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Problem : There are n points in a plane. We want to build a data structure for these points 

so that given any rectangle parallel to the axes, we can report all the points inside the 

rectangle. 

Abstract: This report contains all our proceedings and methods which we applied to reach 

up to the desired data structure. The methods include solving a simpler version of the problem 

and then extending the solution to original problem and then implementing it to look up at 

the real life efficiency of the designed data structure. 

Simpler Version of the Problem:  A simpler version of the problem can be that you 

are given some points on the real number line and given two points X1  and X2 and we have 

to report the number of points lying in the range (X1,X2). A pictorial view of the problem is 

as follows. 

                              

 

       X1                                  X2 

Now since we are given the points on the number line so we can assume that the 

number of values are static say equal to N. 

Now this has an easy solution i.e. store the elements in an array and sort them and 

then we can report the number of points in the query range in log(N) time. A pseudo code for 

the same is given as follows. 

Query(A[𝑁],X1,X2) // X1 < X2 

{ 

 x1,x2; /*variables storing the indices of points   in the neighbourhood of the  

   query points*/ 

 x1=Binary_U(X1); /*A binary search type      function  

gives the index of               the point  which is    

  successor of X1 in the      array*/ 

 x2=Binary_L(X2); /*Similar to Binary_U but     

 gives index of predecessor     of the element*/ 

 return (x2-x1+1); 

} 

The time complexity of this algorithm is trivially O(log(N)) and the data structure 

takes O(N) space also the preparation time is O(N*log(N)) using quick sort (average time 

complexity). But this is a very rigid implementation and adding any point in this data 

structure will require O(N) preparation time as this is the time required for one insertion in 

an sorted array. Hence we construct a dynamic data structure  which takes update operations 

also in O(log(N)) time. 

Dyanamic Version: We will use Binary tree to store the points and keep an additional field 

at each node i.e. number of elements in the sub-tree at that node. Now if we are given two 



points X1, X2 WLOG assuming that X1<X2 then we can find the successor and predecessor 

of the elements X1 and X2 respectively O(log(N)) time. And finding the number of element 

>= X1 and <X2 take a time of  O(log(N)) as follows. 

––––– 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above figure shows a perfectly balanced binary search tree where each node 
represents the number of  entries inside in the sub tree below it and suppose the points X1 
and X2 are represented by red and green respectively. Keep the count1 to be the variable 
which stores the number of  values >X1 and value be the field at each node that stores the 
number of  elements at the sub-tree at that node. 
 For X1 each time we move left update count1= value (parent (v))-value(v)+1 where v= the 
current node. We do nothing if  we move to right. Similarly we keep a count2 for X2 and get 
all the points >X2. 
 

The answer to our problem will be difference between count1 and count2. For reporting 

the elements we just traverse (in order) from X1 to X2. If we apply this algorithm in the tree 

show on the previous page we have count1=16+4+2 and count2 =8; the value of difference=14 

hence we have 14 elements in the range of (X1, X2). 

It is already known that insertion in a Red-Black tree takes O (log (N)) time and the 

additional field could be updated in O (log (N)) time. Hence any update operation on the above 
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data structure can be performed in O (log (N)) time, hence we conclude that it’s a dynamic data 

structure with time complexity O (log (N)). A pseudo-code for the same is as follows: 

 

Query_dynamic (T, X1, X2) 

{ 

 count2=count1=0; 

 node v <-head; 

 while (X1 is not found) 

 { 

  if (X1<v) 

  { 

   count1+=value(v)-value(left(v))+1; 

   v<-v.left; 

  } 

  else if (X1>v) 

  { 

   v<- right (v); 

  } 

  else if (X1=v) 

  { 

   count1=count1+value (right (v)); 

  } 

 } 

 //A similar code is written for X2 to find the value of count2. 

 return count1-count2; 



}   /* This code has been written assuming that X1 and X2 are present in the tree but if they 

are not present we can just insert them apply the algorithm and then delete the nodes.*/ 

 For reporting all the points we can do in-order traversal of tree from X1 to X2. 

In_order (T, X1, X2) 

{  

 node v=head; 

 if (v= =NULL) // base case 

 { 

  return ; 

 } 

 If (X1<v) /*if value of X1 is<value in v then move left*/ 

 { 

  In_order (left (v), X1, X2); 

 } 

 If (X1<=v and X2>=v) /* if value in v lies in  [𝑋1, 𝑌1] then print it*/ 

 { 

  Print (v); 

 } 

 if (X2>v) /*if value of X2 is>value in v then move right*/ 

 { 

  In_order (right (v), X1, X2); 

 } 

 return 0; 

} 

Lets now extend the data structure into a more general problem that is we are given 

N points with there in the form of ordered pairs (X,Y) and we have to design a data structure 

to answer a query which is given in the form of a query rectangle (X1,Y1), (X2,Y2) and the 

sides of the rectangle are parallel to the axes and report the number of points in the query 

rectangle. The pictorial view of the problem is as follows: 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We aim to design an efficient data structure. 

