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Abstract. We study the deterministic bounds on the problem of polynomial factoring over
finite fields, for that we study the distribution of quadratic residues and non residues in the
residue field of an odd prime p. In 1957, D. A. Burgess proved that for sufficiently large p,
if we take any continuous interval of length O(p1/4) in multiplicative group of Zp then not
every element in the interval will have same residuosity. We wish to study the extension of
this theorem to quadratic polynomials of form x(x+a) i.e. we wish to have an upper bound

on I, B (say), such that for given n, I, a, if I is larger than B, then
n+I∑
n
χp(x(x+ a)) < εI,

for a sufficiently large p, where χp(.) represents the Legendre symbol with respect to p. In
simpler terms we try to find maximal interval length B, such that for sufficiently large p, if
we take two continuous intervals of same length I, I > B in Zp, then they should not have
same distribution of quadratic residues and non residues in them. Bound on I will dictate
the bound of deterministic time complexity of polynomial factoring over finite fields. The
best known bound on I is O(p1/2log(p)) by Victor Shoup in 1990. For this we present the
proof of a generalization of Lemma 2 in Burgess’ 1957 paper using Burgess’ technique.

1. Introduction

Before moving ahead we will first state the problem of polynomial factoring over finite fields.

Given a monic univariate polynomial f(x) in the ring Fq[x], where Fq is a finite field
with q elements. We want a polynomial time deterministic algorithm to factorise
f(x) into its monic, univariate, irreducible polynomials f1(x), f2(x), . . . , fk(x) such
that fi(x) ∈ Fq[x], ∀i in {1, 2, . . . , k}.

This problem has been of interest to mathematicians and computer scientist since long,
due to its vast number of applications, to which, we will come later in this section. First
let us describe the present state of the problem. Using randomness, there exist few ran-
domised algorithms like Cantor-Zassenhaus [5], and Berklecamp [3], which for all practical
purposes run in polynomial time. But, still the question whether there exists a deterministic
polynomial time algorithm is open. Ivanyos, Karpinski, Saxena [6] came up with the first
polynomial time deterministic algorithm to factor polynomials of prime degree n over finite
fields, assuming Generalised Riemann’s Hypothesis (GRH). Also assuming GRH there are
algorithms known for polynomial factoring over finite fields which are sub-exponential in
time for instance Rónyai [8]. The best known deterministic and unconditional bound for

this problem is by Victor Shoup [9] which is “O(n2p
1
2 log(p))” for polynomials over Fp where

n is the degree of polynomial.
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Various finite field applications require polynomials in them. Few good examples would be:

• In construction of error correcting codes like BCH code, Goppa, Reed-Solomon codes
and other cyclic redundancy codes, we require the solution of this problem.
• Public key cryptosystems using elliptic curves also use this as a sub problem.
• The problem of factoring multivariate polynomials over finite fields can also be re-

duced to this problem.
• Also used in generation of pseudorandom sequences.

For a detailed report over this one can look at survey by Gathen & Panario [10]. Also
a detailed report of BIRS (Banff International Research Station) [2] meet of Finite Field
experts in 2006, summarises the major advancements in this area.

The problem of deterministic upper bound on polynomial factoring over finite fields is
closely related to the following problem.

We want to find a bound for the value of I in terms of p, ε say B(p, ε) such that for
sufficiently large p and fixed values of n, I, a and ε, if I > B(p, ε) then

n+I∑
x=n

χp(x(x+ a)) < εI

This essentially means that we want to bound the interval length I by B(p, ε) such that,
if we have two continuous intervals of length I > B(p, ε) in Zp, then we cannot have the
distribution of quadratic residues and non residues exactly same in them, i.e. for each i, we
cannot have quadratic residuosity of ith element in first interval same as quadratic residuosity
of ith element in the second interval. The best known limit on I is by Victor Shoup, which is
O(p

1
2 log(p)). In this report we present the generalised form of Burgess’ Lemma 2 [4] which

from now we will call Theorem 1 for convenience. Using this we have a shorter proof for
the current deterministic bound on polynomial factoring over finite fields. An outline of the
report is as follows: In section 2 and 3 we present few notations and preliminary results
required for this report. In section 4 we present the generalised form of Burgess Lemma i.e.
Theorem 1 and few lemmas required to prove it. Finally in 5 we conclude the report.

