
\partial \epsilon_{i}=\eta_{i}
$$

Thank You!