One trivial algorithm will do the job in O (N) time as we can always use our previous 

algorithm to get all the points in the range [𝑋1, 𝑋2] and then for all those values check 

whether it lies in the range[𝑌1, 𝑌2]. But one can easily realize that the trivial algorithm over 

the previous data structure will only be good if the data is of the order 10^8 after that it 

becomes in-efficient hence there is need to design a data structure that can handle data up to 

the value of 𝑁 = 1018 as in many places we come across such large values of N. If we are 

some how able to design a data structure with space complexity of the O (N) and time 

complexity of the 𝑂 (𝑁
1

2) then we are done. 

The reason being time taken to process each query will be of the order few seconds.  

This can be done as follows: Look at the following picture: 
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The division is made so that each of the simple rectangle that we see contains n^ (1/2) 

points. The division algorithm  

is as follows. 

Get the point x1 such that the number of points on the left of it = [[√𝑵]/𝟐] ∗ [√𝑵] 

 and on the right of it  

=𝑵− [[√𝑵]/𝟐] ∗ [√𝑵] and then y1 and y2 on the either side of the x1 such that the number 

of points above and below y1  

=[[[√𝑵]/𝟐]/𝟐] ∗ [√𝑵] 

 and [[[√𝑵]/𝟐] − [[[√𝑵]/𝟐]/𝟐]] ∗  [√𝑵] 

and similarly for 𝑌2 and then get 𝑋2 above 𝑌1; 𝑋3 below 𝑌1 and similarly 𝑋4 and 𝑋5 for 𝑌1 

and the procedure goes on. Until each of the  

partition contains √𝑵 elements. Now if we are given a query rectangle then there are two 

possibilities:  

• either the rectangle lies completely on the boundaries of the partitions. 
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• At least one of the sides of the rectangle does not lie completely on the boundaries of 

the partitions. 

In the first case the task is easy and the answer comes in 𝑂(√𝑁) time trivially. 

In the second case requires the following observation: 

The number of partitions which are cut by the boundaries of the query rectangle are tightly 

bounded by 𝑂 (𝑁
1

4). 

Proof: We prove this by a simple observation and by creating a bijection with a known case. 

Suppose we had to make N equal partitions on a plane then the following is an obvious way. 

    

    

    

    

 

 

Let us look at it with a different perspective. Any two partitions in this partitioning are called 

independent if they do not share any edge among themselves. Now the partitions that our 

algorithm creates can be created by just laterally shifting the internal edges of the partitions 

as follows: 

• Keep the midline partition intact. 

• Shift the horizontal midline in the left half upwards and the on the right half 

downwards. 

• Then keep on applying the shifting appropriately to get the required partitioning. 

Hence this partitioning is equivalent to the partitioning that our algorithm will create. Hence 

the number of partitions for √𝑁 partitions on the axis will be 𝑁
1

4. 

Hence the number of partitions which are cut by the boundaries of the query rectangle are 

tightly bounded by 𝑂 (𝑁
1

4). 

Now we can go inside each of the partition that are not completely lying inside and check for 

each element if lies in the range [𝑌1, 𝑌2]. The time complexity for this will be 𝒄√𝑵 +

 𝒅𝑵^(𝟑/𝟒). 



And note that the extra space required for such a data structure will be of the O (√N). But our 

aim is to build a data structure that answers my query in O (√N) time. We will use this virtual 

data structure to build upon our required virtual data structure. 

       We observe that when we put our N elements into our data structure it takes 

time~ 𝑐√𝑁 +  𝑑𝑁
3

4. Now if we put (√𝑁 ) elements in the data structure then the time 

complexity for these √N elements will turn out to be  𝑐 𝑁ˆ (
1

4
)  + 𝑑𝑁

3

8. The time complexity 

is reducing hence we can use this phenomena to solve our problem. 

 We extend our data structure as follows: 

Consider a machine “Create” that creates the partitioning given the points. We first 

send our original plane of N points into it and it creates the partitioning a described by the 

algorithm. Note that each partition contains √N points, we call this partition to be a first 

order sub-plane.  We send all the first order sub-planes into the machine Create, which 

creates 𝑵
𝟏

𝟒 partitions in each first order sub-plane. We call the partitions formed, second 

order sub-plane. We keep going on until there are only one or two elements in each Kth 

order sub-plane (𝑲 = 𝒍𝒐𝒈(𝒍𝒐𝒈(𝑵))). Note that this virtual data structure has space 

complexity = 𝑂(𝑁) as we have just created partitions in the plane. A pictorial view of the data 

structure looks as follows: 
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Where 𝐾 = 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) 
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The time complexity of the answering one query in this data structure can be 

calculated as follows: 

 Suppose we take 𝑂(√𝑁) time  to calculate the number of sub-planes present 

completely inside the query rectangle and by our previous analysis we had already shown 

that the number of the sub-planes  that will not completely lie inside the boundaries of the 

query rectangle will be at max of the 𝑂(𝑁^(1/4)) in 0th order sub-plane. So the same analysis 

is valid for successive order sub-planes and hence the recurrence for the time-complexity of 

the algorithm will be: 

 𝑻(𝑵) =  𝒄 ∗ √𝑵 +  𝑵^(𝟏/𝟒)(𝑻(√𝑵)). 