2. Notations

Following is the list of the notations that we would be using in this report.

• p will always represent an odd prime number.
• F will always represent a field.
• We represent the set {0, 1, 2, . . . , k} for any fixed integer k by [k].
• We represent order of an element a in multiplicative group of Zp by Ordp(a).
• We represent the quantity

(
a
p

)
where (.) represents the Legendre′s symbol of a an

integer with respect to p, by χp(a).
• Let f(x, y) be a bivairate polynomial in the polynomial ring F[x, y]. Then degree of
f(x, y) denoted by deg(f) is

max{α + β : xαyβ is monomial term of f(x, y) with non-zero coefficient}
• Similarly we denote degree of f(x, y) ∈ F[x, y] with respect to x by degxf i.e.

degxf = max{α : xαyβ is monomial term of f(x, y) with non-zero coefficient}
• If f(x, y) and g(x, y) be two bivariate polynomials in F[x, y], then Resx(f, g) repre-

sents the resultant of f, g with y treated as constant. Notice that Resx(f, g) ∈ F[y].
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3. Preliminaries

Following is the set of facts that we will assume without proof in this report.

• Fact 1: The degree of polynomial Resx(f, g) = R(y), where f, g ∈ F[x, y], is upper
bounded by deg(f) ∗ deg(g). [1]
• Fact 2: Roots of Resx(f, g) = R(y), f and g same as above capture those y points

where f and g have a common zero. [1]
• Fact 3: If f(x) is a square free, monic, completely factorisable polynomial (in Zp)

with integral coefficients. Then [9]∑
x∈Zp

χp(f(x)) ≤ (deg(f)− 1)p
1
2 .

• Fact 4: χp(a
k) = χp(a)k = χp(a) if k is odd else 1.

4. Theorem 1

Let A represent the set

A = {ai : i ∈ [n]/{0} for some fixed n}
and K represent the set

K = {2i : i ∈ [Ordp(2)− 1]}
From now onwards A and K will always represent these sets and n will always represent
cardinality of A. This theorem is the generalisation of Lemma 2 of Burgess [4]. It states:

Let H be any subset of Zp, whose cardinality is h, also let φ(x) =
∏
ai∈A

(x+ai).

Define the quantity SH(x) for given A and H as,

SH(x) =
∑
b∈H

χp(φ(x+ b))

Then for a given integer r > 0 and sufficiently large p.∑
x∈Zp

(SH(x))2r < (2rh)2rp+ nr(2 ∗ p 1
2 + 1)h2r)

For proving this theorem we need following lemmas.

Lemma 1. : Let f(x) be a polynomial in the polynomial ring Fp[x] and let

g(x) =
∏
ai∈A

f(x+ ai)

be a perfect square modulo p. Then

ψ(x, k) =
∏
ai∈A

f(x+ kai)

is a perfect square ∀k ∈ K.

Proof: We look at the quantity

g(x+ aj), aj ∈ A

For each aj in A, g(x + aj) is a perfect square, since g(x) is a perfect square. This implies
that the quantity ∏

aj∈A
g(x+ aj)
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is a perfect square modulo p. But

(1)

∏
aj∈A

g(x+ aj) =
∏
aj∈A

∏
ai∈A

f(x+ ai + aj)

= (
∏
aj=ai

f(x+ 2ai))(
∏
aj 6=ai

f(x+ aj + ai))

= (
∏
aj=ai

f(x+ 2ai))(
∏
aj 6=ai
i>j

f(x+ aj + ai)
2)

This implies that ∏
ai∈A

f(x+ 2ai)

is a perfect square. But now replace A by

2 ∗A = {2 ∗ ai : ai ∈ A}
and hence we go on, which essentially proves the lemma i.e.

