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1 Introduction

Grothendieck laid the foundations of K-theory in 1950’s for generalising Reimann-
Roch theorem in algebraic geometry. The zeroth K group denoted by K0 is also
called the Grothendieck group. In most of the cases K0 can also be given a
commutative ring structure. Later various connections of Grothendieck group
were found with different areas of mathematics such as homological algebra. In
1995 Kontsevich invented the concept of motivic integration associated with
a Grothendieck ring. In this report we study a certain type of Grothendieck
rings known as model theoretic Grothendieck ring. Model theory is a branch
of mathematical logic where we study mathematical structures by considering
the first-order sentences true in those structures and the sets definable by first-
order formulas. Motivated by motivic integration Krajiček and Scanlon [1] intro-
duced the concept of model theoretic Grothendieck ring. They associate various
interesting combinatorial aspects to the model theoretic Grothendieck ring of
structures.

The main objective of this work is to compute model theoretic Grothendieck
ring associated with a structure having dense linear order. In section 2 we provide
model theoretic definitions of structures and signatures. Moving ahead from
section 3 to section 7 are dedicated to preliminaries of model theory following [2].
In section 8 we provide the formal definition of Grothendieck ring associated
with a given structure and also give a brief survey about known Grothendieck
rings. From section 9 to section 11, the focus is on computation of Grothendieck
ring of Dense Linear Orders (DLOs) without end points. Finally we conclude
the report by talking about some of the interesting combinatorial properties of
Grothendieck ring of DLOs without end points.

2 Structures and Signatures

We confront many algebraic structures in mathematics, like groups, rings, fields,
posets, etc. One can observe that all these have some underlying set, and some
functions and relations. Building on this intuition we define abstract structures
but before that let us define signature :

Definition 1. A signature L consists of constant symbols (c), function symbols
(F) and relational symbol (R) which are n-ary for all n.

Definition 2. A structure A is an entity with the following ingredients -:

– A set of elements which is called . Cardinality of the structure is the cardi-
nality of A. Note that A should be non-empty.

– The collection {cA ∈ A | c ∈ L where c is a constant symbol}.
– The collection {FA ∈ A | F ∈ L where F is a function symbol}.
– The collection {RA ∈ A | c ∈ L where R is a constant symbol}.
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Note that the signature for groups is < 1, ·,−1>, where · is a 2-ary function
symbol, −1 is a unary relational symbol and 1 is constant symbol. So with an
underying set G, we have a structure (G, 1, ·,−1 ).

Another example is of linear order. Suppose ≤ is an order relation on A.
Then we can make (A,≤) into a structure A, where A is the domain of A and
≤ is 2-ary relation symbol.

Another interesting example of an structure is a vector space for a fixed field.
Here the usual additon, subtraction and 0 are there, but for field, we add a 1-
ary function symbol for multiplication by that scalar. Thus, we have a structure
vector space over a fixed field.

3 Homomorphisms and Substructures

We define a homomorphism between two structure which have same signature.
A homomorphism is a map from one structure to another structure preserving
quantities related to the signature.

Definition 3. Formally, a map f : A −→ B is a homomorphism if following
conditions are satisfied:

– f(cA) = cB for each constant symbol c in L.

– f(FA(ā)) = FB(f(ā)), for each function symbols F ∈ L.

– if ā ∈ RA , then f(ā) ∈ RB for each relation symbols R ∈ L.

If a homomorphism is injective and the following property hold, then it is called
an embedding.

– ā ∈ RA iff f(ā) ∈ RB .

An isomorphism is a surjective embedding. For two isomorphic L−structures
A,B, we write A ∼= B. With all this we have the following theorem.

Theorem 1. Let L be a signature.

1. If A,B, C are L− structures and f : A→ B and g : B → C are homomor-
phisms, then gf is also a homomorphism.

2. 1Bf = f = f1A.