On unfolding it we get to the following: 

 𝑻(𝑵) =  √𝑵 + √𝑵 + √𝑵 + …… + √𝑵    (𝒍𝒐𝒈(𝒍𝒐𝒈(𝑵))) 𝒕𝒊𝒎𝒆𝒔) 

Hence the time complexity is of the  

𝑶(√𝑵 ∗ 𝒍𝒐𝒈(𝒍𝒐𝒈(𝑵)). 

We have still not reached our required time complexity but lets have a closed look at 

time complexity we got. If we put the value of N=10000000000000000000 then the value of 

𝑙𝑜𝑔(𝑙𝑜𝑔(𝑁)) ~ 6. So the value of (√𝑁 ∗ 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑁)))~6 √𝑁. 

 While calculation we have assumed that we take 𝑶(𝑵^(𝟏/𝟐)) time for 

answering that how many partitions of the first order sub-plane are there inside this.   

The data structure we have thought we have assumed that it takes 𝑂(√𝑁) to tell the number 

of sub-planes lying completely inside the query rectangle. Suppose we make our data 

structure that can tell us the number of sub-planes lying inside the query rectangle in 𝑂(1) 
time then the recurrence becomes:   

𝑻(𝑵) =  𝒄 +  𝑵^(𝟏/𝟒)(𝑻(√𝑵)). 

The result of this recurrence has an upper bound  

= 𝒄√𝑵 ∗ 𝒍𝒐𝒈(𝒍𝒐𝒈(𝑵)/𝟐  

and the average upper bound comes out to be 

√𝑵 ∗ 𝒍𝒐𝒈(𝒍𝒐𝒈(𝑵)/(𝑵^(−𝟏/ √ 𝒍𝒐𝒈(𝑵))) , 

 this value comes out to be ~ √𝑁/100 for 𝑁 = 10000000000000000000.  

 Now we go on to implementation of this virtual data structure that we have discussed 

till now. We will implement a data structure and then compare its space and time complexity 

with our virtual data structure. 

 

 



THEORETICAL IMPLEMENTATION 
Now we will use the data structure that we designed for the single dimensional version of 

this problem will modify it so that it has all the properties of the virtual data structure we 

discussed. 

Hence we use a Binary tree for implementation which will have the following fields:   

• Partition co-ordinates i.e. X1, Y1 and X2, Y2 that to represent the sub-plane. 

• Count that contains the number of values that are lying in that partition. 

The root node contains the (X1, Y1) and (X2, Y2) equal to the value of the origin and the 

point at the maximum distance from the origin and count value = number of points (N).   

 

 

 

 

 

 

If this is a complete binary tree for the worst case, then at the kth level number of node is 2k , 

where k starts from 0. 

We have divided the 2-D plane into 𝑁
1

2  partition each containing  𝑁(
1

2
) points. Now this 𝑁

1

2 

partitions is further divided into 𝑁
1

4 partitions and this way it continues until we have n 

partition each containing 1 point. N leafs denotes the n partitions having n points. 

 

 

 

 

 

At this Level √N elements are 
present  

O(N) leafs 

Now, each node in the above tree represent a partition and has seven fields for 
x1,y1,x2,y2, count, a and b . If  the partition is like  

(x1, y1) 

(x2, y2) 



 

 

If the count in the partition is 1 then a, b stores the co-ordinates of the point inside it.  

 

 

 

 

 

 

 

 

 

 

PSEUDO CODE 

Sum=head->count; 

Check (pointer, x1,y1,x2,y2) 

{ 

If (partition denoted by pointer is partially in query rectangle) 

 return1; 

If (partition denoted by pointer is completely out of query rectangle) 

 return 0; 

If (partition is completely in the query rectangle) 

 return 2; 

} 

counter ( coordinates of query rectangle, pointer) 

{  

Node= pointer; 

If (check (Node->left, x1, y1, x2, y2) ==1) 

{  

 If ((Node->left)->count==1) 

  check whether the point stored is in the query rectangle or not 

Thus (x1,y1)  and (x2,y2) the coordinates to determine a partition. 
Count represent the number of  points in the sub-tree partitions. 



  if NO; 

  sum =sum-1; 

 Else    

  counter (x1, y1, x2, y2, Node->left); 

} 

If (check (Node->right, x1, y1, x2, y2) ==1) 

{  

 

 If ((Node->left) ->count==1) 

  check whether the point stored is in the query rectangle or not 

  if NO 

  sum=sum-1;    

 Else 

  Counter (x1, y1, x2, y2, Node->right); 

} 

If (check (Node->left, x1, y1, x2, y2) ==0) 

{  

 sum= sum-Node->left->count; 

} 

If (check (Node->right, x1, y1, x2, y2) ==0) 

{  

 sum=sum-Node->right->count; 

} 

} 

Analysis of this Data structure: 

Space Analysis: 

We use the concept that number of leaves in a complete Binary Tree is one less than the 

number of internal nodes so if we look at the plane wise partition then we see that there are 

√N nodes representing the co-ordinates of the first order sub-plane so exactly √N-1 internal 

nodes are there including the root. Now these √N nodes serve as our roots for the formation 

of second order sub-plane. Hence the total number of nodes are : 



𝑺(𝑵) = 𝑵
𝟏
𝟐 − 𝟏 + 𝑵

𝟏
𝟐 (𝑵

𝟏
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𝟖
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𝟐
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(𝐍

𝟏
𝐥𝐨𝐠(𝐍))

)

  
 

 .  .  .  .  )) 

This series sums up to 
𝑁

2
. Hence the space complexity is of O (N). 

