The degree of functions in the Johnson and *q*-Johnson schemes

Michael Kiermaier

Mathematisches Institut Universität Bayreuth

Combinatorial Constructions Conference April 8, 2024 Center for Advanced Academic Studies Dubrovnik, Hrvatska

joint work with Jonathan Mannaert and Alfred Wassermann

Introductory remarks

- Joint work with Jonathan Mannaert and Alfred Wassermann.
- Despite title

"The degree of functions in the Johnson and *q*-Johnson schemes" No association schemes in this talk!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation (next slide) is geometric.
 Indeed: Topic close to design theory.
 Studied objects are "dual designs".

Cameron-Liebler line classes

- Cameron, Liebler 1982:
 "Special" set L of lines in PG(3, q).
- Defined by the following equivalent properties:
 - Algebraic property:
 - $\chi_{\mathcal{L}} \in \mathbb{R}$ -row space of the point-line incidence matrix.
 - Geometric property: Constant intersection with any line spread of PG(3, q).

In literature: Various directions of generalization

- Ambient space PG(n, q).
- ▶ lines \rightarrow *k*-spaces.
- Allow q = 1 (set case).
- **•** points \rightarrow spaces of degree *t*.

Goal

Coherent theory of all above generalizations.

Subset and subspace lattices

Fix q = 1 (set case) or prime power $q \ge 2$ (q-analog case). Fix n non-negative integer. • Let V be a $\begin{cases}
\text{set of size } n \\
\mathbb{F}_{a}
\text{-vector space of dimension } n
\end{cases}$ • Let $\mathcal{L}(V)$ be the lattice of all $\begin{cases}
subsets of V \\
\mathbb{F}_{q}$ -subspaces of V For $U \in \mathcal{L}(V)$ let $\mathsf{rk}(U) = \begin{cases} \#U \\ \dim(U) \end{cases}$ • Let $\begin{bmatrix} V \\ k \end{bmatrix} = \{ U \in \mathcal{L}(V) \mid \mathsf{rk}(U) = k \}.$ Set case: $\# \begin{bmatrix} V \\ k \end{bmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_1$ Binomial coefficient. *q*-analog case: $\# \begin{bmatrix} V \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_q$ Gaussian coefficient. Always: Use algebraic dimension!

(Except in established symbols like PG(n, q).

Algebraic property

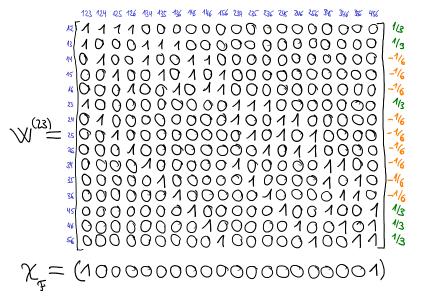
- Algebraic property of Cameron-Liebler line classes: $\chi_{\mathcal{L}} \in \mathbb{R}$ -row space of the point-line incidence matrix.
- Straightforward generalization:
 - Let $W^{(tk)}$ incidence matrix of *t*-spaces vs. *k*-spaces.
 - Let V_t be the \mathbb{R} -row space of $W^{(tk)}$.
 - Function $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$ has algebraic property A_t if $f \in V_t$.

Baby example

- Let q = 1, $V = \{1, 2, 3, 4, 5, 6\}$ (so n = 6), k = 3, t = 2.
- Let $\mathcal{F} = \{\{1, 2, 3\}, \{4, 5, 6\}\} \subseteq {V \choose 3}$.
- Claim: Set F has algebraic property A₂,

i.e. its characteristic function $\chi_{\mathcal{F}} : \begin{bmatrix} V \\ 3 \end{bmatrix} \to \mathbb{R}$ has prop. A₂.

Baby example (cont.)



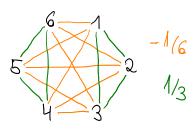
Baby example (cont.)

•
$$\mathcal{F} = \{\{1, 2, 3\}, \{4, 5, 6\}\}.$$

We found: F has property A₂ and the vector of 2-weights of F is

$$\mathsf{wt}_{\mathcal{F}}^{(2)} = (\frac{1}{3}, \frac{1}{3}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, \frac{1}{3}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

► Visualization.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Exercise.

 \mathcal{F} does not have A₁.

