The degree of functions in the Johnson and *q*-Johnson schemes

Michael Kiermaier

Mathematisches Institut Universität Bayreuth

DMV Meeting 2023 MS 2 – Combinatorial aspects of finite fields September 25, 2023 Technische Universität Ilmenau, Germany

joint work with Jonathan Mannaert and Alfred Wassermann

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cameron-Liebler line classes

- Cameron, Liebler 1982:
 "Special" set L of lines in PG(3, q).
- Defined by the following equivalent properties:
 - Algebraic property:
 - $\chi_{\mathcal{L}} \in \mathbb{R}$ -row space of the line-point incidence matrix.
 - Geometric property: Constant intersection with any line spread of PG(3, q).

(ロ) (同) (三) (三) (三) (○) (○)

Various directions of generalization

- Ambient space PG(n, q).
- ▶ lines \rightarrow *k*-spaces.
- Allow q = 1 (set case).
- points \rightarrow spaces of degree *d*.

Goal

Coherent theory of all generalizations.

Subset and subspace lattices

Fix q = 1 (set case) or prime power $q \ge 2$ (*q*-analog case).

Fix *n* non-negative integer.

• Let *V* be a $\begin{cases} \text{set of size } n \\ \mathbb{F}_{a} \text{-vector space of dimension } n \end{cases}$ • Let $\mathcal{L}(V)$ be the lattice of all $\begin{cases}
subsets of V \\
\mathbb{F}_q$ -subspaces of VFor $U \in \mathcal{L}(V)$ let $\mathsf{rk}(U) = \begin{cases} \#U \\ \dim(U) \end{cases}$ • Let $\begin{bmatrix} V \\ k \end{bmatrix} = \{ U \in \mathcal{L}(V) \mid \mathsf{rk}(U) = k \}.$ Set case: $\# \begin{bmatrix} V \\ k \end{bmatrix} = \binom{n}{k} = \begin{bmatrix} n \\ k \end{bmatrix}_1$ Binomial coefficient. *q*-analog case: $\# \begin{bmatrix} V \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_{q}$ Gaussian coefficient.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Association Schemes

- Let X finite set, $\mathcal{R} = \{R_0, \ldots, R_d\}$ partition of $X \times X$.
- ► (X, R) association scheme if
 - R₀ identity relation
 - All relations R_i are symmetric
 - There exist constants (called intersection numbers) p^ℓ_{ij} such that for all x, y ∈ X with (x, y) ∈ R_ℓ

$$\#\{z \in X \mid (x,z) \in R_i \text{ and } (z,y) \in R_j\} = p_{ij}^\ell$$

- By definition: Set of adjacency matrices B⁽ⁱ⁾ of R_i pairwise commutable
 - \implies are simultaneously diagonalizable

 $\implies \mathbb{R}^X = V_0 \perp \ldots \perp V_d$ orthogonal sum of maximal common eigenspaces

Johnson and Grassmann scheme

- Let $k \leq \frac{n}{2}$ and $X = \begin{bmatrix} V \\ k \end{bmatrix}$.
- For $i \in \{0, ..., k\}$ define the relation $U_1 \ R_i \ U_2 \iff \operatorname{rk}(U_1 \cap U_2) = k - i.$
- Then (X, (R₀,..., R_k)) is a k-class association scheme. Set case: Johnson scheme q-analog case: Grassmann scheme or q-Johnson scheme.
- Maximal common eigenspaces V_i can be ordered s.t.

$$\overline{V}_i \coloneqq V_0 \perp \ldots \perp V_i = \mathbb{R}$$
-row space of $W^{(ki)}$,

(日) (日) (日) (日) (日) (日) (日)

where $W^{(ki)}$ is $\begin{bmatrix} V \\ k \end{bmatrix}$ -vs- $\begin{bmatrix} V \\ i \end{bmatrix}$ incidence matrix.

The Degree

- Let $f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R}$.
- ► Definition (via algebraic property): Degree deg(f) := smallest d such that $f \in \overline{V}_d$.
- ► Let \mathbf{x}_U be characteristic function of $\{K \in \begin{bmatrix} V \\ k \end{bmatrix} \mid U \leq K\}$ (rk(U)-pencil)
- ▶ Dually: Let \bar{x}_U be characteristic function of $\{K \in \begin{bmatrix} V \\ k \end{bmatrix} \mid U \ge K\}$ (dual rk(U)-pencil).

 Alternative characterization of degree: deg(f) is smallest d such that f is a linear combination of d-pencils.