Also we can see that we are doing nothing but partitioning the points such that at the end 

one partition will contain number of points either one or two. So the number of leaf nodes in 

this=𝑂(𝑁) and hence using the property of binary tree total number of nodes are of the 

𝑂(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒𝑠) total space complexity comes out to be 𝑂(𝑁).   

Time Analysis:  

 Note that the division leads us to a very exciting feature of the tree i.e. all the final 

level partitions will have exactly one point in each partition. For the time analysis we look at 

the worst case. But before that lets look at the plane after we have achieved all the partitions. 

For simplicity lets take value of 𝑵 = 𝟐𝟐
𝟑
=𝟐𝟓𝟔. 

 

 

  

 

 

 

          

 

 

 

 

 

 

 

 

 

 

A similar analysis can be done for this 

side of the partition. 

First Level Sub Plane Partition

Level Partition 
Second Level Sub Plane 

Partition 

Third Level Sub Plane 

Partition 

Each small rectangle contains exactly one 

point 

Worst case query 

rectangle 



We can observe that the number of partitions at the last level that have to checked 

manually will be at most = 𝟒 ∗ 𝑵
𝟏

𝟐 − 𝟒. Now lets look at how much time does the algorithm 

takes to reach these  𝟒 ∗ 𝑵
𝟏

𝟐 − 𝟒 nodes in the implementation. We observe that the number of 

operations that the algorithm performs is proportional to the number of the nodes it visits 

while it reaches these 𝟒 ∗ 𝑵
𝟏

𝟐 − 𝟒 nodes. 

Claim: We claim that the case shown is the worst case. 

Proof: We prove this by saying that we will enclose any query by the smallest partition just 

bigger than the query rectangle. Hence the maximum of all such partitions will be the original 

main plane. 

Note: From now on all the complexity analysis will be done using 𝑵 = 𝟐𝟐
𝑲

and the analysis 

is done for the worst case. 

Observation 1: We observe that any vertical or horizontal line can pass through at most 

through 𝑵
𝟏

𝟐 partitions. This evident by construction. 

Observation 2: We further observe that between two successive partitions with respect to X 

direction there is level of  Y- partitioned nodes and hence there will be about . 𝟓 ∗ 𝒍𝒐𝒈(𝑵) X 

partitioned levels and . 𝟓 ∗ 𝒍𝒐𝒈(𝑵) Y-partitioned levels. 

Observation 3: We further observe that there are only three possibilities for the any node 

either the partition represented by it is completely outside or it is completely inside or it is or 

the line passes through this partition. 

 

 

 

Now choose any line (vertical or horizontal) without loss of generality lets say vertically 

oriented, the line chosen is completely extended line to analyse the worst case. Now when the 

algorithm starts from the root it has three possibilities by observation 3. If the first two cases 

are there then we will leave the sub-tree or add its count in 𝑂(1) time but for the third case I 

will have to traverse. Since it’s the single line while passing through the root it will chose 

exactly one path as either the line is left of the mid partition or on the left. Then division of 

Y does not has any affect. Hence will traverse both the nodes then again division with X 

X-divided choses one of the 

partition for the vertical line 

Again choses both 

the y division 

generated nodes 

Divides w.r.t. y choses 

both the nodes Again choses one x division 

generated partition for the 

vertical line 



occurs and this goes on so we can write the recurrence for such a process: Let 𝑇(𝑁) be the 

time for doing answering the query for a line in the dataset of size N, then  

𝑻(𝑵) = 𝟐 + 𝟐𝑻(𝑵/𝟒) 

Using master theorem we can prove that the order for such a 𝑇(𝑁) will be 𝑂(𝑁^1/2). By 

unfolding method we get the expression for 𝑇(𝑁) = 3 ∗ 𝑁^(1/2) − 2. Now lets look into our 

case when we have four such lines. As one can observe that there will be problems with the 

partitions that enclosing the corner of the rectangle which adds to the non-triviality of this 

analysis. We look into the following figure to get an insight how the algorithms traverses the 

tree when there are four lines and how it handles the corner cases. 
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Note: (a, b, c, d) represents the sides of the query rectangle which pass through the partiton 

Hence after visiting first 3 levels the algorithm starts leaving the sub-trees. At each step after 

3rd level exactly 4 sub-trees are generated in which we have to move with respect to the only 

one side and the size of the sub-trees generated is half of the size of the sub-trees generated 

at the previous level. Hence we have the following series: 

(X1, Y1,X2,Y2) 

(X1,Y1,Y2) (Y1,X2,Y2) 

(X1,Y2) (X1,Y1) (X2,Y2) (X2,Y1) 

(X1,Y1) 

(X1,Y1) 
(Y1) (Y2) (Y2) 

(X1) 

(Y1) 

(X2,Y2) 

(X2,Y2) 

(X1) 
(X2) 

(X2) 

Represents normal traversal i.e. 

traversal in which more than one 

line of the rectangle is a problem  

Represents traversal in which exactly one side of 

the rectangle is a problem which will take 

operations O ((size of the sub-tree)^()1/2) 



Assuming that for each sub-tree generated we take O ((size of the sub-tree)^(1/2)) operations we 

get: 

𝑆(𝑁) = 4 ∗ (𝑐 (
𝑁

8
)
.5

) +  4 ∗ (𝑐 (
𝑁

16
)
.5

) +  4 ∗ (𝑐 (
𝑁

32
)
.5

)……… .+ 4 ∗ (𝑐 (
𝑁

𝑁
)
.5

) 

𝑆(𝑁) = 2 ∗ 𝑐 ∗ 𝑁 .5 ∗ (3.416)  

𝑆(𝑁)~7 ∗ 𝑐 ∗ 𝑁 .5 

Hence the order is still 𝑁 .5. 

And in the further sections we will show the practical implementation data which shows 

number of operations ~8 ∗ 𝑁 .5 

Note that I have assumed that 𝑁 = 22
𝑘
. Because of which my tree became a perfectly balanced 

binary tree. 

But suppose its not the case then in that case for any order sub-plane if size of that order sub-

plane is N then 𝑘2 < 𝑁 < (𝑘 + 1)2for some k 

For max deformation according to the division algorithm we chose 𝑁 = (𝑘 + 1)2 − 1 = 𝑘2 +

2𝑘 

Then the left sub-tree at the root of each order sub-plane will have 
𝑘2

2
 nodes and the right 

sub-tree will have 
𝑘2

2
+ 2𝑘 nodes now we can look that the tree at the left has only 𝑂(𝑁 .5) 

nodes less thus it’s a nearly balanced binary tree. 

Note: In the above proof for the skewed tree we have proved for a generic root of a particular 

order sub-plane. Hence N is the number of nodes for that root (sub-tree).   

 

This Data Structure is very efficient if we look at the space complexity but suppose 

that we have a large number of queries then 𝑁
1

2 is not a very efficient complexity and this 

type of data structure is useful if we have very restricted space. So we like to have a data 

structure that can answer us in ~O (log(N)) time and can use some more extra space. We 

know that if the space complexity is 𝑵𝟐 then we can answer each query in 𝑂(1) time. So we 

give us a freedom to use a space of about 𝑶(𝑵(𝒍𝒐𝒈)(𝑵)). Lets look how to get that. 

             

 

 

 

 

 



ALTERNATE DATA STRUCTURE 

Since we already saw a data structure that takes  𝑂(log (𝑁)) when we had points lying 

on the real line. We take inspiration from it and sort the points with respect to the X co-

ordinate then use our data structure that we used in the one dimensional version to store 

these points as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are at most 𝟐𝐥𝐨𝐠(𝑵) such sub-trees possible in the path of X1 and X2 as marked 

in the diagram. The proof of this is simple as there as exactly 𝟐𝐥𝐨𝐠 (𝑵)  amount of nodes 

traversed while reaching X1 &X2. Now we see the problem that is of finding those points 

which have their Y co-ordinate lying between Y1 &Y2. By observation one can easily see that 

if we can get these points of these sub-trees that are marked in the diagram in 𝐥𝐨𝐠 (𝑵) time 

then We would be able  to reduce the time to 𝑶((𝐥𝐨𝐠(𝑵))𝟐) which is actually as good as 

𝑶(𝐥𝐨𝐠 (𝑵)) in practical purposes. We can easily see that we can in no way get this from the 

present fields that are available to us in the Data Structure. Hence we need to store some 

other field and one can easily observe that if we had a sub-tree which is sorted with respect 

to Y at the marked positions in the previous diagram then we would have easily got the time 

complexity of 𝑶((𝐥𝐨𝐠(𝑵))𝟐) because we would be needing only 𝑶(𝐥𝐨𝐠 (𝑵)) time to get the 

number of points  in the range [𝑌1, 𝑌2]. 

 This gives us an excellent idea that we can at each  node store the pointers to the X 

sorted sub-tree and Y sorted sub-tree and use the Y sorted sub-tree after we have got the 

information that all the points in the sub-tree have their abscissa in the range [𝑋1 , 𝑋2]. This 

is our virtual data structure that will have a time complexity of 𝑶((𝐥𝐨𝐠(𝑵))𝟐) and the space 

complexity of   𝑶(𝑵(𝒍𝒐𝒈)(𝑵)). This is evident from the fact that at every level in the tree we 

are storing 𝑶(𝑵) space. This can be proved because at the first node there are two extra fields 

X2 X1 

This sub-tree contains 

all points whose 

abscissa is >X1 &<X2 



each of size (𝑵)/𝟐 then moving progressively to the lower level and we can see that this sum 

comes out to be 𝑶(𝑵(𝒍𝒐𝒈)(𝑵)).   

