The degree of functions in the Johnson and q-Johnson schemes

Michael Kiermaier

Mathematisches Institut
Universität Bayreuth

Combinatorial Constructions Conference
April 8, 2024
Center for Advanced Academic Studies Dubrovnik, Hrvatska
joint work with Jonathan Mannaert and Alfred Wassermann

Introductory remarks

- Joint work with Jonathan Mannaert and Alfred Wassermann.
- Despite title
"The degree of functions
in the Johnson and q-Johnson schemes"
No association schemes in this talk!
- Motivation (next slide) is geometric.

Indeed: Topic close to design theory. Studied objects are "dual designs".

Cameron-Liebler line classes

- Cameron, Liebler 1982: "Special" set \mathcal{L} of lines in PG $(3, q)$.
- Defined by the following equivalent properties:
- Algebraic property:
$\chi_{\mathcal{L}} \in \mathbb{R}$-row space of the point-line incidence matrix.
- Geometric property: Constant intersection with any line spread of PG(3, q).

In literature: Various directions of generalization

- Ambient space $\mathrm{PG}(n, q)$.
- lines $\longrightarrow k$-spaces.
- Allow $q=1$ (set case).
- points \longrightarrow spaces of degree t.

Goal

Coherent theory of all above generalizations.

Subset and subspace lattices

- Fix $q=1$ (set case) or prime power $q \geq 2$ (q-analog case).
- Fix n non-negative integer.
- Let V be a $\left\{\begin{array}{l}\text { set of size } n \\ \mathbb{F}_{q} \text {-vector space of dimension } n\end{array}\right.$
- Let $\mathcal{L}(V)$ be the lattice of all $\left\{\begin{array}{l}\text { subsets of } V \\ \mathbb{F}_{q} \text {-subspaces of } V\end{array}\right.$
- For $U \in \mathcal{L}(V)$ let $\mathrm{rk}(U)=\left\{\begin{array}{l}\# U \\ \operatorname{dim}(U)\end{array}\right.$
- Let $\left[\begin{array}{l}V \\ k\end{array}\right]=\{U \in \mathcal{L}(V) \mid \mathrm{rk}(U)=k\}$. Set case: \#[$\left[\begin{array}{l}V \\ k\end{array}\right]=\binom{n}{k}=\left[\begin{array}{c}n \\ k\end{array}\right]_{1}$ Binomial coefficient. q-analog case: \# $\left[\begin{array}{l}V \\ k\end{array}\right]=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ Gaussian coefficient.
- Always: Use algebraic dimension!
(Except in established symbols like $\operatorname{PG}(n, q)$.

Algebraic property

- Algebraic property of Cameron-Liebler line classes: $\chi_{\mathcal{L}} \in \mathbb{R}$-row space of the point-line incidence matrix.
- Straightforward generalization:
- Let $W^{(t k)}$ incidence matrix of t-spaces vs. k-spaces.
- Let V_{t} be the \mathbb{R}-row space of $W^{(t k)}$.
- Function $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$ has algebraic property A_{t} if $f \in V_{t}$.

Baby example

- Let $q=1, V=\{1,2,3,4,5,6\}$ (so $n=6$), $k=3, t=2$.
- Let $\mathcal{F}=\{\{1,2,3\},\{4,5,6\}\} \subseteq\left[\begin{array}{l}V \\ 3\end{array}\right]$.
- Claim: Set \mathcal{F} has algebraic property A_{2},
i. e. its characteristic function $\chi_{\mathcal{F}}:\left[\begin{array}{l}V \\ 3\end{array}\right] \rightarrow \mathbb{R}$ has prop. A_{2}.

Baby example (cont.)

$$
\begin{aligned}
& x_{F}=(10000000000000000001)
\end{aligned}
$$

Baby example (cont.)

- $\mathcal{F}=\{\{1,2,3\},\{4,5,6\}\}$.
- We found: f has property A_{2} and the vector of 2 -weights of \mathcal{F} is

$$
\mathrm{wt}_{\mathcal{F}}^{(2)}=\left(\frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) .
$$

- Visualization.

$$
\begin{array}{r}
-1 / 6 \\
1 / 3
\end{array}
$$

- Exercise.
\mathcal{F} does not have A_{1}.

Geometric property

- Geometric property of Cameron-Liebler line classes: Constant intersection with any line spread of PG $(3, q)$
- Generalization? - Not so clear.
- Observation:
line spread of $\mathrm{PG}(3, q)$
$=$ set of lines in $\mathrm{PG}(3, q)$ covering every point exactly once
$=$ simple $1-(4,2,1)_{q}$ subspace design
- \rightsquigarrow use designs!