∀k ∈ K, ψ(x, k) =
∏
ai∈A

f(x+ kai)

is a perfect square.

Lemma 2. : If ψ(x, y) in F[x, y], with deg(ψ(x, y)) = d, is square free polynomial as a
bivariate and number of values of y for which ψ(x, y), is not square free, is finite and atleast
γ. Then ∃ a polynomial θ(y), such that deg(θ(y)) ≤ d2 and θ(y) has at least γ roots.

Proof: Let derivative of any polynomial η(x, y) in the polynomial ring F[X, Y ] over field
F, with respect to x is denoted by dxη. Now let us look at the polynomial

Resx(ψ(x, y), dxψ) = R(y)

If ψ(x, y) is not square free as a bivariate polynomial, then R(y)) is essentially 0. Otherwise
by Fact 1 we know that

deg(R(y)) ≤ d2

Also by Fact 2 we know that R(y) captures all the points k where ψ and dxψ have a common
root. As ψ is not square free for atleast γ values of k, hence R(y) has atleast γ roots. Put
θ(y) = R(y).

Note: In above proof ψ is a general bivariate polynomial with only condition that it is
square free.

Lemma 3. : ψ(x, y) ∈ F[x, y], be equal to∏
ai∈A

f(x+ yai)

for a given set A, and let f(x) ∈ F[x] be a polynomial with splitting field, Fs, such that

f(x) =
∏
βi

(x+ βi)

where {β1, β2 . . . , βl} ⊂ Fs. Then ψ(x, y) is a bivariate square free polynomial iff f(x) is a
square free polynomial.

Proof: If f(x) is not square free, then

f(x+ yai), ai ∈ A
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is not perfect square free, when viewed as a bivariate. Hence

ψ(x, y) =
∏
ai∈A

f(x+ yai)

is not square free as a bivariate.

If ψ(x, y) is not square free and f(x) is square free then, this is possible iff at least one of
βi+yaj = βk+yam as a monomial in y, for some i, j, k,m, but then this implies that βk = βi
and aj = am. But this is leads to contradiction as f(x) is square free. Hence the lemma
follows.

Proof of theorem 1: Using combinatorial arguments we have

∑
x∈Zp

(SH(x))2r =
∑
x∈Zp

∑
b1∈H

. . .
∑

b2r∈H

∏
bj

j∈[[2r]/{0}

χp(φ(x+ bj)) (2)

To avoid the cumbersomeness in notations, with bj we would mean “bj for some j ∈ [2r]/{0}”.
We are interested in knowing the fact, when

∏
bj

φ(x + bj) for some fixed sequence of bj’s

becomes a perfect square. By observation∏
bj

φ(x+ bj) =
∏
bj

∏
ai∈A

(x+ ai + bj)

=
∏
ai∈A

∏
bj

(x+ bj + ai)

=
∏
ai∈A

f(x+ ai)

where, f(x) =
∏
bj

(x+ bj). We eliminate the cases when f(x) is a perfect square which makes

ψ(x, k) =
∏
ai∈A

f(x+ kai)

a perfect square as a bivariate in Zp[x, k]. Note that f(x) is a perfect square iff only there are
even number of bi’s taking a particular value. Now this implies ψ(x, k) is a perfect square as
a bivariate if even number of bi’s take a particular value. Number of cases when this happens
is bounded by (2rh)r and for each of those cases the inner most sum

S =
∑
x∈Zp

χp(
∏
ai∈A

φ(x+ ai))

(3)

is bounded by p. Hence this portion contributes (2rh)rp to the inequality.

Now we look at the other case when f(x) is not perfect square, then f(x) can be written as∏
βi

(x+ βi)
ei
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where the set {βi} ⊂ Zp and ei’s are integers ≥ 1 . Since f(x) is not a perfect square hence
at least one of the ei’s is odd. We now construct a polynomial f ′(x) from f(x) as follows:

• If a factor in f(x) has even power then do not include it in f ′(x).
• If a factor in f(x) has odd power then include it in f ′(x) and give it power 1.