Each node is of the type (X, Y, Count, LEFT_X, RIGHT_X, LEFT_Y,  RIGHT_Y) 

where RIGHT_Y and LEFT_Y represent the LEFT and the RIGHT children of the node 

which contain the same elements as the RIGHT_X and LEFT_X but sorted with respect to 

Y. 

A pictorial view of the Data Structure is as follows:       

      

 

IMPLEMENTATION: 
PSEUDO CODE 

 We will use the function Query_Dynamic for the implementation of this data structure 

with slight changes. 

Fast_DS ( Head_X, X1, X2, Y1, Y2) 

{ 

 Node tmpX1, tempX2 <-Head_X; 



While (tmpX1 or tmpX2 not = NULL){ 

 If (tmpX1= tmpX2! = NULL) 

 { 

  If (tmpX1.X>=X1 and tmpX1.X<X2)  

  { 

   If (tmpX1.Y>=Y1 and tmpX1.Y<Y2) 

    Count ++; 

   tmpX1=tmpX1.LEFT_X; 

   tmpX2=tmpX2.RIGHT_X; 

  } 

  Else if (tmpX1>X1 and tmpX2>=X2) 

  { 

   tmpX1=tmptx2=tmpX1.LEFT_X; 

  } 

  Else  

  { 

   tmpX1=tmptx2=tmpX1.RIGHT_X; 

  } 

 } 

 Else  

 {  

  If (tmpX1!=NULL){ 

  If (tmpX1.X>X1) 

  { 

   Count=Count + Query_Dynamic (tmpX1.RIGHT_Y, Y1, Y2); 

   If (tmpX1.Y>=Y1 and tmpX1.Y<Y2) 

   Count ++; 

tmpX1=tmpX1.LEFT_X; 

  } 

  Else if (tmpX1.X<X1) 

  { 



tmpX1=tmpX1.RIGHT_X; 

   If (tmpX1.Y>=Y1 and tmpX1.Y<Y2) 

   Count ++; 

  } 

  Else 

  { 

   Count=Count + Query_Dynamic (tmpX1.RIGHT_Y, Y1, Y2); 

   If (tmpX1.Y>=Y1 and tmpX1.Y<Y2) 

   Count ++; 

Tempx1=NULL; 

  } 

  } 

  If (tmpX2!=NULL) 

  { 

If (tmpX2.X>=X2) 

  { 

    tmpX2=tmpX2.LEFT_X; 

   If (tmpX2.Y>=Y1 and tmpX2.Y<Y2) 

    Count ++; 

  } 

  Else if (tmpX2.X<X2) 

  { 

   Count = Count + Query_Dynamic(tmpX2.LEFT_Y, Y1, Y2); 

tmpX2=tmpX2.RIGHT_X; 

If (tmpX2.Y>=Y1 and tmpX2.Y<Y2) 

    Count ++; 

 

  } 

  Else 

  { 

   Count=Count + Query_Dynamic (tmpX2.LEFT_Y, Y1, Y2); 



   Tempx2=NULL; 

   If (tmpX2.Y>Y1 and tmpX2.Y<Y2) 

    Count ++; 

} 

  } 

  } 

 Return Count ; 

} 

*the output contains number of points inclusive of those at the lower boundary and 
exclusive of those at the outer boundary.  

PRE-PROCESSING TIME: 

This Data Structure is static an requires the pre-processing time of 𝑂(𝑁 ∗ (𝑙𝑜𝑔(𝑁))
2
). This 

can be proven by construction. We can use one of the self-balancing binary trees and we can 

easily get 𝑂(𝑙𝑜𝑔(𝑁)) bound for constructing a data Structure which is the initially in the X-

sorted form. Now we look at the time required to construct the second dimension sub-trees 

at each node. For constructing the two sub-trees at the root we will require 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁)) 
time 

𝑂(𝑁/2 ∗ 𝑙𝑜𝑔(𝑁)) each then for constructing the four sub-trees at the second level we will 

again require time 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁)) time as each sub-tree construction requires 

𝑂(𝑁) insertions. Similarly I go on and we find that maximum levels we can go is 𝑙𝑜𝑔(𝑁), so 

the pre-processing time is bounded by 𝑂(𝑁 ∗ (𝑙𝑜𝑔(𝑁))
2
) 

 

PRACTICAL IMPLEMENTATION: 

 First Data structure has been implemented using array implementation of Binary 

Tree. 

 Static form of Second Data Structure has been implemented using Red-Black Tree in 

both the dimensions. 

 Dynamic form of Second Data structure has been implemented using Skewed Binary 

Search Tree in Primary Dimension(X-Direction) and Red Black Tree in the secondary 

Dimension.(Analysis of this Data Structure has been done at the end of this report.)  

 

 

 



 

PRACTICAL ANALYSIS 

ANALYSIS FOR O(√N) APPROACH AFTER 

IMPLEMENTING 

We have used random function to generate different values of N. Also for getting the query 

time we have taken average over 20 query for a particular set of input. Further, we have taken 

average over 5 inputs for each value of N. 