Definition: Simple design
A set $\mathcal{D} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ is called a simple $t-(n, k, \lambda)_{q}$ design,
if every $T \in\left[\begin{array}{l}V \\ t\end{array}\right]$ is contained in exactly λ elements of \mathcal{D}.

- set case $q=1$: combinatorial design
- q-analog case $q \geq 2$: subspace design

Example

- Let $q=1, V=\{1,2,3,4,5,6\}$ (so $n=6$), $k=3, t=2$.
- Let

$$
\begin{aligned}
\mathcal{D}= & \{\{1,2,3\},\{1,2,4\},\{1,3,6\},\{1,4,5\},\{1,5,6\}, \\
& \{2,4,6\},\{2,5,6\},\{2,3,5\},\{3,4,5\},\{3,4,6\}\} \subseteq\left[\begin{array}{l}
V \\
3
\end{array}\right] .
\end{aligned}
$$

- Check design condition for $t=2$.
- $T=\{1,2\}$ is contained in blocks $\{1,2,3\}$ and $\{1,2,4\}$.
- $T=\{1,3\}$ is contained in blocks $\{1,2,3\}$ and $\{1,3,6\}$.
- $T=\{5,6\}$ is contained in blocks $\{1,5,6\}$ and $\{2,5,6\}$.
$\Rightarrow \Longrightarrow \mathcal{D}$ is simple $2-(6,3,2)_{1}$ design.
Example (Trivial simple designs)
- \emptyset is empty $t-(v, k, 0)_{q}$ design.
- $\left[\begin{array}{l}V \\ k\end{array}\right]$ is complete $t-\left(v, k, \lambda_{\max }\right)_{q}$ design where $\lambda_{\max }:=\left[\begin{array}{c}n-t \\ k-t\end{array}\right]$.

Definition: Simple design (repeated)
A set $\mathcal{D} \subseteq\left[\begin{array}{c}V \\ k\end{array}\right]$ is called a simple $t-(n, k, \lambda)_{q}$ design,
if every $T \in\left[\begin{array}{l}V \\ t\end{array}\right]$ is contained in exactly λ elements of \mathcal{D}.

- set case $q=1$: combinatorial design
- q-analog case $q \geq 2$: subspace design

Reformulation in characteristic functions

- Let \boldsymbol{x}_{T} be characteristic function of pencil $\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, T \subseteq K\right\}$.
- For $f, g:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$ fix standard inner product $\langle f, g\rangle=\sum_{K \in\left[\begin{array}{l}{[J}\end{array}\right]} f(K) g(K)$.
- Note that $\#(\mathcal{F} \cap \mathcal{G})=\left\langle\chi_{\mathcal{F}}, \chi_{\mathcal{G}}\right\rangle$ for $\mathcal{F}, \mathcal{G} \subseteq\left[\begin{array}{l}V_{k}\end{array}\right]$.
- \mathcal{D} is simple $t-(n, k, \lambda)_{q}$ design

$$
\Longleftrightarrow\left\langle\boldsymbol{x}_{T}, \chi_{\mathcal{D}}\right\rangle=\lambda \text { for all } T \in\left[\begin{array}{c}
V \\
t
\end{array}\right] .
$$

$-\rightsquigarrow$ generalization to real designs.

Generalized definition: Real design
A function $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$ is called a real $t-(n, k, \lambda)_{q}$ design,
if $\left\langle\boldsymbol{x}_{T}, f\right\rangle=\lambda$ for all $T \in\left[\begin{array}{c}V \\ t\end{array}\right]$.

- f null design or trade if $\lambda=0$.
- f signed design if $\operatorname{im}(f) \subseteq \mathbb{Z}$.
- f design or possibly non-simple design if im $(f) \subseteq \mathbb{N}$. (Idea: simple design, but with possibly repeated blocks)
- f (characteristic function of) simple design $\Longleftrightarrow \operatorname{im}(f) \subseteq\{0,1\} \Longleftrightarrow f$ Boolean.
Further reformulation
- Observation:

Functions \boldsymbol{x}_{T} (interpreted as vectors)
are the rows of incidence matrix $W^{(t k)}$.

- Therefore:
f real $t-(n, k, \lambda)_{q}$ design $\Longleftrightarrow W^{(t k)} f=\lambda 1$.
- In particular:
f real $t-(n, k, 0)_{q}$ null design $\Longleftrightarrow W^{(t k)} f=\mathbf{0}$

Geometric property, basic version

- For $\lambda \in \mathbb{R}$ let $U_{\lambda}:=$ set of real $t-(n, k, \lambda)_{q}$ design.
- Just seen: $U_{0}=\operatorname{ker} W^{(t k)}$.
- Set of functions with A_{t} was $V_{t}=$ rowsp $W^{(t k)}$.

$$
\Longrightarrow V_{t}=U_{0}^{\perp}
$$

What did we get?