Note that f(x) would be a perfect square iff f ′(x) = 1 also that f ′(x) captures all the factors
in f(x) whose power is odd. Also we construct the polynomial ψ′(x, k) by keeping f ′(x) in
ψ(x, k). Also ∏

ai∈A

χp(f(x+ ai)) =
∏
ai∈A

χp(f
′(x+ ai))

but for the cases when x ≡ −(ai + bj)mod(p) which can at most be at nr points over all
combinations of ai + bj. Hence we would deal with f ′(x) instead of f(x).
Now we assume that f(x) is not a perfect square and the product,

∏
ai∈A

f(x + ai) becomes

a perfect square then clearly
∏
ai∈A

f ′(x + ai) is perfect square, now using lemma 1, ψ′(x, k)

is perfect square ∀k ∈ K. Using lemma 4 on f ′(x), we have, ψ′(x, k) is square free as a
bivariate.
Now we bound the value of p for such conditions to hold.
Hence using lemma 2 on ψ′(x, k) and taking γ to be |K| = Ordp(2), we have

|K| < 4r2n2

which implies

p < 24r2n2

.

If we chose p to be sufficiently large then we cannot have
∏
ai∈A

f ′(x+ ai) as perfect square if

f ′(x) 6= 1.

This implies that for large enough p i.e. p ≥ 24r2n2
we cannot have

∏
ai∈A

f(x + ai) a perfect

square, if f(x) is not a perfect square. The number of cases when at least one value is taken
by odd number of bi’s is bounded by h2r. For these values we can write∑

x∈Zp

χp(
∏
ai∈A

∏
bj

(x+ bj + ai)) =
∑
x∈Zp

χp(
∏
αi∈L

(x+ αi)).

For some L ⊂ Zp.
Using Fact 4 over the product

∏
ai∈A

∏
bj

(x+ bj + ai) and using the form of
∏
ai∈A

f(x+ ai), as

we have used the form of f(x) to come up with f ′(x). Note that we ignore the cases when
x ≡ −bj − ai(modp) and power of the factor is even as we then make it 1 which gives an
error of nr, and for a given sequence of bi’s there can at most be nr such cases, hence we
ignore them for a while and will add them afterwards. Now let

(4) ζ(x) =
∏
αi∈L

(x+ αi)
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Note that deg(ζ) = |L| ≤ 2nr. By Fact 3 we have

(5)
∑
x∈Zp

χp(ζ(x)) ≤ (2nr − 1)p
1
2 .

Hence for the case when we have at least one value taken by odd number of bi’s we have the
inner sum |S| < nr + (2nr − 1)p

1
2 . Hence we derive our second term of the inequality.

Using this we can have an easy proof of p
1
2 + ε (for arbitrary ε) bound on polynomial

factoring.
Now we consider the requirement of largeness of p for which theorem 1 will hold. We find
that even for |A| = 3 and r = 10, p needs to be greater than 23600. But the following lemma
makes this bound practical for almost all primes.

Lemma 4. [7]: Chose some arbitrary ε > 0, then almost for all p,

Ordp(2) ≥ p
1
2
−ε

Hence using lemma 4, we find that almost for all p we have Ordp(2) > p
1
3 , that lowers the

bound on p sufficiently. So for almost every p the requirement would be p > 36003.

5. Conclusion

We have proved theorem 1 but still the problem of lowering the bound on
n+H∑
n

χp((x+ a)(x+ b))

remains open, hence the deterministic bound on polynomial factoring remains the same.
Using this we have a shorter proof for the existing bound. Also bringing down the Burgess’
bound even for a linear polynomial instead of a quadratic has be an open problem since
long and has got many implications not only, for practical purposes but also for theoretical
purposes.
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