Geometric property

- Geometric property of Cameron-Liebler line classes: Constant intersection with any line spread of PG(3, q)
- Generalization? Not so clear.
- Observation:

line spread of PG(3, q)

- = set of lines in PG(3, q) covering every point exactly once
- = simple $1-(4, 2, 1)_q$ subspace design
- view use designs!

Definition: Simple design

A set $\mathcal{D} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ is called a simple t- $(n, k, \lambda)_q$ design,

- if every $T \in \begin{bmatrix} V \\ t \end{bmatrix}$ is contained in exactly λ elements of \mathcal{D} .
 - set case q = 1: combinatorial design
 - ▶ q-analog case q ≥ 2: subspace design

Example

▶ ...

• Let q = 1, $V = \{1, 2, 3, 4, 5, 6\}$ (so n = 6), k = 3, t = 2. • Let $\mathcal{D} = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 6\}, \{1, 4, 5\}, \{1, 5, 6\}, \}$

 $\{2,4,6\},\{2,5,6\},\{2,3,5\},\{3,4,5\},\{3,4,6\}\} \subseteq \begin{vmatrix} V\\ 3 \end{vmatrix}$.

• Check design condition for t = 2.

- $T = \{1, 2\}$ is contained in blocks $\{1, 2, 3\}$ and $\{1, 2, 4\}$.
- $T = \{1,3\}$ is contained in blocks $\{1,2,3\}$ and $\{1,3,6\}$.

• $T = \{5, 6\}$ is contained in blocks $\{1, 5, 6\}$ and $\{2, 5, 6\}$.

 $\blacktriangleright \implies \mathcal{D} \text{ is simple } 2-(6,3,2)_1 \text{ design.}$

Example (Trivial simple designs)

• \emptyset is empty t- $(v, k, 0)_q$ design.

•
$$\begin{bmatrix} V \\ k \end{bmatrix}$$
 is complete t - $(v, k, \lambda_{\max})_q$ design where $\lambda_{\max} \coloneqq \begin{bmatrix} n-t \\ k-t \end{bmatrix}$.

Definition: Simple design (repeated)

A set $\mathcal{D} \subseteq {V \brack k}$ is called a simple $t \cdot (n, k, \lambda)_q$ design, if every $T \in {V \brack k}$ is contained in exactly λ elements of \mathcal{D} .

- set case q = 1: combinatorial design
- ▶ q-analog case q ≥ 2: subspace design

Reformulation in characteristic functions

► Let \boldsymbol{x}_T be characteristic function of pencil { $K \in \begin{bmatrix} V \\ k \end{bmatrix} | T \subseteq K$ }.

► For $f, g : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$ fix standard inner product $\langle f, g \rangle = \sum_{K \in \begin{bmatrix} V \\ k \end{bmatrix}} f(K)g(K)$.

- ▶ Note that $\#(\mathcal{F} \cap \mathcal{G}) = \langle \chi_{\mathcal{F}}, \chi_{\mathcal{G}} \rangle$ for $\mathcal{F}, \mathcal{G} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$.
- \mathcal{D} is simple $t (n, k, \lambda)_q$ design

$$\iff \langle \boldsymbol{x}_{\mathcal{T}}, \chi_{\mathcal{D}} \rangle = \lambda \text{ for all } \mathcal{T} \in \begin{bmatrix} \mathbf{V} \\ \mathbf{t} \end{bmatrix}$$

A series of the series of t

Generalized definition: Real design

A function $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$ is called a real t- $(n, k, \lambda)_q$ design, if $\langle \boldsymbol{x}_T, f \rangle = \lambda$ for all $T \in \begin{bmatrix} V \\ t \end{bmatrix}$.

- f null design or trade if $\lambda = 0$.
- f signed design if $im(f) \subseteq \mathbb{Z}$.
- f design or possibly non-simple design if im(f) ⊆ N.
 (Idea: simple design, but with possibly repeated blocks)
- ► *f* (characteristic function of) simple design $\iff im(f) \subseteq \{0, 1\} \iff f$ Boolean.

Further reformulation

Observation:

Functions $\mathbf{x}_{\mathcal{T}}$ (interpreted as vectors) are the rows of incidence matrix $W^{(tk)}$.