- Established a connection to designs.
- Concept known as Delsarte's design orthogonality.
- Compared to prototype "constant intersection with all spreads":
Want similar property for $\lambda \neq 0$!

Geometric property, version II

- $\operatorname{Fix} \lambda \in \mathbb{R}$.
- Scaled complete design $\frac{\lambda}{\lambda_{\max }} \cdot \mathbf{1}$ is real $t-(n, k, \lambda)_{q}$ design.
- As solution of linear equation system $W^{(t k)} f=\lambda \mathbf{1}$:

$$
U_{\lambda}=\frac{\lambda}{\lambda_{\max }} \cdot \mathbf{1}+\underbrace{\operatorname{ker} W^{(t k)}}_{=U_{0}=V_{t}^{\perp}} .
$$

$$
\begin{aligned}
& U_{\lambda}=\left\{\delta:\left[\begin{array}{l}
V \\
k
\end{array}\right] \rightarrow \mathbb{R} \left\lvert\,\langle f, \delta\rangle=\frac{\lambda}{\lambda_{\max }} \cdot \# f\right. \text { for all } f \in V_{t}\right\} \text { and } \\
& V_{t}=\left\{f:\left[\begin{array}{l}
V \\
k
\end{array}\right] \rightarrow \mathbb{R} \left\lvert\,\langle f, \delta\rangle=\frac{\lambda}{\lambda_{\max }} \cdot \# f\right. \text { for all } \delta \in U_{\lambda}\right\} \text { Vers. II } \\
& \text { (with } \# f=\sum_{K \in\left[\begin{array}{l}
V_{k} \\
k
\end{array}\right]} f(K)=\langle f, \mathbf{1}\rangle \text {, motivated by } \# \mathcal{F}=\# \chi_{\mathcal{F}} \text {) }
\end{aligned}
$$

- Still room for improvement:
- Not happy about "For all real . . . designs". \rightsquigarrow enough to look at basis of U_{λ}.
- Allow mixed values of λ.

Example

- $q=1, n=6, k=3, t=2 \rightsquigarrow \lambda_{\text {max }}=\left[\begin{array}{l}6-2 \\ 3-2\end{array}\right]=4$.
- Baby example: $\mathcal{F}=\{\{1,2,3\},\{4,5,6\}\}$, seen: $\chi_{\mathcal{F}} \in V_{2}$.
- Geometric property \Longrightarrow For each 2-(6, 3, 2) $)_{1}$ design:

$$
\left\langle\chi_{\mathcal{F}}, \delta\right\rangle=\frac{\lambda}{\lambda_{\max }} \cdot \# \chi_{\mathcal{F}}=\frac{2}{4} \cdot 2=1 .
$$

- \Longrightarrow Each simple 2-(6,3,2) $)_{1}$ design \mathcal{D} contains exactly one of the blocks $\{1,2,3\}$ and $\{4,5,6\}$.
- $\rightsquigarrow \mathcal{D}$ is anti-complementary.
- Can also be shown using intersection numbers.

Geometric property, toolbox version

- $U_{*}:=$ set of all $t-(v, k, \lambda)_{q}$ designs with arbitrary value $\lambda \in \mathbb{R}$.
- By scaled complete designs: $U_{*}=U_{0}+\langle\mathbf{1}\rangle_{\mathbb{R}}$.
- Lemma (Toolbox version of geometric property). Let $\Delta \subseteq U_{*}$. Then

$$
\begin{aligned}
V_{t}=\left\{f:\left[\begin{array}{l}
V \\
k
\end{array}\right] \rightarrow \mathbb{R} \left\lvert\,\langle f, \delta\rangle=\frac{\lambda_{\delta}}{\lambda_{\max }}\right.\right. & \Rightarrow f \text { for all } \delta \in \Delta\} \\
& \Longleftrightarrow\langle\Delta \cup\{\mathbf{1}\}\rangle_{\mathbb{R}}=U_{*}
\end{aligned}
$$

Proof. Dimension argument. Use that $W^{(t k)}$ has full rank (Set case: Gottlieb 1966, q-analog case: Kantor 1972)

- Question: Suitable sets Δ ?

Lemma
Let Δ be
(a) the set of all signed $t-(n, k, 0)_{q}$ null designs or
(b) the set of all possibly non-simple $t-(n, k, \lambda)_{q}$ designs

Then $U_{*}=\langle\Delta \cup\{\mathbf{1}\}\rangle_{\mathbb{R}}$.
Proof.
Part (a).