The (unique) coefficients are called weights $wt_f(D)$ of f:

$$f = \sum_{D \in {V \brack d}} \operatorname{wt}_f(D) \boldsymbol{x}_D$$

 $\blacktriangleright \ \rightsquigarrow \deg(f) = 0 \iff f \text{ constant.}$

Lemma

•
$$\deg(\lambda f) = \deg(f)$$
 for all $\lambda \in \mathbb{R} \setminus \{0\}$.

►
$$\deg(f + g) \le \max(\deg(f), \deg(g))$$

►
$$\deg(fg) \le \deg(f) + \deg(g)$$

Theorem

Let $\operatorname{rk} I \leq k$ and $n - \operatorname{rk} J \leq k$.

•
$$\deg(\boldsymbol{x}_I) = \operatorname{rk} I$$

•
$$\deg(\bar{\boldsymbol{x}}_J) = n - \operatorname{rk} J$$

Proof.

First part: Use that the Aut($\mathcal{L}(V)$)-orbit of \mathbf{x}_U spans $V_{\text{rk }U}$.

Second part:

- Set up linear equation system for the weights, assuming that wt(*I*) only depends on rk(*I* ∩ *J*).
- Equation system matrix is an invertible triangular matrix.

What are the weights of \bar{x}_U ?

Theorem

Let $i \in \{0, \dots, k\}$, $J \in \begin{bmatrix} V \\ n-i \end{bmatrix}$, $I \in \begin{bmatrix} V \\ i \end{bmatrix}$ and $z = \operatorname{rk}(I \cap J)$. Then

$$\mathsf{wt}_{\bar{\mathbf{x}}_{J}}(I) = \begin{cases} \delta_{z,k} & \text{if } i = k, \\ (-1)^{i-z} \frac{1}{q^{(k-i)(i-z) + \binom{i-z}{2}} \frac{\binom{k-i}{1}}{\binom{k-z}{1}} \frac{1}{\binom{k}{z}} & \text{otherwise.} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

Proof.

Compute the solutions of the above equation system. Use negation formula and q-Vandermonde formula for Gaussian coefficients.

Boolean functions

- ► Identify sets $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ with their characteristic function $\chi_{\mathcal{F}}$, commonly called Boolean function in this context.
- In this way: Define $\deg(\mathcal{F}) = \deg(\chi_{\mathcal{F}})$.
- Is there a geometric characterization of deg(F)? Suitable generalization of "spread"?

Definition: Design

A set $\mathcal{D} \subseteq {V \brack k}$ is called a $t \cdot (n, k, \lambda)_q$ design, if every $T \in {V \brack t}$ is contained in exactly λ elements of \mathcal{D} .

Fact (Delsarte)

 \mathcal{D} is a t-(n, k, λ)_q-design if and only if $\chi_{\mathcal{D}} \in V_0 \perp V_{t+1} \perp V_{t+2} \perp \ldots \perp V_k$.

Combined with Delsarte's concept of pairwise orthogonality, this leads to:

Fact (Geometric property of the degree) Let $\mathcal{F} \subseteq {V \brack k}$. If $d = \deg \mathcal{F}$, then for each d- $(n, k, \lambda)_q$ design \mathcal{D} ,

$$\#(\mathcal{F}\cap\mathcal{D})=rac{\#\mathcal{F}\cdot\#\mathcal{D}}{\left[egin{smallmatrix}n\k\end{bmatrix}}$$

Remark

- Important open question: Is the reverse implication true?
- Would follow if the characteristic functions of *d*-designs span V₀ + V_{d+1} + V_{d+2} + ... + V_k. (Richness statement about existence of designs)
- Hard question: This would imply Hartman's conjecture from 1987.

Boolean degree 1 functions

Set case: (Filmus, Ihringer 2019) Only the trivial examples \mathbf{x}_P and $\bar{\mathbf{x}}_H$ ($P \in \begin{bmatrix} V \\ 1 \end{bmatrix}$, $H \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$).

q-analog case:

Boolean degree 1 function = Cameron-Liebler set of (k = 1)-spaces in PC(n = 1, q)

(k-1)-spaces in PG(n-1, q).

Non-trivial examples do exist.

Complete classification probably out of reach.

Change of ambient space

Implication of change of ambient space

► $V \to H$ $(H \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$ hyperplane)

(日) (日) (日) (日) (日) (日) (日)

• $V \to V/P$ ($P \in \begin{bmatrix} V \\ 1 \end{bmatrix}$ point)

on the degree?