CLOCKS_PER_SEC for the system =   1000000   

    OBSERVATION TABLE 

Number of 
Points 

Average value 
of number of 
clocks  

Ratio (clocks 
of N2)/(clocks 
of N1) 

Theoretical 
Ratio 

1024 10.9   
2048 14.6 1.34 1.414 
4096 21.4 1.46 1.414 
8192 30.45 1.422 1.414 
16384 43.72 1.436 1.414 
32768 62.3 1.425 1.414 
65536 85.63 1.375 1.414 
131072 127.8 1.49 1.414 
262144 182.5 1.417 1.414 
524288 259.15 1.42 1.414 
1048576 364.6 1.405 1.414 

 

Time = CLOCKS/CLOCKS_PER_SECS 

If the complexity of problem is (𝑐 √𝑁) then, if the value of N is doubled the time should 

increase by a factor of √2 i.e.1.414.  

PLOT: 

 



 

 

ANALYSIS FOR NUMBER OF NODES TRAVERSED FOR 

DIFFERENT VALUES OF N ON IMPLEMENTED CODE     

OBSERVATION TABLE 

Value of N √N Nodes Traversed (Nodes 
traversed)/√N 

1024 32 252 7.875 
4196 64 603 9.4218 
16384 128 1170 9.14 
19600 140 1314 9.385 
22500 150 1410 9.4 
25600 160 1425 8.90 
28900 170 1376 8.094 
32400 180 1581 8.783 
36100 190 1632 8.589 

 

PLOT: 

 

 

 

INFERENCE: 

Number of node traversed by the data structure is of O (√N) as we can see that number of 

nodes traversed divided by √N gives almost constant value for wide range of data. 

For the sake of simplicity, we can say that number of nodes traversed would never be greater 

than 20*√N. Thus practical application suggest that the algorithm is O (√N).  
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PRE- PROCESSING TIME ANALYSIS OF IMPLEMENTED   

CODE OF O(√N) APPROACH: 

Intially two arrays, one containing the x coordinate and other containing the y coordinate 

are taken. We sorted this in terms of x coordinate (quick sort is used for sorting). Now the 

array was divide into two partition containing lets say a and b elements according to 

partition algorithm already mentioned in O(1). 

Note that sorting in this context would refer to sorting in increasing order. 

We can easily conclude that  

𝑎 + 𝑏 = 𝑁 

Now the first a elements of array are sorted w.r.t to y coordinates and also the remaining b 

elements are sorted w.r.t to y coordinate. 

This will take 

   𝑎𝑙𝑜𝑔(𝑎)  + 𝑏𝑙𝑜𝑔(𝑏) 

to find the upper bound we can say  

 𝑎𝑙𝑜𝑔(𝑎)  + 𝑏𝑙𝑜𝑔(𝑏)  <  (𝑎 + 𝑏) 𝑙𝑜𝑔(𝑁) 

       <  𝑁𝑙𝑜𝑔(𝑁) 

We will continue in this dividing the partition and sorting w.r.t to x and y alternatively. For 

a general case if it has k partitions, (𝑎1, 𝑎2, 𝑎3… . 𝑎𝑘) we can say the time taken  

  < (𝑎1 + 𝑎2 + 𝑎3… . 𝑎𝑘)𝑙𝑜𝑔(𝑁) 

< 𝑁𝑙𝑜𝑔(𝑁) 

If for simplicity of analysis we take value of N to be of the form 22
𝑘
 then it will for a complete 

binary tree and the number of level would be 𝑙𝑜𝑔(𝑁). Thus total pre-processing time would 

be of 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁)). 

 

ANALYSIS FOR O(LOG2N) APPROACH: 

We have used random function to generate different values of N. Also for getting the query 

time we have taken average over 20 query for a particular set of input. Further, we have taken 

average over 5 inputs for each value of N. 

Since the complexity of this is 𝑐 (𝑙𝑜𝑔𝑛)2 , if we take value of n to be in the power of 2,n1, lets 

suppose 2k   ,then take another value of n to be 2𝑘+1, 𝑛2 theoretically, 

  

𝑇2/𝑇1 = (log(𝑛2) / log(𝑛1))^(2) 

  



𝑇2 = 𝑇1 ∗ ((log(𝑛2))/(log(𝑛1)))^(2) 

  

𝑇2 = 𝑇1 ∗ (
𝑘 + 1

𝑘
)
2

 

OBSERVATION TABLE 

 

Value of N Avg. for 5 values 
     (CLOCKS) 
 

Theoretical value 
T2=T1*(k+1)2/k2 
 

1024 1.7625  
2048 2.2125 2.133 
4096 3.7125 2.6331 
8192 6.46 4.351 
16384 8.725 7.492 
32768 11.825 10.02 
65536 15.425 13.4542 
131072 18.5625 17.413 
262144 22.8 20.811 
524288 26.55 25.404 
1048576 30.4 28.7 

 

 Time = CLOCKS/CLOCKS_PER_SEC 

CLOCKS_PER_SEC for the system = 1000000 

In the last column Theoretical value is calculated using the successive levels. 

INFERENCE: 

We can see that value coming is almost equal to the value calculated theoretically taking 

log2n to be the order. Thus, it can be inferred that the time complexity of the implemented 

data structure is O (log2n). The plot of Number of clocks v/s (𝐿𝑜𝑔(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠))^2 

is linear.  