- entries of $W^{(k k)}$ are in \mathbb{Q}.
- $\Longrightarrow U_{0}=\operatorname{ker} W^{(t k)}$ has rational basis.
- Multiply by common denominators \rightsquigarrow integral basis B.
$-\Longrightarrow B \subseteq \Delta$ and $\langle B \cup\{\mathbf{1}\}\rangle_{\mathbb{R}}=U_{*}$.
Part (b).
- Start with B.
- Add suitable integral multiples of 1 \rightsquigarrow non-negative integral set B^{\prime}.
$-\Longrightarrow B^{\prime} \subseteq \Delta$ and $\left\langle B^{\prime} \cup\{\mathbf{1}\}\right\rangle_{\mathbb{R}}=U_{*}$.

We arrive at:
Theorem
Let $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$. The following are equivalent.
(i) Algebraic property: $f \in V_{t}$.

Geometric properties:
(ii) There is a constant $c \in \mathbb{R}$ such that $\langle f, \delta\rangle=\lambda_{\delta} c$ for all real $t-(n, k, *)_{q}$ designs δ with $\lambda \in \mathbb{R}$.
(iii) $\langle f, \delta\rangle=0$
for all signed $t-(n, k, 0)_{q}$ null designs $\delta:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{Z}$.
(iv) There is a constant $c \in \mathbb{R}$ such that $\langle f, \delta\rangle=\lambda_{\delta} c$ for all possibly non-simple t - $(n, k, *)_{q}$ designs $\delta:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{N}$.
The constant in properties (ii) and (iv) necessarily equals $c=\frac{1}{\lambda_{\text {max }}} \cdot \# f$.

Geometric property: Discussion

- Tempting: Is the following a suitable geometric property?
"There is a constant $c \in \mathbb{R}$ such that $\langle f, \delta\rangle=\lambda c$ for all simple $t-(n, k, *)_{q}$ designs"
- By toolbox version: If and only if $\left\langle\left\{\text { simple } t-(n, k, *)_{q} \text { designs }\right\}\right\rangle_{\mathbb{R}}=U_{*}$ (richness cond)
- Unfortunately: Not always true.

Counterexample. $q=1, n=10, k=5, t=4$. By integraliy conditions: All simple $4-(10,5, *)_{1}$ are trivial. $\Longrightarrow \operatorname{dim}\left\langle\left\{\text { simple } 4-(10,5, *)_{1} \text { designs }\right\}\right\rangle_{\mathbb{R}}=1$, too small!

- Research problem. (probably hard!)

Classify the parameters (q, n, k, t) where the richness condition holds.

The Degree

- Fix $k \in\{0, \ldots, n\}$ and $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$.
- Lemma.

$$
\{\mathbf{1}\}=V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{k}=V
$$

Proof. $W^{(i j)} W^{(j k)} \sim W^{(i k)}$ for $0 \leq i \leq j \leq k$.

- Definition.

Degree $\operatorname{deg}(f):=$ smallest t such that $f \in V_{t}$.

Example

- Functions f of degree 0 are the scalar functions $f=\lambda \mathbf{1}$ with $\lambda \in \mathbb{R}$.
- Baby example $\mathcal{F}=\{\{1,2,3\},\{4,5,6\}\}$. In $V=\{1,2,3,4,5,6\}$ we have $\operatorname{deg}(\mathcal{F}):=\operatorname{deg}\left(\chi_{\mathcal{F}}\right)=2$.
- Seen: $\chi_{\mathcal{F}} \in V_{2}$.
- Exercise: $\chi_{\mathcal{F}} \notin V_{1}$.
- In $V=\{1,2,3,4,5,6,7\}$ we have $\operatorname{deg}(\mathcal{F})=3$.
\Longrightarrow Ambient space V matters!

The Degree (cont.)

- Remember. Rows of $W^{(k)}$ are the t-pencils \boldsymbol{x}_{T}.
- \rightsquigarrow Alternative characterization of degree. $\operatorname{deg}(f)$ is smallest t such that f is a linear combination of t-pencils \boldsymbol{x}_{T}. The (unique) coefficients are called t-weights $\mathrm{wt}_{f}(T)$ of f :

$$
f=\sum_{T \in\left[\begin{array}{l}
{[V}
\end{array}\right]} \mathrm{wt}_{f}(T) \boldsymbol{x}_{T}
$$

Lemma
(a) $\operatorname{deg}(\lambda f) \leq \operatorname{deg}(f)$ with equality iff $\lambda \neq 0$.
(b) $\operatorname{deg}(f+g) \leq \max (\operatorname{deg}(f), \operatorname{deg}(g))$.
(c) $\operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)$.

