Introduction The construction algorithm Results

Double and bordered α -circulant self-dual codes over finite commutative chain rings

Michael Kiermaier

Department of Mathematics Universität Bayreuth

Eleventh International Workshop on Algebraic and Combinatorial Coding Theory ACCT2008

joint work with Alfred Wassermann, Bayreuth

→ E → < E → </p>

ne construction algorithm

Results

Circulant matrices The case $R = \mathbb{Z}_4$

α -circulant matrices

Definition

- *R* a finite commutative ring with 1.
- $\alpha \in R$.
- Let $v = (v_0, v_1, \dots, v_{k-1}) \in R^k$. α -circulant matrix generated by v:

$$\operatorname{circ}_{\alpha}(\mathbf{V}) = \begin{pmatrix} \mathbf{V}_{0} & \mathbf{V}_{1} & \mathbf{V}_{2} & \dots & \mathbf{V}_{k-2} & \mathbf{V}_{k-1} \\ \alpha \mathbf{V}_{k-1} & \mathbf{V}_{0} & \mathbf{V}_{1} & \dots & \mathbf{V}_{k-3} & \mathbf{V}_{k-2} \\ \alpha \mathbf{V}_{k-2} & \alpha \mathbf{V}_{k-1} & \mathbf{V}_{0} & \dots & \mathbf{V}_{k-4} & \mathbf{V}_{k-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha \mathbf{V}_{1} & \alpha \mathbf{V}_{2} & \alpha \mathbf{V}_{3} & \dots & \alpha \mathbf{V}_{k-1} & \mathbf{V}_{0} \end{pmatrix}$$

- For $\alpha = 1$: circulant matrix
- For $\alpha = -1$: nega-circulant or skew-circulant matrix.

nac

The construction algorithm Besults Circulant matrices The case $R = \mathbb{Z}_4$

Double α -circulant codes

Definition

Let $A \in R^{k \times k} = \operatorname{circ}_{\alpha}(v)$ an α -circulant matrix. A code $C \subseteq R^{2k}$ with generator matrix $(I_k \mid A)$ is called double α -circulant code with generating word v.

 $C \text{ self-dual} \\ \iff (I_k \mid A)(I_k \mid A)^t = 0 \\ \iff AA^t = -I_k.$

イロト 不得 とくほ とくほ とう

Results

Circulant matrices The case $R = \mathbb{Z}_4$

The case $R = \mathbb{Z}_4$

Definition

• \mathbb{Z}_4 -linear code: submodule of \mathbb{Z}_4^n

• Lee weight
$$w_{\text{Lee}} : \mathbb{Z}_4 \to \mathbb{N}, \left\{ egin{array}{cc} 0 \mapsto & 0 \ 1, 3 \mapsto & 1 \ 2 \mapsto & 2 \end{array}
ight.$$

- Defined as usual: Lee weight w_{Lee} on Zⁿ₄, Lee distance d_{Lee} on Zⁿ₄ × Zⁿ₄, minimum Lee distance of a Z₄-linear code.
- ring homomorphism "modulo 2":

$$m{\gamma}:\mathbb{Z}_4 o\mathbb{F}_2, \left\{egin{array}{cc} 0,2\mapsto &0,\ 1,3\mapsto &1. \end{array}
ight.$$

Goal

We look for α -circulant self-dual codes *C* over \mathbb{Z}_4 with high minimum Lee distance!

200

Results

The construction algorithm

Circulant matrices The case $R = \mathbb{Z}_4$

Restrictions on the parameters

Restrictions on α

- For $\alpha \in \{0, 2\}$: $d_{\text{Lee}}(C) \leq 4$.
- For $\alpha = 1$: C cannot be self-dual.
- \Rightarrow Only interesting case: $\alpha = -1$.

Restrictions on the length n

For each $c \in C$: $\sum_{i=0}^{n-1} c_i^2 = 0$ \Rightarrow The number of units in c is a multiple of 4. $\Rightarrow \gamma(C)$ is a binary self-dual doubly-even code. $\Rightarrow n$ is divisible by 8.

In the following: Let *k* be a fixed dimension divisible by 4, n = 2k.

Results

Circulant matrices The case $R = \mathbb{Z}_4$

V_4 and V_2

Definition

- Let V₄ ⊆ Z^k₄ be the set of all words generating self-dual double nega-circulant codes over Z₄.
- Let V₂ ⊆ ℝ^k₂ be the set of all words generating self-dual doubly-even double circulant codes over ℝ₂.

It holds: $\gamma(V_4) \subseteq V_2$.

Goal

Find (the interesting part of) V_4 .

・ロト ・ 理 ト ・ ヨ ト ・

э

Introduction The construction algorithm Results Basic algorithm Speedup by group operation Further speedup

Outline of the construction

Idea for the construction

- Construct V₂.
- Lifting:

```
For each v \in V_2, find \gamma^{-1}(v) \cap V_4.
```

Equivalently:

Find all **lift vectors** $w \in \mathbb{F}_2^k$ such that $v + 2w \in V_4$.

Observation

The second step is time critical. We need a fast algorithm!

