The degree of functions in the Johnson and q-Johnson schemes

Michael Kiermaier

Mathematisches Institut Universität Bayreuth

DMV Meeting 2023
MS 2 - Combinatorial aspects of finite fields
September 25, 2023
Technische Universität IImenau, Germany
joint work with Jonathan Mannaert and Alfred Wassermann

Cameron-Liebler line classes

- Cameron, Liebler 1982: "Special" set \mathcal{L} of lines in PG(3, q).
- Defined by the following equivalent properties:
- Algebraic property:
$\chi_{\mathcal{L}} \in \mathbb{R}$-row space of the line-point incidence matrix.
- Geometric property: Constant intersection with any line spread of PG(3, q).

Various directions of generalization

- Ambient space $\mathrm{PG}(n, q)$.
- lines $\longrightarrow k$-spaces.
- Allow $q=1$ (set case).
- points \longrightarrow spaces of degree d.

Goal
Coherent theory of all generalizations.

Subset and subspace lattices

- Fix $q=1$ (set case) or prime power $q \geq 2$ (q-analog case).
- Fix n non-negative integer.
- Let V be a $\left\{\begin{array}{l}\text { set of size } n \\ \mathbb{F}_{q} \text {-vector space of dimension } n\end{array}\right.$
- Let $\mathcal{L}(V)$ be the lattice of all $\left\{\begin{array}{l}\text { subsets of } V \\ \mathbb{F}_{q} \text {-subspaces of } V\end{array}\right.$
- For $U \in \mathcal{L}(V)$ let $\mathrm{rk}(U)=\left\{\begin{array}{l}\# U \\ \operatorname{dim}(U)\end{array}\right.$
- Let $\left[\begin{array}{l}V \\ k\end{array}\right]=\{U \in \mathcal{L}(V) \mid \operatorname{rk}(U)=k\}$.

Set case: \#[$\left.\begin{array}{l}V \\ k\end{array}\right]=\binom{n}{k}=\left[\begin{array}{c}n \\ k\end{array}\right]_{1}$ Binomial coefficient. q-analog case: \#[$\left[\begin{array}{l}V \\ k\end{array}\right]=\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ Gaussian coefficient.

Association Schemes

- Let X finite set, $\mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}$ partition of $X \times X$.
- (X, \mathcal{R}) association scheme if
- R_{0} identity relation
- All relations R_{i} are symmetric
- There exist constants (called intersection numbers) $p_{i j}^{\ell}$ such that for all $x, y \in X$ with $(x, y) \in R_{\ell}$

$$
\#\left\{z \in X \mid(x, z) \in R_{i} \text { and }(z, y) \in R_{j}\right\}=p_{i j}^{\ell}
$$

- By definition: Set of adjacency matrices $B^{(i)}$ of R_{i} pairwise commutable
\Longrightarrow are simultaneously diagonalizable
$\Longrightarrow \mathbb{R}^{X}=V_{0} \perp \ldots \perp V_{d}$ orthogonal sum of maximal common eigenspaces

Johnson and Grassmann scheme

- Let $k \leq \frac{n}{2}$ and $X=\left[\begin{array}{l}V \\ k\end{array}\right]$.
- For $i \in\{0, \ldots, k\}$ define the relation $U_{1} R_{i} U_{2} \Longleftrightarrow \mathrm{rk}\left(U_{1} \cap U_{2}\right)=k-i$.
- Then $\left(X,\left(R_{0}, \ldots, R_{k}\right)\right)$ is a k-class association scheme. Set case: Johnson scheme q-analog case: Grassmann scheme or q-Johnson scheme.
- Maximal common eigenspaces V_{i} can be ordered s.t.

$$
\bar{V}_{i}:=V_{0} \perp \ldots \perp V_{i}=\mathbb{R} \text {-row space of } W^{(k i)} \text {, }
$$

where $W^{(k i)}$ is $\left[\begin{array}{c}V \\ k\end{array}\right]$-vs- $\left[\begin{array}{c}V \\ i\end{array}\right]$ incidence matrix.

The Degree

- Let $f:\left[\begin{array}{l}V \\ k\end{array}\right] \rightarrow \mathbb{R}$.
- Definition (via algebraic property): Degree $\operatorname{deg}(f):=$ smallest d such that $f \in \bar{V}_{d}$.
- Let \boldsymbol{x}_{U} be characteristic function of $\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, U \leq K\right\}(\operatorname{rk}(U)$-pencil)
- Dually: Let $\overline{\boldsymbol{x}}_{U}$ be characteristic function of $\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, U \geq K\right\}$ (dual $\operatorname{rk}(U)$-pencil).
- Alternative characterization of degree: $\operatorname{deg}(f)$ is smallest d such that f is a linear combination of d-pencils.
The (unique) coefficients are called weights $\mathrm{wt}_{f}(D)$ of f :

$$
f=\sum_{D \in\left[\begin{array}{l}
V \\
d
\end{array}\right]} \mathrm{wt}_{f}(D) \boldsymbol{x}_{D}
$$

- $\rightsquigarrow \operatorname{deg}(f)=0 \Longleftrightarrow f$ constant.

Lemma

- $\operatorname{deg}(\lambda f)=\operatorname{deg}(f)$ for all $\lambda \in \mathbb{R} \backslash\{0\}$.
- $\operatorname{deg}(f+g) \leq \max (\operatorname{deg}(f), \operatorname{deg}(g))$
- $\operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)$

Theorem
Let $\mathrm{rk} I \leq k$ and $n-\mathrm{rk} J \leq k$.

- $\operatorname{deg}\left(\boldsymbol{x}_{l}\right)=$ rk $/$
$-\operatorname{deg}\left(\overline{\boldsymbol{x}}_{J}\right)=n-\mathrm{rk} J$

Proof.

First part: Use that the $\operatorname{Aut}(\mathcal{L}(V))$-orbit of \boldsymbol{x}_{U} spans $V_{\text {rk }} U$. Second part:

- Set up linear equation system for the weights, assuming that wt (I) only depends on $\mathrm{rk}(I \cap J)$.
- Equation system matrix is an invertible triangular matrix.

What are the weights of $\overline{\boldsymbol{x}}_{U}$?
Theorem
Let $i \in\{0, \ldots, k\}, J \in\left[\begin{array}{c}V \\ n-i\end{array}\right], I \in\left[\begin{array}{c}V \\ i\end{array}\right]$ and $z=\operatorname{rk}(I \cap J)$. Then

$$
\mathrm{wt}_{\overline{\mathbf{x}}_{J}}(I)= \begin{cases}\delta_{z, k} & i f i=k, \\
(-1)^{i-z} \frac{1}{q^{(k-i)(i-z)+\binom{i-z}{2}} \frac{\left[\begin{array}{c}
c-i \\
1
\end{array}\right]}{\left[\begin{array}{c}
k-z \\
1
\end{array}\right]} \frac{1}{\left[\begin{array}{c}
k \\
z
\end{array}\right]}} \begin{array}{ll}
\text { otherwise } .
\end{array}\end{cases}
$$

Proof.

Compute the solutions of the above equation system. Use negation formula and q-Vandermonde formula for Gaussian coefficients.

Boolean functions

- Identify sets $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ with their characteristic function $\chi_{\mathcal{F}}$, commonly called Boolean function in this context.
- In this way: Define $\operatorname{deg}(\mathcal{F})=\operatorname{deg}\left(\chi_{\mathcal{F}}\right)$.
- Is there a geometric characterization of $\operatorname{deg}(\mathcal{F})$? Suitable generalization of "spread"?

Definition: Design
A set $\mathcal{D} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ is called a $t-(n, k, \lambda)_{q}$ design,
if every $T \in\left[\begin{array}{l}V \\ t\end{array}\right]$ is contained in exactly λ elements of \mathcal{D}.

Fact (Delsarte)

\mathcal{D} is a $t-(n, k, \lambda)_{q}$-design if and only if
$\chi_{\mathcal{D}} \in V_{0} \perp V_{t+1} \perp V_{t+2} \perp \ldots \perp V_{k}$.

Combined with Delsarte's concept of pairwise orthogonality, this leads to:
Fact (Geometric property of the degree)
Let $\mathcal{F} \subseteq\left[\begin{array}{c}V \\ k\end{array}\right]$. If $d=\operatorname{deg} \mathcal{F}$, then for each $d-(n, k, \lambda)_{q}$ design \mathcal{D},

$$
\#(\mathcal{F} \cap \mathcal{D})=\frac{\# \mathcal{F} \cdot \# \mathcal{D}}{\left[\begin{array}{l}
n \\
k
\end{array}\right]}
$$

Remark

- Important open question: Is the reverse implication true?
- Would follow if the characteristic functions of d-designs span $V_{0}+V_{d+1}+V_{d+2}+\ldots+V_{k}$.
(Richness statement about existence of designs)
- Hard question: This would imply Hartman's conjecture from 1987.

Boolean degree 1 functions

- Set case: (Filmus, Ihringer 2019) Only the trivial examples \boldsymbol{x}_{P} and $\overline{\boldsymbol{x}}_{H}\left(P \in\left[\begin{array}{l}V \\ 1\end{array}\right], H \in\left[\begin{array}{c}V \\ n-1\end{array}\right]\right)$.
- q-analog case:

Boolean degree 1 function = Cameron-Liebler set of $(k-1)$-spaces in PG $(n-1, q)$.
Non-trivial examples do exist.
Complete classification probably out of reach.

Change of ambient space
Implication of change of ambient space
$-V \rightarrow H \quad\left(H \in\left[\begin{array}{c}V \\ n-1\end{array}\right]\right.$ hyperplane $)$

- $V \rightarrow V / P \quad\left(P \in\left[\begin{array}{l}V \\ 1\end{array}\right]\right.$ point $)$
on the degree?

Theorem
Let $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]$ and

$$
\mathcal{A}=\left\{g: \left.\left[\begin{array}{l}
V \\
k
\end{array}\right] \rightarrow \mathbb{R} \right\rvert\, g(K)=0 \text { for all } K \in\left[\begin{array}{l}
V \\
k
\end{array}\right] \text { with } P \not \equiv K\right\} .
$$

Then

$$
\Phi: \mathbb{R}^{\left[\begin{array}{l}
{[/-1}
\end{array}\right]} \rightarrow \mathcal{A}, \quad \Phi(f): K \mapsto \begin{cases}f(K / P) & \text { if } P \subseteq K, \\
0 & \text { if } P \nsubseteq K\end{cases}
$$

is an isomorphism of \mathbb{R}-vector spaces and $\operatorname{deg}_{V} \Phi(f)=\operatorname{deg}_{V / P}(f)+1$ (except certain border cases).
Proof.

- Everything straightforward, except $" \operatorname{deg}_{V} \Phi(f) \geq \operatorname{deg}_{V / P}(f)+1$ ".
- Lemma. $P \nsubseteq D \Longrightarrow \operatorname{wt}_{g}(D)=0$ for all $g \in \mathcal{A}, D \in\left[\begin{array}{c}V \\ \operatorname{deg}(g)\end{array}\right]$.
- Can be shown using a result of Guo, Li, Wang (2014) stating that the incidence matrices of certain attenuated geometries are of full rank.

Theorem
Let $H \in\left[\begin{array}{c}V \\ n-1\end{array}\right]$ and

$$
\mathcal{B}=\left\{g: \left.\left[\begin{array}{l}
V \\
k
\end{array}\right] \rightarrow \mathbb{R} \right\rvert\, g(K)=0 \text { for all } g \in\left[\begin{array}{l}
V \\
k
\end{array}\right] \text { with } K \notin H\right\} .
$$

Then

$$
\left.\Psi: \mathbb{R}^{[H}\right] \rightarrow \mathcal{B}, \quad \Psi(f): K \mapsto \begin{cases}f(K) & \text { if } P \subseteq H, \\ 0 & \text { if } P \nsubseteq H\end{cases}
$$

is an isomorphism of \mathbb{R}-vector spaces and $\operatorname{deg}_{V}(\Psi(f))=\operatorname{deg}_{H}(f)+1$ (except certain border cases).

Proof.
Follows from the previous theorem by dualization.

Basic sets of degree d

- Let $I, J \in \mathcal{L}(V)$ with $I \leq J$ and $r k I+\operatorname{cork} J \leq k$ where corank cork $J=n-\mathrm{rk} J$.
- Let $\mathcal{F}(I, J)=\left\{\left.K \in\left[\begin{array}{l}V \\ k\end{array}\right] \right\rvert\, I \leq K \leq J\right\}$.
- By the above theorems

$$
\operatorname{deg} \mathcal{F}(I, J)=\operatorname{rk} I+\operatorname{cork} J .
$$

- Basic sets include pencils (rk $I=0$) and dual pencils (cork $J=0$).

The paired construction

- Construction for the set case $q=1$.
- Idea: Disjoint union of two "opposite" basic sets.
- Let $I, J \subseteq V$ disjoint, not both empty. Let

$$
\mathcal{P}(I, J)=\mathcal{F}\left(I, J^{\complement}\right) \uplus \mathcal{F}\left(J, I^{\complement}\right)
$$

- Clear: $\operatorname{deg} \mathcal{P}(I, J) \leq \min (\# I+\# J, k)$.
- There are cases with a strict " $<$ "!

Theorem

Let $q=1, I, J \subseteq V$ disjoint, $i=\# I, j=\# J, k \leq \frac{n}{2}$,
$i \leq k \leq n-i, j \leq k \leq n-j$.
In the cases

1. $i+j \leq k$ and $i+j$ odd;
2. $i+j \geq k$ and k odd and $n=2 k$
we have $\operatorname{deg} \mathcal{P}(I, J) \leq \min (i+j, k)-1$.
Proof (Idea).
Case 1: Write $\chi_{\mathcal{P}(I, J)}$ as an integer linear combination of basic characteristic functions of degree $i+j-1$.
Case 2: Induction based on

- $\mathcal{P}(X, Y)=\mathcal{P}(X \uplus\{x\}, Y) \uplus \mathcal{P}(X, Y \uplus\{x\})$ (where $X, Y,\{x\}$ are pairwise disjoint)
- $\mathcal{P}(K, J)=\mathcal{P}(K, \emptyset)$ for $K \in\left[\begin{array}{l}V \\ k\end{array}\right]$ and all J.
- Case 1

Small sets of degree d

- Natural question:

Smallest size $m_{q}(d, k, n)$ of a non-empty set of degree d ?

- From $\operatorname{deg} \boldsymbol{x}_{D}=d$ we get the trivial bound

$$
m_{q}(d, k, n) \leq\left[\begin{array}{l}
n-d \\
k-d
\end{array}\right] .
$$

- Trivial bound is sharp for $d=1$.
- For $q=1, n=2 k, d \geq 2$ even, $i=0$ and $j=d+1$, the paired construction beats the trivial bound!

Corollary
Let $d \in\{0, \ldots, k-1\}$ be even. Then

$$
m_{1}(d, k, 2 k) \leq 2 \cdot\binom{2 k-d-1}{k}
$$

Thank you!

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/