Proof.
Parts (a), (b): easy. Part (c): Use weights \& $\operatorname{deg} \boldsymbol{x}_{T} \leq \mathrm{rk} T$.

Dualization

- Fix anti-isomorphism \perp of the lattice $\mathcal{L}(V)$.
- Set case: Set complement.
- q-analog case: Perp wrt non-degenerate bilinear form.
- Induces dual map of $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$:

$$
f^{\perp}:\left[\begin{array}{c}
V \\
n-k
\end{array}\right] \rightarrow \mathbb{R}, \quad U \mapsto f\left(U^{\perp}\right)
$$

- Effect of dualization on the degree?

Theorem

(a) $\operatorname{deg} f^{\perp}=\operatorname{deg} f$.
(b) For $i \in\{0, \ldots, \operatorname{deg} f\}$, the i-weight distribution of f^{\perp} is

$$
\mathrm{wt}_{f \perp}^{(i)}(J)=\sum_{I \in\left[\begin{array}{l}
V \\
i
\end{array}\right]} \gamma\left(n-k, i, \mathrm{rk}\left(I^{\perp} \cap J\right)\right) \mathrm{wt}_{f}^{(i)}(I)
$$

where

Proof.

- Enough to look at pencils $f=\boldsymbol{x}_{J}$.
- Set up linear equation system for the weights of f^{\perp}, assuming that wt (I) only depends on $\mathrm{rk}(I \cap J)$.
- Equation system matrix is triangular with non-zero diagonal \Longrightarrow invertible \Longrightarrow Part (a).
- Apply negation formula \& q-Vandermonde formula for Gaussian coefficients \rightsquigarrow compute solution \rightsquigarrow Part (b).

Change of ambient space
Two elementary ways to shrink the ambient space V.

- $V \rightarrow H \quad\left(H \in\left[\begin{array}{c}V \\ n-1\end{array}\right]\right.$ hyperplane $)$
- $V \rightarrow V / P \quad\left(P \in\left[\begin{array}{l}V \\ 1\end{array}\right]\right.$ point $)$

Implication on the degree?
We start with $V \rightarrow V / P$.

Theorem
Let $1 \leq k \leq n$ and $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]$. Then

$$
\Phi: \mathbb{R}^{\left[\begin{array}{l}
{[/ P-1}
\end{array}\right]} \rightarrow \mathbb{R}^{\left[\begin{array}{l}
V
\end{array}\right],} \quad \Phi(f): K \mapsto \begin{cases}f(K / P) & \text { if } P \subseteq K, \\
0 & \text { if } P \nsubseteq K\end{cases}
$$

is an injective \mathbb{R}-linear map with

$$
\begin{aligned}
\operatorname{im}(\Phi) & =\left\{g \in \mathbb{R}_{\left[\left.\begin{array}{l}
{\left[\begin{array}{l}
k
\end{array}\right]}
\end{array} \right\rvert\, \text { supp } \left.g \subseteq\left[\begin{array}{l}
V \\
k
\end{array}\right] \right\rvert\, p\right\}} \quad\right. \text { and } \\
\operatorname{deg}_{V} \Phi(f) & = \begin{cases}0 & \text { if } f=0, \\
\min (\overbrace{\operatorname{deg}_{V / P}(f)+1}^{\text {main case }}, n-k) & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Proof.

- Straightforward, except " $\operatorname{deg}_{V} \Phi(f) \geq \operatorname{deg}_{V / P}(f)+1$ ".
- Lemma. In main case

For all $g \in \operatorname{im} \Phi: \quad P \not \leq T \Longrightarrow \operatorname{wt}_{g}(T)=0$.
Proof. Incidence matrices of certain attenuated geometries are of full rank. (Guo, Li, Wang, 2014.)

Theorem
Let $1 \leq n-k \leq n$ and $H \in\left[\begin{array}{c}v \\ n-1\end{array}\right]$. Then

$$
\left.\Psi: \mathbb{R}^{[H]}\right] \rightarrow \mathbb{R}^{\left[{ }^{[k}\right]}, \quad \Psi(f): K \mapsto \begin{cases}f(K) & \text { if } K \subseteq H, \\ 0 & \text { if } K \nsubseteq H\end{cases}
$$

is an injective \mathbb{R}-linear map with

$$
\begin{aligned}
& \operatorname{deg}_{V} \Psi(f)= \begin{cases}0 & \text { if } f=0, \\
\min \left(\operatorname{deg}_{H}(f)+1, k\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof.