3. If f and g are ismomorphisms then so is gf . ∼= is an equivalence relation.

4. If gf = 1A and fh = 1B then f is an isomorphism and g = h = f−1.

Proof. All of the above statements are just verification and follow from properties
listed for homomorphism. For part (e), g = g1B = gfh = 1Ah = h. Since
gf = 1A, f is an embedding. Since, fh = 1B, f is surjective.
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3.1 Substructures

If A and B are L − structures such that A ⊆ B and the inclusion map is an
embedding, then we say that A is a substruture of B or symbolically A ⊆ B.
Since inclusion is an embedding, it follows that for every constant c in L cB ∈ A
; for every n− ary function symbol F in L and every n− tuple ā of elements of
X, FB(ā) ∈ X ; for every n− ary relational symbol R, RA = RB ∩ (A)n. Thus
we have the following lemma:

Lemma 1. Let B be an L− structure and X a subset of B, then the following
are equivalent :

1. X = A for some A ⊆ B
2. For every constant c of L cB ∈ A ; for every n − ary function symbol F of

L and every n− tuple a of elements of X, FB(a) ∈ X

Proof. Assume (1), so it is easy to see that (2) is true by using the fact that the
inclusion map has to be an embedding. Conversely, assume (2), we can define A
by putting A = X, and for each constant c in L, FA = FB|Xn, for each n− ary
functional symbol F in L, and now define RA = RB ∪ Xn for each n − ary
realational symbol R in L. Hence the lemma.

3.2 Generation of structures

Now we ask a question : given a set Y ⊆ A, where A is an L − structure does
there exists a L − structure such that its domain is Y and it is a substructure
of A ? In general the answer is NO. But it turns out we can have one whose
domain contains Y . Let us look at the construction.
We will define Yis using some set of definitions and then take their union and that
will be our required structure, which will be the smallest substructure containing
Y . So,

1. Y0 = Y ∪ {cB for all c in L}
2. Ym = Ym−1 ∪ {FA(ā) for all n-tuples ā ∈ Ym and for all n-ary function

symbols F ∈ L}

Finally form a new structure, such that ∪∞i=0Yi is the domain of the required
substructure.

4 Terms and Atomic Formulas

Every language has a stock of variables. These are symbols written v, x, y, z an
one of their purposes is to serve as temporary labels for elements of a structure.
So, terms are basically just expressions and they get meaning when they are
interpreted in the structure. So, for a given signature L,

1. Every variable is a term of L.
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2. Every constant is a term of L.
3. For all n−ary function symbol F , F (s1, s2, s3, . . . , sn) is a term of L, where

each si is a terms of L.
4. Nothing else is a term. So, if t is a term, it is just an expression in the

language.

4.1 Some definitons

1. Closed - A term without any variables.
2. Complexity of a term - Number of symbols appearing in it, counting each

occurence separately. Important point is that a term having another terms
in it will have more complexity than all the terms present in it.

3. The meaning of t(x) - Variables in term t are from the sequence x =
(x1, . . . , xn).

Now the following statements relate the terms of a given signature to its struc-
ture.

1. If t is the variable xi, then tA[a] is ai.
2. If t is a constant c, then tA[a] is the element cA.
3. If t is of the form F (s1, s2, s3, ...., sn), where each si is a term si(x), then
tA[a] is the element FA(sA1 (a), ...., sAn (a)).

4.2 Atomic formulas

The atomic formulas of L are the strings of symbols given by the rules below:

1. If s and t are terms of L then the string s = t is an atomic formula of L.
2. Given R an n − ary relation symbol and t1, . . . , tn are terms of L then the

expression R(t1, . . . , tn) is an atomic formula of L.

Atomic sentence is an atomic formula in which there are no variables.
Note that if the variables are interpreted as elements of the structure, it makes
a statement about the structure. If this statement holds, we say φ is true of a ∈
A or in symbols we have,

A � φ[a] ⇐⇒ A � φ(a)

So, formally

1. If φ is the formula s = t where s(x), t(x) are terms, then A � φ[a] iff
sA[a] = tA[a]

2. If φ is the formula R(s1, ....., sn) where s1(x), ...., sn(x) are terms, then A �
φ[a] iff the ordered couple (s1(x), ...., sn(x)) is in RA

If φ is true in A, then we say that A � φ. Let T be a set of atomic sentence, we
say that A is a model of T (in symbols, A � T ) if A is a model of every atomic
sentence in T .
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Theorem 2. Let A and B be L− structures and f a map from A to B.

1. If f is a homomorphism then for every term t(x) of L and tuple a in A
f(tA[a]) = tB[f(a)].

2. f is a homomorphism iff for every atomic formula φ(x) of L and tuple a in
A

A � φ[a]⇒ B � φ[fa].

3. f is an embedding iff for eery atomic formula φ(x) of L and tuple a in A

A � φ[a] iff B � φ[fa].