Therefore:

 $f \text{ real } t \cdot (n, k, \lambda)_q \text{ design } \iff W^{(tk)} f = \lambda \mathbf{1}.$

► In particular: *f* real *t*-(*n*, *k*, **0**)_{*q*} null design $\iff W^{(tk)}f = \mathbf{0}$

Geometric property, basic version

- For $\lambda \in \mathbb{R}$ let $U_{\lambda} :=$ set of real $t \cdot (n, k, \lambda)_q$ design.
- ► Just seen: $U_0 = \ker W^{(tk)}$.
- Set of functions with A_t was $V_t = rowsp W^{(tk)}$.

$$\implies V_t = U_0^{\perp}$$

What did we get?

- Established a connection to designs.
- Concept known as Delsarte's design orthogonality.
- Compared to prototype "constant intersection with all spreads":

Want similar property for $\lambda \neq 0$!

Geometric property, version II

- Fix $\lambda \in \mathbb{R}$.
- Scaled complete design $\frac{\lambda}{\lambda_{\max}} \cdot \mathbf{1}$ is real $t \cdot (n, k, \lambda)_q$ design.
- As solution of linear equation system $W^{(tk)}f = \lambda \mathbf{1}$:

$$U_{\lambda} = \frac{\lambda}{\lambda_{\max}} \cdot \mathbf{1} + \underbrace{\ker W^{(tk)}}_{=U_0 = V_t^{\perp}}.$$

$$\Longrightarrow$$

$$U_{\lambda} = \left\{ \delta : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda}{\lambda_{\max}} \cdot \#f \text{ for all } f \in V_t \right\} \text{ and }$$

$$V_t = \left\{ f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda}{\lambda_{\max}} \cdot \#f \text{ for all } \delta \in U_{\lambda} \right\} \text{ Vers. II}$$

(with $\#f = \sum_{K \in []{K}} f(K) = \langle f, \mathbf{1} \rangle$, motivated by $\#\mathcal{F} = \#\chi_{\mathcal{F}}$)

- Still room for improvement:
 - Not happy about "For all real ... designs". → enough to look at basis of U_λ.
 - Allow mixed values of λ .

Example

- $q = 1, n = 6, k = 3, t = 2 \rightsquigarrow \lambda_{\max} = \begin{bmatrix} 6-2\\ 3-2 \end{bmatrix} = 4.$
- Baby example: $\mathcal{F} = \{\{1, 2, 3\}, \{4, 5, 6\}\}$, seen: $\chi_{\mathcal{F}} \in V_2$.
- Geometric property \implies For each 2-(6,3,2)₁ design:

$$\langle \chi_{\mathcal{F}}, \delta
angle = rac{\lambda}{\lambda_{\max}} \cdot \# \chi_{\mathcal{F}} = rac{2}{4} \cdot 2 = 1.$$

A D F A 同 F A E F A E F A Q A

- ► ⇒ Each simple 2-(6,3,2)₁ design D contains exactly one of the blocks {1,2,3} and {4,5,6}.
- $\blacktriangleright \rightsquigarrow \mathcal{D}$ is anti-complementary.
- Can also be shown using intersection numbers.

Geometric property, toolbox version

- U_{*} := set of all real t-(v, k, λ)_q designs with arbitrary value λ ∈ ℝ.
- By scaled complete designs: $U_* = U_0 + \langle \mathbf{1} \rangle_{\mathbb{R}}$.
- Lemma (Toolbox version of geometric property). Let Δ ⊆ U_{*}. Then

$$V_{t} = \left\{ f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda_{\delta}}{\lambda_{\max}} \cdot \#f \text{ for all } \delta \in \Delta \right\}$$
$$\iff \langle \Delta \cup \{\mathbf{1}\} \rangle_{\mathbb{R}} = U_{*}$$

Proof. Dimension argument. Use that $W^{(tk)}$ has full rank (Set case: Gottlieb 1966, *q*-analog case: Kantor 1972)

► Question: Suitable sets ∆?

Lemma

Let Δ be

(a) the set of all signed $t - (n, k, 0)_q$ null designs or

(b) the set of all possibly non-simple t- $(n, k, \lambda)_q$ designs Then $U_* = \langle \Delta \cup \{1\} \rangle_{\mathbb{R}}$.

Proof.

Part (a).

• entries of $W^{(tk)}$ are in \mathbb{Q} .

• \implies $U_0 = \ker W^{(tk)}$ has rational basis.

▶ Multiply by common denominators → integral basis *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

$$\blacktriangleright \implies B \subseteq \Delta \text{ and } \langle B \cup \{\mathbf{1}\} \rangle_{\mathbb{R}} = U_*.$$

Part (b).