Follows from the previous theorem by dualization.

Example (Basic sets)

- Start with "complete set" $\left[\begin{array}{c}W \\ \ell\end{array}\right]$ of degree 0 .

- i-fold application of Φ and j-fold application of ψ
\rightsquigarrow basic set $\mathcal{F}(I, J)=\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, I \subseteq K \subseteq J\right\}$.
- By theorems: $\operatorname{deg} \mathcal{F}(I, J)=i+j$.

Example (Basic sets)

- Start with "complete set" $\left[\begin{array}{c}W \\ \ell\end{array}\right]$ of degree 0 .

- i-fold application of Φ and j-fold application of ψ
\rightsquigarrow basic set $\mathcal{F}(I, J)=\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, I \subseteq K \subseteq J\right\}$.
- By theorems: $\operatorname{deg} \mathcal{F}(I, J)=i+j$.

Example (Basic sets (cont.))

- Basic sets $\mathcal{F}(I, J)$ include pencils ($j=0$) and dual pencils ($i=0$). In particular $\operatorname{deg} \boldsymbol{x}_{l}=\mathrm{rk}$ I.
- Geometric property of $\mathcal{F}(I, J)$

design property of i-fold derived and j-fold residual design.

Sets and Boolean functions

- Of particular interest: Sets $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ of low degree.
- Via characteristic functions: Sets correspond to Boolean functions $\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow\{0,1\}$.

Boolean degree 1 functions

- Set case:

Filmus, Ihringer 2019:
Only basic functions.
\Longrightarrow only pencils and dual pencils (since $t=1$).

- q-analog case:

Boolean degree 1 function = Cameron-Liebler set of $(k-1)$-spaces in PG $(n-1, q)$.
Non-basic examples do exist.
Classification: Hard research problem.

Computer classification

Goal.
For $q=1$ and small n, k, classify all sets \mathcal{F} of degree $t=2$.
Strategy.

- Use "basic" geometric property:

$$
\operatorname{deg} \chi_{\mathcal{F}} \leq t \Longleftrightarrow \chi_{\mathcal{F}} \in \operatorname{ker} W^{(t k)}
$$

\rightsquigarrow Want to find all $\{0,1\}$-vectors in ker $W^{(t k)}$.

- Find integral basis of ker $W^{(t k)}$.
- either: computationally
- or: Use literature like

Khosrovshahi, Ajoodani-Namini (1990):
A new basis for trades

- \rightsquigarrow system of linear Diophantine equations.
- Solve using solvediophant (A. Wassermann)
- Filter out isomorphic copies. (action of symmetric group \mathfrak{S}_{n})

Results

n	k	size distribution	Σ
6	3	$24^{3} 6^{5} 8^{8} 10^{10} 12^{8} 14^{5} 16^{3} 18$	44
7	3	$5^{2} 10^{6} 15^{12} 20^{12} 25^{6} 30^{2}$	40
8	3	$6811121415^{2} 16171820^{2} 21^{2} 222324^{3} 2526^{4} 2728^{2} \ldots$	52
9	3	$714^{2} 21^{5} 28^{5} 35^{5} 42^{11} 49^{5} 56^{5} 63^{5} 70^{2} 77$	47
10	3	$8162024^{2} 28^{3} 32^{2} 36^{4} 40^{2} 44^{2} 48^{2} 52^{2} 56^{5} 60^{5} 64^{5} 68^{2} 72^{2} \ldots$	59
8	4	$1015^{2} 20^{3} 30^{6} 35^{4} 40^{6} 50^{3} 55^{2} 60$	28
9	4	$21^{2} 35^{3} 56^{5} 70^{5} 91^{3} 105^{2}$	20
10	4	$284256^{2} 7084^{2} 98^{3} 112^{3} 126^{2} 140154^{2} 168182$	20
11	4	$367884^{2} 120^{2} 126162^{3} 168^{3} 204210^{2} 246^{2} 252294$	20
12	4	$45120^{2} 135165^{2} 210240^{3} 255^{3} 285330^{2} 360375^{2} 450$	20

blue $=$ sizes of basic sets
Goal. Explain divisibility pattern of the sizes!

Theorem (Divisibility theorem)

Let $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{Z}$ be a function of degree t. Then

$$
\left.\underbrace{\operatorname{gcd}\left(\left[\begin{array}{c}
n-0 \\
k-0
\end{array}\right],\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right], \ldots,\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]\right)}_{=: a} \right\rvert\, \# f .
$$

Proof.