PLOT: 



 

EXTENSION TO DYNAMIC FORM: 

The second Data Structure can be extended to the dynamic form. But the update operations 

are not so straight forward as they seem to be at first glance. The problem is with the 

implementation of the Static Data Structure which due to the fact that a Self-balancing Binary 

Search tree uses rotation of the tree in that case if we directly apply rotations then this will 

lead to change of Y-sorted sub-tree at each node involved in rotations and one can easily 

observe that we will require to merge two arbitrary Binary Search trees that will 

𝑡𝑎𝑘𝑒 𝑂(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑡𝑟𝑒𝑒𝑠). But one point to note is that this problem lies 

only in the Primary dimension. Hence in the secondary direction we can maintain a red-black 

tree. Another point to note is that if we do not rotate the tree then we are done but this will 

lead to skewing of the tree. But for random data we can practically observe that the tree is 

near to nearly balanced Binary Tree order of insertion is approximately of the 

order (log(𝑁))2 and the query time is also (log(𝑁))2. The worst case order is ~𝑁2. But for 

random values this Data Structure works as good as the Static Data Structure. 

Observation of Time Complexity after practically implementing the data Structure.   

 

Problem generated for further motivation in this field: This problem leads to a curious 

question that does there exist a Data Structure which can answer the Range queries in 

𝑂(𝑙𝑜𝑔(𝑁)) and does not require rotations for its balancing. 

ANALYSIS OF TIME COMPLEXITY FOR DYNAMIC 

VERSION: 

Our dynamic version involves the simple binary tree which can be skewed depending upon 

the input values. But we have already seen that a binary tree performs similar to balanced 

binary tree in case of random input. Our approach works well for the case where there is 

random input.    

    Observation Table 

Value of N Avg time  
(CLOCKS) 

Theoretical value 
T2=T1*(k+1)2/k2 
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2048 2.70  
4096 3.4 3.21 
8192 4.65 3.99 
16384 5.26 5.39 
32768 8.34 6.04 
65536 10.63 9.48 
131072 13.05 12.00 
262144 15.25 14.63 

 

Time = CLOCKS/CLOCKS_PER_SECS 

CLOCKS_PER_SECS for the system = 1000000 

INFERENCE: 

We can see that value coming is almost equal to the value calculated theoretically taking 

log2n to be the order. Thus, it can be inferred that the skew tree is performing the update in 

O (log2n) for random input. So, our approach would work well if input are random. 

PLOT: 
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COMPARISON OF BOTH THE DATA STRUCTURES. 

 

Number of Points Clocks for (𝑳𝒐𝒈(𝑵))^𝟐 Clocks for √N 

1024 1.7625 10.9 
2048 2.2125 14.6 
4096 3.7125 21.4 
8192 6.46 30.45 
16384 8.725 43.72 
32768 11.825 62.3 
65536 15.425 85.63 
131072 18.5625 127.8 
262144 22.8 182.5 
524288 26.55 259.15 
1048576 30.4 364.6 

 

INFERENCE : 

We can easily see that the (log(𝑁))2 data structure significantly( by a factor of 10) 

outperforms the √𝑁 data structures as the value of N approaches 106 and for the number of 

points less 100000, both the algorithm works fine as approach 1 takes more time but not much 

(0.000128 sec averagely) and space is O(n). On the other hand approach 2 takes more space 

approximately (17 ∗ 𝑁) for the number of points less than 100000. So, for these many points 

space is not a matter and with respect to time, this obviously outperforms approach 1. So for 

these many points both the approach works good(preferably approach 2 as its reduces the 

time to very less (0.000017 sec averagely). 

But for the number of points above 1000000, you will have to choose between these 2 

algorithms depending upon your need and constraints. Though, the approach 2 give result in 

very less time but at the same time space starts creating problem because 𝑙𝑜𝑔(𝑁) factors start 

becoming significant. 

 If space is a problem and there are not more queries then we should prefer approach 1 

for the values of N >10^6.  

 If space is not a problem and queries are significantly large then we should prefer 

approach 2 for the values of N > 10^6. 

 If N< 10^6 and queries are large then we should prefer approach 2. 

 If N< 10^6 and queries are not large then we should prefer approach 1 to save the 

space complexity. 

For number of points above 10^8, you should clearly favour approach 1, O(n) space , as the 

space required for this by approach 2 would cross the space chunk provided by the RAM, thus 

you will have to access your external memory ,which would take more time to give the result. 

     

     GUI – IMPLEMENTATION 



We have implemented the static Data Structure of (log(𝑁))2 complexity in the GUI. Both 

the Data Structures can be included in the GUI, but for simplicity we have implemented for 

(log(𝑁))2.The GUI has been made Python language using the Tk-inter library and 

Matplotlib.pyplot library by embedding the graphs generated by Matplotlib.pyplot library 

into the Tk-inter window. The features of the GUI are available in the “Read-Me” given in 

the directory containing the GUI codes. Few looks of the GUI are as follows: 

 

 

 

   