- Start with B.
- Add suitable integral multiples of 1 ~> non-negative integral set B'.

$$\blacktriangleright \implies B' \subseteq \Delta \text{ and } \langle B' \cup \{\mathbf{1}\} \rangle_{\mathbb{R}} = U_*.$$

We arrive at:

- Theorem Let $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$. The following are equivalent.
 - (i) Algebraic property: $f \in V_t$.

Geometric properties:

- (ii) There is a constant c ∈ R such that (f, δ) = λ_δc for all real t-(n, k, *)_q designs δ with λ ∈ R.
- (iii) $\langle f, \delta \rangle = 0$ for all signed t- $(n, k, 0)_q$ null designs $\delta : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{Z}$.
- (iv) There is a constant $c \in \mathbb{R}$ such that $\langle f, \delta \rangle = \lambda_{\delta} c$ for all possibly non-simple t- $(n, k, *)_q$ designs $\delta : \begin{bmatrix} v \\ k \end{bmatrix} \to \mathbb{N}$. The constant in properties (ii) and (iv) necessarily equals $c = \frac{1}{\lambda_{\max}} \cdot \# f$.

Geometric property: Discussion

- Tempting: Is the following a suitable geometric property?
 "There is a constant c ∈ ℝ such that ⟨f, δ⟩ = λc for all simple t-(n, k, *)_q designs"
- ► By toolbox version: If and only if $\langle \{\text{simple } t (n, k, *)_q \text{ designs} \} \rangle_{\mathbb{R}} = U_* \text{ (richness cond)}$

Unfortunately: Not always true.

Counterexample. q = 1, n = 10, k = 5, t = 4. By integrally conditions: All simple $4 \cdot (10, 5, *)_1$ are trivial. $\implies \dim \{ \{ \text{simple } 4 \cdot (10, 5, *)_1 \text{ designs} \} \}_{\mathbb{R}} = 1 \}$, too small!

Research problem. (probably hard!)

Classify the parameters (q, n, k, t) where the richness condition holds.

The Degree

• Fix $k \in \{0, \ldots, n\}$ and $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$.

Lemma.

$$\{\mathbf{1}\}=V_0\subsetneq V_1\subsetneq\ldots\subsetneq V_k=V.$$

Proof. $W^{(ij)}W^{(jk)} \sim W^{(ik)}$ for $0 \le i \le j \le k$.

► Definition. Degree deg(f) := smallest t such that $f \in V_t$.

Example

Functions *f* of degree 0 are the scalar functions *f* = λ1 with λ ∈ ℝ.
Baby example F = {{1,2,3}, {4,5,6}}. In V = {1,2,3,4,5,6} we have deg(F) := deg(χ_F) = 2.
Seen: χ_F ∈ V₂.
Exercise: χ_F ∉ V₁.
In V = {1,2,3,4,5,6,7} we have deg(F) = 3. ⇒ Ambient space V matters!

The Degree (cont.)

- **Remember**. Rows of $W^{(tk)}$ are the *t*-pencils \mathbf{x}_T .
- ► → Alternative characterization of degree.

deg(f) is smallest t

such that *f* is a linear combination of *t*-pencils \boldsymbol{x}_T .

The (unique) coefficients are called *t*-weights $wt_f(T)$ of *f*:

$$f = \sum_{T \in \begin{bmatrix} V \\ t \end{bmatrix}} \operatorname{wt}_f(T) \boldsymbol{x}_T$$

Lemma

(a)
$$\deg(\lambda f) \leq \deg(f)$$
 with equality iff $\lambda \neq 0$.

(b)
$$\deg(f+g) \leq \max(\deg(f), \deg(g)).$$

```
(c) \deg(fg) \leq \deg(f) + \deg(g).
```

Proof.

Parts (a), (b): easy. Part (c): Use weights & deg $\boldsymbol{x}_T \leq \operatorname{rk} T$.

Dualization

Fix anti-isomorphism \perp of the lattice $\mathcal{L}(V)$.

- Set case: Set complement.
- q-analog case: Perp wrt non-degenerate bilinear form.

• Induces dual map of $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$:

$$f^{\perp}: \begin{bmatrix} V\\ n-k \end{bmatrix} o \mathbb{R}, \quad U \mapsto f(U^{\perp})$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Effect of dualization on the degree?