- Algebraic property $\Rightarrow \exists \boldsymbol{x}:\left[\begin{array}{c}V \\ t\end{array}\right] \rightarrow \mathbb{R}$ with $\boldsymbol{x}^{\top} W^{(t k)}=f^{\top}$.
- Complete design: $\boldsymbol{W}^{(t k)} \cdot \mathbf{1}=\lambda_{\text {max }} \cdot \mathbf{1}$
- Design theory:
parameters $t-\left(n, k, \lambda_{\text {min }}\right)_{q}$ with $\lambda_{\text {min }}=\frac{\lambda_{\text {max }}}{a}$ are admissible.
- $\Rightarrow \exists$ signed $t-\left(n, k, \lambda_{\text {min }}\right)_{q}$ design $\delta \Rightarrow W^{(t k)} \delta=\lambda_{\text {min }} \cdot \mathbf{1}$
- Set case: Wilson, "The necessary conditions for t-designs are sufficient for something" (1973).
- q-analog case: Ray-Chaudhuri, Singhi (1989).
- Left multiplication of (2) and (3) by \boldsymbol{x}^{\top}, using (1)
$\Longrightarrow \# f=\lambda_{\max } \cdot \# \boldsymbol{x} \quad$ and $\quad\langle f, \delta\rangle=\lambda_{\text {min }} \cdot \# \boldsymbol{x}$
$\Rightarrow \Longrightarrow \# f=a \cdot \underbrace{\langle f, \delta\rangle}_{\in \mathbb{Z}} \in \mathbb{Z}$.

Compare with the results

n	k	size distribution	a
6	3		2
7	3	$5^{2} 0^{6} 15^{12} 20^{12} 25^{6} 30^{\circ}$	5
8	3	$6811121415^{2} 16171820^{2} 211^{2} 222324^{3} 2526^{4} 2728^{2}$.	1
9	3	$714^{2} 1^{5} 28^{5} 55^{5} 42^{11} 49^{5} 56^{6} 63^{5} 70^{2} 77$	7
10	3	$8162024^{2} 28^{3} 32^{2} 36^{4} 40^{2} 44^{2} 48^{2} 52^{2} 566^{5} 60^{5} 64^{5} 68^{2} 72^{2} \ldots$	4
8	4	$1015^{2} 20^{3} 30^{6} 35^{4} 40^{6} 50^{3} 55^{2} 60$	5
9	4	$21^{2} 35^{3} 565^{5} 70^{59} 1^{13} 105^{2}$	7
10	4	$284256^{2} 7084^{2} 98^{3} 112^{3} 126^{2} 140154^{2} 168182$	14
11	4	$367884^{1+120^{2} 126162^{3} 168^{3} 204210^{2} 246^{2} 25294}$	6
12	4	$45120^{2} 135165^{5} 2102400^{3} 255^{3} 885330^{2} 360375^{2} 450$	15

Perfect fit!

Parameter of Cameron-Liebler sets of k-spaces

- Consider q-analog case $q \geq 2$.
- For sets \mathcal{F} of degree $t=1$ define parameter $x:=\# \mathcal{F} /\left[\begin{array}{c}n-1 \\ k-1\end{array}\right] \in \mathbb{Q}$
- Corollary of divisibility theorem.

$$
\frac{q^{k}-1}{q^{g \operatorname{cd}(n, k)}-1} \cdot x \in \mathbb{Z}
$$

restricting denominator of fraction x in canceled form.

Example

- $k \mid n \Longrightarrow x \in \mathbb{Z}$.

Already known: Blokhuis, De Boeck, D'haeseleer (2019).
$\checkmark n$ and k coprime $\Longrightarrow\left(1+q+\ldots+q^{k-1}\right) \cdot x \in \mathbb{Z}$.

- $k=4, n \equiv 2(\bmod 4) \Longrightarrow\left(1+q^{2}\right) \cdot x \in \mathbb{Z}$.

The paired construction

- Construction for the set case $q=1$ only.
- Idea. Disjoint union of two "opposite" basic sets.
- Let $I, J \subseteq V$ be disjoint, not both empty. Define

$$
\mathcal{P}(I, J):=\mathcal{F}\left(I, J^{\complement}\right) \uplus \mathcal{F}\left(J, I^{\complement}\right)
$$

- Clear:

$$
\operatorname{deg} \mathcal{P}(I, J) \leq \min (\# I+\# J, k) \quad \text { (trivial bound })
$$

- Will see: There are cases with a strict " $<$ "!

Example

- $V=\{1, \ldots, 6\}, k=3, I=\emptyset, J=\{4,5,6\}$,

$$
\begin{aligned}
& \mathcal{P}(\emptyset,\{4,5,6\}) \\
= & \mathcal{F}(\emptyset,\{1,2,3\}) \uplus \mathcal{F}(\{4,5,6\},\{1,2,3,4,5,6\}) \\
= & \{\{1,2,3\},\{4,5,6\}\} \quad \text { Baby example! }
\end{aligned}
$$

- Already seen: $\operatorname{deg} \mathcal{P}(\emptyset,\{1,2,3\})=2$, beating the trivial bound " ≤ 3 "!
Example

$$
\begin{aligned}
-V= & \{1, \ldots, 7\}, k=3, I=\{1\}, J=\{6,7\} . \\
& \mathcal{P}(\{1\},\{6,7\}) \\
= & \mathcal{F}(\{1\},\{1,2,3,4,5\}) \uplus \mathcal{F}(\{6,7\},\{2,3,4,5,6,7\}) \\
= & \{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\}, \\
& \{2,6,7\},\{3,6,7\},\{4,6,7\},\{5,6,7\}\}
\end{aligned}
$$

- $\operatorname{deg}(\mathcal{P}(\{1\},\{6,7\})=2$, beating the trivial bound.

Theorem
Let $q=1, I, J \subseteq V$ disjoint, $i=\# I, j=\# J, k \leq \frac{n}{2}$,
$i \leq k \leq n-i, j \leq k \leq n-j$.
In the cases
(a) $i+j \leq k$ and $i+j$ odd;
(b) $i+j \geq k$ and k odd and $n=2 k$
we have

$$
\operatorname{deg} \mathcal{P}(I, J) \leq \min (i+j, k)-1 .
$$

Proof (Idea).
Part (a): Write $\chi_{\mathcal{P}(I, \mathcal{U})}$ as an integer linear combination of basic functions of degree $i+j-1$.
Part (b):

- Use $\mathcal{P}(X, Y)=\mathcal{P}(X \uplus\{x\}, Y) \uplus \mathcal{P}(X, Y \uplus\{x\})$ (where $X, Y,\{x\}$ are pairwise disjoint)
- Moving elements from J to $I \rightsquigarrow \operatorname{deg} \mathcal{P}(I, J) \leq \operatorname{deg} \mathcal{P}\left(K, J^{\prime}\right)$
- $\mathcal{P}\left(K, J^{\prime}\right)=\mathcal{P}(K, \emptyset) \Longrightarrow$ Back in Case (a).

Theorem

Let $q=1, I, J \subseteq V$ disjoint, $i=\# I, j=\# J, k \leq \frac{n}{2}$,
$i \leq k \leq n-i, j \leq k \leq n-j$.
In the cases
(a) $i+j \leq k$ and $i+j$ odd;
(b) $i+j \geq k$ and k odd and $n=2 k$
we have

$$
\operatorname{deg} \mathcal{P}(I, J) \leq \min (i+j, k)-1 .
$$

Conjecture
Statement of Theorem is best possible.

- In fact always equality

$$
\operatorname{deg} \mathcal{P}(I, J)=\min (i+j, k)-1 .
$$

- In all cases not covered by (a) and (b), the trivial bound is sharp:

$$
\operatorname{deg} \mathcal{P}(I, J)=\min (i+j, k) .
$$

Small sets of degree t

- Natural question.

Smallest size $m_{q}(n, k, t)$ of a non-empty set of degree $\leq t$?

- From $\operatorname{deg} \boldsymbol{x}_{T}=t$ we get

$$
m_{q}(n, k, t) \leq\left[\begin{array}{l}
n-t \tag{*}\\
k-t
\end{array}\right]
$$

- Bound $(*)$ is always sharp for $t=1$.
- Set case: Filmus, Ihringer (2019).
- q-analog case: Blokhuis, De Boeck, D'haeseleer (2019).
- For $q=1, n=2 k, t \geq 2$ even, $i=0$ and $j=t+1$, the paired construction beats bound ($*$)!
Corollary
Let $t \in\{0, \ldots, k-1\}$ be even. Then

$$
m_{1}(2 k, k, t) \leq 2 \cdot\binom{2 k-t-1}{k}
$$

Open problems

- Many!
- For fixed (q, n, k, t), characterize the sizes of degree t sets.
- Smallest,
- second smallest,
- gaps,
- etc.
- Further investigate and exploit relationship degree t functions $\longleftrightarrow t$-designs.
Which results can be translated?
- Maybe most important:

Better name for the studied objects.

- "dual designs"? \longrightarrow ambiguous.
- Something involving "Cameron-Liebler"?
- other ideas?

Thank you!

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/