Theorem Let $P \in \begin{bmatrix} V \\ 1 \end{bmatrix}$ and $\mathcal{A} = \{g : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid g(K) = 0 \text{ for all } K \in \begin{bmatrix} V \\ k \end{bmatrix} \text{ with } P \nleq K \}.$ Then

$$\Phi: \mathbb{R}^{\binom{V/P}{K-1}} \to \mathcal{A}, \qquad \Phi(f): K \mapsto \begin{cases} f(K/P) & \text{if } P \subseteq K, \\ 0 & \text{if } P \nsubseteq K \end{cases}$$

is an isomorphism of \mathbb{R} -vector spaces and $\deg_V \Phi(f) = \deg_{V/P}(f) + 1$ (except certain border cases). Proof.

• Everything straightforward, except
"
$$\deg_V \Phi(f) \ge \deg_{V/P}(f) + 1$$
".

▶ Lemma. $P \not\leq D \implies \operatorname{wt}_g(D) = 0$ for all $g \in \mathcal{A}, D \in \begin{bmatrix} V \\ \deg(g) \end{bmatrix}$.

Can be shown using a result of Guo, Li, Wang (2014) stating that the incidence matrices of certain attenuated geometries are of full rank.

Theorem
Let
$$H \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$$
 and
 $\mathcal{B} = \{g : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid g(K) = 0 \text{ for all } g \in \begin{bmatrix} V \\ k \end{bmatrix} \text{ with } K \nleq H \}.$

Then

$$\Psi: \mathbb{R}^{[K]} \to \mathcal{B}, \qquad \Psi(f): K \mapsto \begin{cases} f(K) & \text{if } P \subseteq H, \\ 0 & \text{if } P \nsubseteq H \end{cases}$$

is an isomorphism of \mathbb{R} -vector spaces and $\deg_V(\Psi(f)) = \deg_H(f) + 1$ (except certain border cases).

Proof.

Follows from the previous theorem by dualization.

Basic sets of degree d

- ▶ Let $I, J \in \mathcal{L}(V)$ with $I \leq J$ and $\operatorname{rk} I + \operatorname{cork} J \leq k$ where corank cork $J = n - \operatorname{rk} J$.
- Let $\mathcal{F}(I, J) = \{K \in \begin{bmatrix} V \\ k \end{bmatrix} \mid I \leq K \leq J\}.$
- By the above theorems

$$\deg \mathcal{F}(I,J) = \operatorname{rk} I + \operatorname{cork} J.$$

Basic sets include pencils (rk I = 0) and dual pencils (cork J = 0).

The paired construction

- Construction for the set case q = 1.
- Idea: Disjoint union of two "opposite" basic sets.
- Let $I, J \subseteq V$ disjoint, not both empty. Let

$$\mathcal{P}(I,J) = \mathcal{F}(I,J^{\complement}) \uplus \mathcal{F}(J,I^{\complement})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Clear: deg $\mathcal{P}(I, J) \leq \min(\#I + \#J, k)$.
- ► There are cases with a strict "<"!

Theorem

Let q = 1, $I, J \subseteq V$ disjoint, i = #I, j = #J, $k \leq \frac{n}{2}$, $i \leq k \leq n - i$, $j \leq k \leq n - j$. In the cases

1. $i+j \leq k$ and i+j odd;

2. $i + j \ge k$ and k odd and n = 2k

we have $\deg \mathcal{P}(I, J) \leq \min(i+j, k) - 1$.

Proof (Idea).

Case 1: Write $\chi_{\mathcal{P}(I,J)}$ as an integer linear combination of basic characteristic functions of degree i + j - 1.

Case 2: Induction based on

•
$$\mathcal{P}(K, J) = \mathcal{P}(K, \emptyset)$$
 for $K \in \begin{bmatrix} V \\ k \end{bmatrix}$ and all J .

Case 1

Small sets of degree d

- Natural question: Smallest size m_q(d, k, n) of a non-empty set of degree d?
- From deg $\mathbf{x}_D = d$ we get the trivial bound

$$m_q(d,k,n) \leq {n-d \brack k-d}$$

- Trivial bound is sharp for d = 1.
- For q = 1, n = 2k, $d \ge 2$ even, i = 0 and j = d + 1, the paired construction beats the trivial bound!

Corollary

Let $d \in \{0, \dots, k-1\}$ be even. Then

$$m_1(d,k,2k) \leq 2 \cdot \binom{2k-d-1}{k}$$

Thank you!

Slides will be uploaded at

https://mathe2.uni-bayreuth.de/michaelk/

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @