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α-circulant matrices

Definition
R a finite commutative ring with 1.
α ∈ R.
Let v = (v0, v1, . . . , vk−1) ∈ Rk .
α-circulant matrix generated by v :

circα(v) =


v0 v1 v2 . . . vk−2 vk−1

αvk−1 v0 v1 . . . vk−3 vk−2
αvk−2 αvk−1 v0 . . . vk−4 vk−3

...
...

...
...

...
αv1 αv2 αv3 . . . αvk−1 v0


For α = 1: circulant matrix
For α = −1: nega-circulant or skew-circulant matrix.
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Double α-circulant codes

Definition

Let A ∈ Rk×k = circα(v) an α-circulant matrix.
A code C ⊆ R2k with generator matrix (Ik | A) is called
double α-circulant code with generating word v .

C self-dual
⇐⇒ (Ik | A)(Ik | A)t = 0
⇐⇒ AAt = −Ik .
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The case R = Z4

Definition
Z4-linear code: submodule of Zn

4

Lee weight wLee : Z4 → N,


0 7→ 0

1,3 7→ 1
2 7→ 2

.

Defined as usual: Lee weight wLee on Zn
4, Lee distance dLee

on Zn
4 × Zn

4, minimum Lee distance of a Z4-linear code.
ring homomorphism ”modulo 2”:

γ : Z4 → F2,
{

0,2 7→ 0,
1,3 7→ 1.

Goal
We look for α-circulant self-dual codes C over Z4 with
high minimum Lee distance!
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Restrictions on the parameters

Restrictions on α

For α ∈ {0,2}: dLee(C) ≤ 4.
For α = 1: C cannot be self-dual.
⇒ Only interesting case: α = −1.

Restrictions on the length n

For each c ∈ C:
∑n−1

i=0 c2
i = 0

⇒ The number of units in c is a multiple of 4.
⇒ γ(C) is a binary self-dual doubly-even code.
⇒ n is divisible by 8.

In the following: Let k be a fixed dimension divisible by 4,
n = 2k .
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V4 and V2

Definition

Let V4 ⊆ Zk
4 be the set of all words generating

self-dual double nega-circulant codes over Z4.
Let V2 ⊆ Fk

2 be the set of all words generating
self-dual doubly-even double circulant codes over F2.

It holds: γ(V4) ⊆ V2.

Goal
Find (the interesting part of) V4.
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Outline of the construction

Idea for the construction
Construct V2.
Lifting:
For each v ∈ V2, find γ−1(v) ∩ V4.
Equivalently:
Find all lift vectors w ∈ Fk

2 such that v + 2w ∈ V4.

Observation
The second step is time critical.
We need a fast algorithm!
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The lifting step
Given: v ∈ V2.
Let C̄ be the double circulant doubly-even self-dual binary
code generated by v .
Wanted: All lift vectors w ∈ Fk

2 such that v + 2w ∈ V4.
Equivalently:

k−1∑
i=0

(v + 2w)2
i = −1Z4

and
k−1−t∑

i=0

(v +2w)i(v +2w)i+t −
k−1∑

i=k−t

(v +2w)i(v +2w)i+t = 0Z4

for all t ∈ {1, . . . , k/2}.
Since C̄ is doubly-even ⇒ First equation is always true.
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Using 22 = 0Z4 , the equations for t ∈ {1, . . . , k/2} are
equivalent to:

k−1−t∑
i=0

vivi+t −
k−1∑

i=k−t

vivi+t︸ ︷︷ ︸
≡ 0 (mod 2)

since C̄ self-dual

+2
k−1∑
i=0

(viwi+t + vi+twi) = 0Z4

Defining (b1, . . . ,bk−1) ∈ Fk−1
2 by

2bt =
k−1−t∑

i=0

vivi+t −
k−1∑

i=k−t

vivi+t .

this gives

2
k−1∑
i=0

(viwi+t + vi+twi) = 2bt for all t ∈ {1, . . . , k/2}
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That leads to

k−1∑
i=0

(viwi+t + vi+twi) = bt

which is a linear system of equations for the wi
over the finite field F2.

Conclusion
For a given vector v ∈ V2
the possible lift vectors w ∈ Fk

2 can be computed
by solving a linear system of equations over F2.
The dimension of the solution space is k/2.
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Group operation

Lemma (compare MacWilliams/Sloane 1977)

Let σ : Zk
4 → Zk

4 a mapping of one of the following types:
σ(v) = −v.
σ(v) is a cyclic shift of v.
There is an s ∈ {1, . . . , k − 1} with gcd(s, k) = 1
such that for all i : σ(v)i = vsi

Then the nega-circulant codes generated by the vectors v and
σ(v) are equivalent.

Definition
Let G be the group generated by these mappings σ.
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Updated algorithm

Observation
G operates on V4.
One representative of each orbit is enough!
γ(G) operates on V2.

Updated construction algorithm

Construct exactly one representative of each orbit under
the action of γ(G) on V2.
Lifting: For each such γ(G)-representative v ,
find a representative of all G-orbits
on the lift vectors w ∈ Fk

2 with v + 2w ∈ V4.
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Lifting and the minimum distance

Lemma
Let C be a Z4-linear code. It holds:

dHam(γ(C)) ≤ dLee(C) ≤ 2dHam(γ(C))

Updated lifting step
During the algorithm:
The variable δ stores the best minimum Lee distance found
so far.
Lifting: Run through the γ(G)-representatives v of V2,
ordered by decreasing minimum Hamming weight d2(v)
of the binary code generated by v .
As soon as d2(v) ≤ δ, we are finished.
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Results
Best possible Lee distances among all self-dual Z4-linear
self-dual codes of the respective type:

n 8 16 24 32 40 48 56 64
double nega-circulant 6 8 12 14 14 18 16 20

bordered circulant 6 8 12 14 14 18 18 20

Bordered circulant: Generated byIk

α β · · ·β
γ
...
γ

A


where A is (k − 1)× (k − 1) circulant, and α, β, γ suitable.
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Concluding remarks

Remarks
Most computation time goes into the computation of the
minimum Lee distances.
A fast algorithm was crucial.
For n = 64: About 10 times faster than the algorithm in
Magma.
This algorithm allowed us to compute some previously
unknown minimum Lee distances of Z4-linear QR-codes.
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Generalizations of the construction method
Instead of only Z4:
Can be done for all finite commutative chain rings.
Example Z8: Two nested lifting steps F2 → Z4 → Z8.
Direct adaption to bordered circulant α-circulant self-dual
codes.
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Thanks for your attention!
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