ヘロア 人間 アメヨア 人口 ア

Introduction Basic algorithm The construction algorithm Speedup by gro Results Further speedup

The lifting step

- Given: v ∈ V₂.
 Let C
 be the double circulant doubly-even self-dual binary code generated by v.
- Wanted: All lift vectors $w \in \mathbb{F}_2^k$ such that $v + 2w \in V_4$.
- Equivalently:

$$\sum_{i=0}^{k-1} (v+2w)_i^2 = -1_{\mathbb{Z}_4}$$

and

$$\sum_{i=0}^{k-1-t} (v+2w)_i (v+2w)_{i+t} - \sum_{i=k-t}^{k-1} (v+2w)_i (v+2w)_{i+t} = 0_{\mathbb{Z}_4}$$

for all $t \in \{1, ..., k/2\}$. • Since \overline{C} is doubly-even \Rightarrow First equation is always true. Introduction Basic algorithm The construction algorithm Speedup by group opera Results Further speedup

• Using $2^2 = 0_{\mathbb{Z}_4}$, the equations for $t \in \{1, \dots, k/2\}$ are equivalent to:

$$\underbrace{\sum_{i=0}^{k-1-t} v_i v_{i+t} - \sum_{i=k-t}^{k-1} v_i v_{i+t}}_{\equiv 0 \pmod{2}} + 2\sum_{i=0}^{k-1} (v_i w_{i+t} + v_{i+t} w_i) = 0_{\mathbb{Z}_4}$$

• Defining $(b_1,\ldots,b_{k-1})\in \mathbb{F}_2^{k-1}$ by

$$2b_t = \sum_{i=0}^{k-1-t} v_i v_{i+t} - \sum_{i=k-t}^{k-1} v_i v_{i+t}.$$

this gives

$$2\sum_{i=0}^{k-1} (v_i w_{i+t} + v_{i+t} w_i) = 2b_t \text{ for all } t \in \{1, \dots, k/2\}$$

Introduction Basic algorithm The construction algorithm Speedup by group operatio Results Further speedup

That leads to

$$\sum_{i=0}^{k-1} \left(v_i w_{i+t} + v_{i+t} w_i \right) = b_t$$

which is a linear system of equations for the w_i over the finite field \mathbb{F}_2 .

Conclusion

- For a given vector v ∈ V₂ the possible lift vectors w ∈ ℝ^k₂ can be computed by solving a linear system of equations over ℝ₂.
- The dimension of the solution space is *k*/2.

イロト イポト イヨト イヨト

Introduction The construction algorithm Besults Basic algorithm Speedup by group operation Further speedup

Group operation

Lemma (compare MacWilliams/Sloane 1977)

Let $\sigma : \mathbb{Z}_4^k \to \mathbb{Z}_4^k$ a mapping of one of the following types:

- $\sigma(\mathbf{v}) = -\mathbf{v}$.
- $\sigma(v)$ is a cyclic shift of v.
- There is an s ∈ {1,..., k − 1} with gcd(s, k) = 1 such that for all i: σ(v)_i = v_{si}

Then the nega-circulant codes generated by the vectors v and $\sigma(v)$ are equivalent.

Definition

Let G be the group generated by these mappings σ .

イロト 不得 とくほ とくほとう

Introduction The construction algorithm Besults Basic algorithm Speedup by group operation Further speedup

Updated algorithm

Observation

- G operates on V₄.
 One representative of each orbit is enough!
- $\gamma(G)$ operates on V_2 .

Updated construction algorithm

- Construct exactly one representative of each orbit under the action of γ(G) on V₂.
- Lifting: For each such γ(G)-representative v, find a representative of all G-orbits on the lift vectors w ∈ F^k₂ with v + 2w ∈ V₄.

イロト イポト イヨト イヨト

Introduction Basic algorithm The construction algorithm Speedup by grou Besults Further speedup

Lifting and the minimum distance

Lemma

Let C be a \mathbb{Z}_4 -linear code. It holds:

$$d_{ ext{Ham}}(\gamma(\mathcal{C})) \leq d_{ ext{Lee}}(\mathcal{C}) \leq 2d_{ ext{Ham}}(\gamma(\mathcal{C}))$$

Updated lifting step

- During the algorithm: The variable δ stores the best minimum Lee distance found so far.
- Lifting: Run through the γ(G)-representatives v of V₂, ordered by decreasing minimum Hamming weight d₂(v) of the binary code generated by v.
 As soon as d₂(v) ≤ δ, we are finished.

イロト イポト イヨト イヨト

Introduction The construction algorithm **Results** Results Concluding remarks Generalizations

Results

Best possible Lee distances among **all** self-dual \mathbb{Z}_4 -linear self-dual codes of the respective type:

п	8	16	24	32	40	48	56	64
double nega-circulant	6	8	12	14	14	18	16	20
bordered circulant	6	8	12	14	14	18	18	20

Bordered circulant: Generated by

$$\begin{pmatrix} & \alpha & \beta \cdots \beta \\ & \gamma & & \\ I_{k} & \vdots & A \\ & \gamma & & \end{pmatrix}$$

where A is $(k-1) \times (k-1)$ circulant, and α, β, γ suitable.

Introduction he construction algorithm

Results

Results

Concluding remarks

Generalizations

Concluding remarks

Remarks

 Most computation time goes into the computation of the minimum Lee distances.

A fast algorithm was crucial.

For n = 64: About 10 times faster than the algorithm in Magma.

 This algorithm allowed us to compute some previously unknown minimum Lee distances of Z₄-linear QR-codes.

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction Results The construction algorithm Results Generalizations

Generalizations of the construction method

• Instead of only \mathbb{Z}_4 :

Can be done for all finite commutative chain rings. Example \mathbb{Z}_8 : Two nested lifting steps $\mathbb{F}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_8$.

Direct adaption to bordered circulant α-circulant self-dual codes.

ヘロト 人間 ト ヘヨト ヘヨト

Introduction	Results
The construction algorithm	Concluding remarks
Results	Generalizations

Thanks for your attention!

► < E >

æ