Theorem

(a) deg
$$f^{\perp}$$
 = deg f .
(b) For $i \in \{0, ..., \deg f\}$, the *i*-weight distribution of f^{\perp} is
 $\operatorname{wt}_{f^{\perp}}^{(i)}(J) = \sum_{l \in [{}^{V}_{i}]} \gamma(n-k, i, \operatorname{rk}(I^{\perp} \cap J)) \operatorname{wt}_{f}^{(i)}(I)$
where
 $\gamma(k, i, z) \coloneqq \begin{cases} \delta_{z,k} & \text{if } i = k, \\ (-1)^{i-z} \frac{1}{q^{(k-i)(i-z) + \binom{i-z}{2}} \frac{\binom{k-i}{1}}{\binom{k-2}{1}} \frac{1}{\binom{k}{z}} & \text{otherw.} \end{cases}$

Proof.

- Enough to look at pencils $f = \mathbf{x}_J$.
- Set up linear equation system for the weights of *f*[⊥], assuming that wt(*I*) only depends on rk(*I* ∩ *J*).
- Equation system matrix is triangular with non-zero diagonal
 invertible ⇒ Part (a).

= nan

Apply negation formula & q-Vandermonde formula for Gaussian coefficients ~> compute solution ~> Part (b).

Change of ambient space

Two elementary ways to shrink the ambient space V.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

►
$$V \to H$$
 $(H \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$ hyperplane)

►
$$V \rightarrow V/P$$
 ($P \in \begin{bmatrix} V \\ 1 \end{bmatrix}$ point)

Implication on the degree?

We start with $V \rightarrow V/P$.

Theorem
Let
$$1 \le k \le n$$
 and $P \in \begin{bmatrix} V \\ 1 \end{bmatrix}$. Then
 $\Phi : \mathbb{R}^{\binom{V/P}{k-1}} \to \mathbb{R}^{\binom{V}{k}}, \quad \Phi(f) : K \mapsto \begin{cases} f(K/P) & \text{if } P \subseteq K, \\ 0 & \text{if } P \nsubseteq K \end{cases}$

is an injective \mathbb{R} -linear map with

$$\operatorname{im}(\Phi) = \{g \in \mathbb{R}^{\binom{V}{k}} | \operatorname{supp} g \subseteq \binom{V}{k} |_{P} \} \text{ and}$$
$$\operatorname{deg}_{V} \Phi(f) = \begin{cases} 0 & \text{if } f = 0, \\ \min(\overbrace{\operatorname{deg}_{V/P}(f) + 1}^{main\, case}, n - k) & \text{otherwise} \end{cases}$$

Proof.

- Straightforward, except "deg_V $\Phi(f) \ge \deg_{V/P}(f) + 1$ ".
- Lemma. In main case For all g ∈ im Φ: P ≤ T ⇒ wt_g(T) = 0.
 Proof. Incidence matrices of certain attenuated geometries are of full rank. (Guo, Li, Wang, 2014.)

Theorem Let $1 \leq n - k \leq n$ and $H \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$. Then $\Psi : \mathbb{R}^{\binom{H}{k}} \to \mathbb{R}^{\binom{V}{k}}, \qquad \Psi(f) : K \mapsto \begin{cases} f(K) & \text{if } K \subseteq H, \\ 0 & \text{if } K \notin H \end{cases}$

is an injective \mathbb{R} -linear map with

$$\operatorname{im}(\Psi) = \{g \in \mathbb{R}^{[V]} \mid \operatorname{supp} g \subseteq [{}^{H}_{k}]\} \quad and$$
$$\operatorname{deg}_{V} \Psi(f) = \begin{cases} 0 & \text{if } f = 0, \\ \min(\operatorname{deg}_{H}(f) + 1, k) & \text{otherwise.} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

Follows from the previous theorem by dualization.

Example (Basic sets)

• Start with "complete set" $\begin{bmatrix} W \\ \ell \end{bmatrix}$ of degree 0.

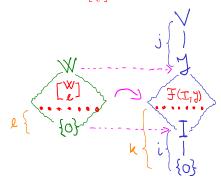
• *i*-fold application of Φ and *j*-fold application of Ψ

$$\rightsquigarrow$$
 basic set $\mathcal{F}(I, J) = \{K \in \begin{bmatrix} V \\ k \end{bmatrix} \mid I \subseteq K \subseteq J\}$.

• By theorems: deg
$$\mathcal{F}(I, J) = i + j$$
.

Example (Basic sets)

• Start with "complete set" $\begin{bmatrix} W \\ \ell \end{bmatrix}$ of degree 0.



• *i*-fold application of Φ and *j*-fold application of Ψ

$$\rightsquigarrow$$
 basic set $\mathcal{F}(I, J) = \{K \in \begin{bmatrix} V \\ k \end{bmatrix} \mid I \subseteq K \subseteq J\}$.

• By theorems: deg
$$\mathcal{F}(I, J) = i + j$$
.

Example (Basic sets (cont.))

- Basic sets F(I, J) include pencils (j = 0) and dual pencils (i = 0).
 In particular deg X_I = rk I.
- Geometric property of $\mathcal{F}(I, J)$

\longleftrightarrow

design property of *i*-fold derived and *j*-fold residual design.

(日) (日) (日) (日) (日) (日) (日)

Sets and Boolean functions

- Of particular interest: Sets $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ of low degree.
- Via characteristic functions: Sets correspond to Boolean functions [^V_k] → {0, 1}.

Boolean degree 1 functions

Set case:

Filmus, Ihringer 2019: Only basic functions.

 \implies only pencils and dual pencils (since t = 1).

q-analog case:

Boolean degree 1 function = Cameron-Liebler set of

(k-1)-spaces in PG(n-1, q).

Non-basic examples do exist.

Classification: Hard research problem.

Computer classification

Goal.

For q = 1 and small n, k, classify all sets \mathcal{F} of degree t = 2. Strategy.

► Use "basic" geometric property:

$$\deg \chi_{\mathcal{F}} \leq t \iff \chi_{\mathcal{F}} \in \ker W^{(tk)}$$

 \rightsquigarrow Want to find all $\{0, 1\}$ -vectors in ker $W^{(tk)}$.

- Find integral basis of ker $W^{(tk)}$.
 - either: computationally
 - or: Use literature like Khosrovshahi, Ajoodani-Namini (1990): A new basis for trades
- ► ~→ system of linear Diophantine equations.
- Solve using SOLVEDIOPHANT (A. Wassermann)
- Filter out isomorphic copies.
 (action of symmetric group G_n)

Results

n	k	size distribution	Σ		
6	3	2 4 ³ 6 ⁵ 8 ⁸ 10 ¹⁰ 12 ⁸ 14 ⁵ 16 ³ 18	44		
7	3	5 ² 10 ⁶ 15 ¹² 20 ¹² 25 ⁶ 30 ²	40		
8	3	${\color{red}6811121415^{2}16171820^{2}21^{2}222324^{3}2526^{4}2728^{2}\dots}$	52		
9	3	7 14 ² 21 ⁵ 28 ⁵ 35 ⁵ 42 ¹¹ 49 ⁵ 56 ⁵ 63 ⁵ 70 ² 77	47		
10	3	8 16 20 $24^{2}28^{3}32^{2}36^{4}40^{2}44^{2}48^{2}52^{2}56^{5}60^{5}64^{5}68^{2}72^{2}\dots$	59		
8	4	10 15 ² 20 ³ 30 ⁶ 35 ⁴ 40 ⁶ 50 ³ 55 ² 60	28		
9	4	21 ² 35 ³ 56 ⁵ 70 ⁵ 91 ³ 105 ²	20		
10	4	28 42 56 ² 70 84 ² 98 ³ 112 ³ 126 ² 140 154 ² 168 182	20		
11	4	36 78 84 ² 120 ² 126 162 ³ 168 ³ 204 210 ² 246 ² 252 294	20		
12	4	45 120 ² 135 165 ² 210 240 ³ 255 ³ 285 330 ² 360 375 ² 450	20		
blue = sizes of basic sets					

Goal. Explain divisibility pattern of the sizes!

Theorem (Divisibility theorem)

Let
$$f: \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{Z}$$
 be a function of degree t . Then

$$\underbrace{\gcd\left(\begin{bmatrix} n-0 \\ k-0 \end{bmatrix}, \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, \dots, \begin{bmatrix} n-t \\ k-t \end{bmatrix} \right)}_{=:a} \mid \#f.$$

Proof.

- Algebraic property $\Rightarrow \exists \mathbf{x} : \begin{bmatrix} \mathbf{v} \\ t \end{bmatrix} \rightarrow \mathbb{R}$ with $\mathbf{x}^{\top} \mathbf{W}^{(tk)} = f^{\top}$. (1)
- Complete design: $W^{(tk)} \cdot \mathbf{1} = \lambda_{\max} \cdot \mathbf{1}$ (2)
- Design theory: parameters $t - (n, k, \lambda_{\min})_q$ with $\lambda_{\min} = \frac{\lambda_{\max}}{q}$ are admissible.
- ► ⇒ ∃ signed $t \cdot (n, k, \lambda_{\min})_q$ design $\delta \Rightarrow W^{(tk)} \delta = \lambda_{\min} \cdot \mathbf{1}$ (3)
 - Set case: Wilson, "The necessary conditions for t-designs are sufficient for something" (1973).

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 < ○ < ○

- q-analog case: Ray-Chaudhuri, Singhi (1989).
- Left multiplication of (2) and (3) by \mathbf{x}^{\top} , using (1) $\implies \#f = \lambda_{\max} \cdot \#\mathbf{x}$ and $\langle f, \delta \rangle = \lambda_{\min} \cdot \#\mathbf{x}$

$$\blacktriangleright \implies \#f = \mathbf{a} \cdot \underbrace{\langle f, \delta \rangle}_{\in \mathbb{Z}} \in \mathbb{Z}.$$

Compare with the results

$$q = 1, t = 2 \implies a = \gcd(\binom{n}{k}, \binom{n-1}{k-1}, \binom{n-2}{k-2}).$$

п	k	size distribution	а
6	3	2 4 ³ 6 ⁵ 8 ⁸ 10 ¹⁰ 12 ⁸ 14 ⁵ 16 ³ 18	2
7	3	5 ² 10 ⁶ 15 ¹² 20 ¹² 25 ⁶ 30 ²	5
8	3	6 8 11 12 14 15 2 16 17 18 20 2 21 2 22 23 24 3 25 26 4 27 28 2	1
9	3	7 14 ² 21 ⁵ 28 ⁵ 35 ⁵ 42 ¹¹ 49 ⁵ 56 ⁵ 63 ⁵ 70 ² 77	7
10	3	8 16 20 $24^228^332^236^440^244^248^252^256^560^564^568^272^2\dots$	4
8	4	10 15 ² 20 ³ 30 ⁶ 35 ⁴ 40 ⁶ 50 ³ 55 ² 60	5
9	4	21 ² 35 ³ 56 ⁵ 70 ⁵ 91 ³ 105 ²	7
10	4	28 42 56 ² 70 84 ² 98 ³ 112 ³ 126 ² 140 154 ² 168 182	14
11	4	36 78 84 ² 120 ² 126 162 ³ 168 ³ 204 210 ² 246 ² 252 294	6
12	4	$45\ 120^2135\ 165^2210\ 240^3255^3285\ 330^2360\ 375^2450$	15

Perfect fit!

Parameter of Cameron-Liebler sets of k-spaces

- Consider *q*-analog case $q \ge 2$.
- For sets *F* of degree *t* = 1 define parameter *x* := #*F*/ ^{*n*-1}_{*k*-1}] ∈ Q
- Corollary of divisibility theorem.

$$rac{q^k-1}{q^{ ext{gcd}(n,k)}-1}\cdot x\in\mathbb{Z},$$

restricting denominator of fraction x in canceled form.

Example

k | n ⇒ x ∈ Z.
 Already known: Blokhuis, De Boeck, D'haeseleer (2019).

- *n* and *k* coprime \implies $(1 + q + ... + q^{k-1}) \cdot x \in \mathbb{Z}$.
- ► $k = 4, n \equiv 2 \pmod{4} \implies (1 + q^2) \cdot x \in \mathbb{Z}.$

The paired construction

- Construction for the set case q = 1 only.
- Idea. Disjoint union of two "opposite" basic sets.
- Let $I, J \subseteq V$ be disjoint, not both empty. Define

$$\mathcal{P}(I,J) \coloneqq \mathcal{F}(I,J^{\complement}) \uplus \mathcal{F}(J,I^{\complement})$$

Clear:

 $\deg \mathcal{P}(I, J) \leq \min(\#I + \#J, k)$ (trivial bound).

(日) (日) (日) (日) (日) (日) (日)

Will see: There are cases with a strict "<"!</p>

Example

•
$$V = \{1, \ldots, 6\}, k = 3, I = \emptyset, J = \{4, 5, 6\},$$

 $\mathcal{P}(\emptyset, \{4, 5, 6\})$

- $= \quad \mathcal{F} \big(\emptyset, \{1, 2, 3\} \big) \uplus \mathcal{F} \big(\{4, 5, 6\}, \{1, 2, 3, 4, 5, 6\} \big)$
- $= \{\{1,2,3\},\{4,5,6\}\} \text{ Baby example}!$
- ► Already seen: deg P(Ø, {1,2,3}) = 2, beating the trivial bound "≤ 3"!

Example

•
$$V = \{1, ..., 7\}, k = 3, I = \{1\}, J = \{6, 7\}.$$

 $\mathcal{P}(\{1\},\{6,7\})$

- $= \quad \mathcal{F}(\{1\},\{1,2,3,4,5\}) \uplus \mathcal{F}(\{6,7\},\{2,3,4,5,6,7\})$
- $= \begin{array}{l} \left\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\\ \left\{2,6,7\},\{3,6,7\},\{4,6,7\},\{5,6,7\}\right\} \end{array}\right.$

• $deg(\mathcal{P}(\{1\},\{6,7\})=2)$, beating the trivial bound.

Theorem

Let q = 1, $I, J \subseteq V$ disjoint, i = #I, j = #J, $k \leq \frac{n}{2}$, $i \leq k \leq n - i$, $j \leq k \leq n - j$. In the cases

```
(a) i+j \leq k and i+j odd;
```

```
(b) i + j \ge k and k odd and n = 2k
```

we have

$$\deg \mathcal{P}(I,J) \leq \min(i+j,k) - 1.$$

Proof (Idea).

Part (a): Write $\chi_{\mathcal{P}(I,J)}$ as an integer linear combination of basic functions of degree i + j - 1.

Part (b):

- Use P(X, Y) = P(X ⊎ {x}, Y) ⊎ P(X, Y ⊎ {x}) (where X, Y, {x} are pairwise disjoint)
- Moving elements from J to $I \rightsquigarrow \deg \mathcal{P}(I, J) \leq \deg \mathcal{P}(K, J')$
- ► $\mathcal{P}(K, J') = \mathcal{P}(K, \emptyset) \implies$ Back in Case (a).

Theorem

Let q = 1, $I, J \subseteq V$ disjoint, i = #I, j = #J, $k \leq \frac{n}{2}$, $i \leq k \leq n-i$, $j \leq k \leq n-j$. In the cases (a) $i + j \leq k$ and i + j odd; (b) $i + j \geq k$ and k odd and n = 2kwe have

$$\deg \mathcal{P}(I,J) \leq \min(i+j,k) - 1.$$

Conjecture

Statement of Theorem is best possible.

In fact always equality

$$\deg \mathcal{P}(I,J) = \min(i+j,k) - 1.$$

In all cases not covered by (a) and (b), the trivial bound is sharp:

$$\deg \mathcal{P}(I,J) = \min(i+j,k).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Small sets of degree t

- Natural question. Smallest size m_q(n, k, t) of a non-empty set of degree ≤ t?
- From deg $\boldsymbol{x}_T = t$ we get

$$m_q(n,k,t) \leq {n-t \brack k-t}.$$
 (*)

(日) (日) (日) (日) (日) (日) (日)

- Bound (*) is always sharp for t = 1.
 - Set case: Filmus, Ihringer (2019).
 - q-analog case: Blokhuis, De Boeck, D'haeseleer (2019).
- For q = 1, n = 2k, $t \ge 2$ even, i = 0 and j = t + 1, the paired construction beats bound (*)!

Corollary

Let $t \in \{0, \ldots, k-1\}$ be even. Then

$$m_1(2k,k,t) \leq 2 \cdot \binom{2k-t-1}{k}.$$

Open problems

- Many!
- For fixed (q, n, k, t), characterize the sizes of degree t sets.
 - Smallest,
 - second smallest,
 - gaps,
 - etc.
- Further investigate and exploit relationship

degree *t* functions \longleftrightarrow *t*-designs.

(ロ) (同) (三) (三) (三) (○) (○)

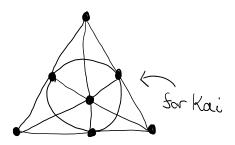
Which results can be translated?

Maybe most important:

Better name for the studied objects.

- "dual designs"? \longrightarrow ambiguous.
- Something involving "Cameron-Liebler"?
- other ideas?

Thank you!



Slides will be uploaded at

https://mathe2.uni-bayreuth.de/michaelk/