Proof. 1. The proof of is easy by induction on the complexity of t.
2. When f is homomorphism then if sA[a] = tA[a] means that f(sA[a]) =
f(tA[a]) and using (1), that gives sB [f(a)] = tB [f(a)], which is φ[f(a)].
Similarly we do the same thing for relation symbol as well. For the converse
part also argue using the conditions required for homomorphism.

3. It has the same proof as (b). Consider the symbol ¬ and we define

A � ¬φ[a] ⇐⇒ A � φ[a] does not hold

5 Canonical Structures

In previous sections we saw some definitions of model of an atomic sentence
and hence we can come up with the set of all atomic sentence such that given
L structure A is a model for each of them. Further we also saw how we can
translate A into a set of atomic sentences. We build up the converse here i.e.
given a signature L and a set of atomic sentences T of L, we now construct a L
structure A such that every element of A is a closed term of L further A is a
model for each atomic sentence in T .

Theorem 3. Given a signature L and a set of atomic sentences T of L, ∃ a L
structure A (say) such that following holds.

1. A � T .
2. Every element of A is tA for some closed term t of L..
3. There exists a unique homomorphism f : A −→ B, where B is a L structure

and B � T .

We go via the following definition and lemma for proof of above theorem.

Definition 4. A set of atomic sentences T of signature L satisfying following
two properties is called a -closed set.

1. For each closed term t of L, t = t ∈ T .
2. if φ(x) is a atomic formula and s = t ∈ T then φ(s) ∈ T iff φ(t) ∈ T .

Lemma 2. Given a signature L and a -closed set T of L then there exists a L
structure A such that the following holds
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1. Set of all atomic sentences of L true in A is exactly T
2. Every element of A is tA for some closed term t of L

Proof. (Theorem) The proof of the first two parts of the theorem is now straight-
forward. We just take the minimal -closed set containing T , U (say) and hence
as A � U , hence A � T . For the third part we use the Diagram lemma and show
that every atomic sentence φ of L true in A is also true in B. To see this take
the set of all true atomic sentences in B, U ′ (say), by definition of U , U ′ contains
U , and noting that U ′ is a -closed set, the theorem follows.

We now give a proof sketch of Lemma 2.

Proof. (Lemma) We explicitly construct the L structure A. Consider the set of
all closed terms of L. We say a closed term t is related to closed term s by
relation ∼, (s ∼ t) iff (s = t) ∈ T . Using conditions of -closed set one can show
that this is an equivalence relation. Represent equivalence class of t by t̃. We
now construct the structure A. Define A to be set of equivalence classes of ∼
and for each named constant symbol c of L define cA = c̃. For each n and each
n-ary function symbol F of L and a tuple (t̃1, t̃2, . . . , t̃n) define

F (t̃1, t̃2, . . . , t̃n) = F̃ (t1, t2, . . . , tn)

. Further for each n and n-ary relation symbol R and a tuple (t̃1, t̃2, . . . , t̃n)
define

(t̃1, t̃2, . . . , t̃n) ∈ RA iff R((t1, t2, . . . , tn)) ∈ T

. Using the construction and the conditions for -closed set one can easily show
the lemma.

The L structure constructed in A is called a canonical L structure of T and
theorem guarantees that two such structures would be isomorphic.

6 Inserting Logical Operators and Definable Sets

The set of all atomic formulae of a given signature L is not enough at times
to define a certain useful property or subset of An. We also need to take their
logical combinations in a given interpretation as a formula usually refers to a
property that a set of elements of A satisfy but we might need intersection or
union or complement of one or more such sets. For this purpose we insert logical
connectives and enlarge our language formulas which initially consisted of only
atomic formulas. We would restrict ourselves to first order language which is
main focus of this work.

Definition 5. For a given signature L define the set L as:

1. All atomic formulas are in L.
2. If φ and ψ are in L then φ ∧ ψ and φ ∨ ψ are in L.
3. If φ ∈ L then ¬φ ∈ L.
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4. If y is a free variable in φ then ∃ y φ and ∀ y φ is in L (free variable is in
the first order logic sense).

5. Nothing else is in L.

Elements in L would be called as formulas and a formula without any free
variables is called a sentence. Now we talk about similar concepts like a formula
being true in an structure as we did for atomic formulas. Given a L structure
A, formula φ and a tuple ā of appropriate length we say that A � φ(ā) if the
following happens:

1. If φ is of the form φ1 ∨ φ2 then A � φ(ā) iff A � φ1(ā) or A � φ2(ā).

2. If φ is of the form φ1 ∧ φ2 then A � φ(ā) iff A � φ1(ā) and A � φ2(ā).

3. If φ is of the form ¬ψ then A � φ(ā) iff its false that A � ψ(ā).

4. If φ is of the form ∃ y ψ then A � φ(ā) iff there is a b ∈ A such that
A � ψ(b, ā).

5. If φ is of the form ∀ y ψ then A � φ(ā) iff for each b ∈ A A � ψ(b, ā).

A is said to be a model for a sentence φ if A � φ. Further given a n-ary formula
φ(x̄), by φ(An) we mean all the tuples ā such that A � φ(ā). Further if φ(x̄, ȳ)
is a formula and let b̄ be of length of ȳ then by φ(An, b̄) we mean all the tuples
ā such that A � φ(ā, b̄). A set φ(An) for some formula is called a definable set
without parameters. Further if X is a subset of A and b̄ be a sequence of elements
from X then the set φ(An, b̄) is called a definable set with parameters from X
i.e. we include X in our signature as we did previously for atomic formulas.

Now with respect to definable sets the above logical operations equivalently
mean union, intersection, complement, projection. With all this we have the
following theorem:

Theorem 4. Let L be a first order language as in Definition 5 and let A be
a L structure. Further if Y is a definable subset of A defined by some formula
φ(x) with parameters from X. If f is an automorphism of A such that f fixes
X point-wise then f fixes Y set-wise.

Proof. The proof is via induction on complexity (number of symbols appearing
in the formula with base case as an atomic formula) of a formula and is a
mechanical exercise.

Corollary 1. If L is an empty signature then A is just a set and automorphism
are just set bijections of A onto A. If Y is subset of A defined by some formula
with parameters from X and f is an automorphism as in the previous theorem.
Then either Y ⊆ X or X ⊆ Y where X means the complement of X in A.

Proof. The proof is via contradiction. Suppose this is not the case then there
exist an element α ∈ A \ (X ∪ Y ) and choose any β ∈ Y \X and let f be such
that it fixes every point of A except f(α) = β and f(β) = α. Now using the
previous theorem f should fix Y but f(β) /∈ Y .
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We further recall few more terminologies from model theory. Given a first
order language L let T be a set of sentences in L. We get the class of all L
structures K such that every structure in K is a model for each sentence in T . We
say that T axiomatises K. Further for a given class of L structures form the set of
all L sentences T (say) such that each structure in K is a model for each sentence
in T . Such a T is called L−theory of K. These correspondences when looked
upon as operation on T and K respectively have their interesting properties but
we leave those things for future exploration as they are not currently relevant to
the discussion. For now we move on to the concept of quantifier elimination in
a theory.

7 Quantifier Elimination

Definition 6 (Eliminating set). We say that a set Φ of formulas of L is an
elimination set for K if for every formula φ(x) of L, there is a formula φ∗(x)
such that φ∗ is equivalent to φ in every structure and is a boolean combination
of formulas from a set. That set is called eliminating set.

So, quantifier elimination refers to finding an eliminating set for a given
structure K. Also, if a theory has such a set which works for all models of the
theory, then theory is said to have the property of quantifier elimination.

Lemma 3. Suppose

1. every atomic formula of L is in Φ.
2. for every atomic formula θ(x) of L which is of form ∃y

∧
i<n ψi(x, y), where

each ψ(x, y) is in Φ or Φ−, there is a formula θ∗(x) of L which
(a) is a boolean combination of formulas in Φ.
(b) is equivalent to θ in every structure in K.

Then Φ is an elimination set for K.

Proof. Use the fact that ∀ y φ is equivalent to ¬∃x¬φ. And then use induction
on complexity of θ(x).

Theorem 5. Let L be a language whose signature consists of 2− ary relational
symbol < , and let K be the class of all dense linear orderings. If Φ consists of
formula x < y, x = y, it is an elimination set.

Proof. For proving quantifier elimination in dense linear order without end-
points, we will find an eliminating set using the lemma. So, obviously the elim-
inating set contains at least all the atomic formulas. Now, there are only two
possible atomic formulas : x = y and x < y and also their negation. Note that
there ∃ distributes over disjunction of formulas and we know that every first or-
der quantifier-free formula can be converted to Disjunctive Normal Form. Hence
every formulas of form ∃y

∧
i φi(x, y) can be converted to

∨
i ψi(x, y), where psii

is conjunction of literals. So, now let’s have a look at the possibilities of ψi.
First of all if a literal doesn’t have variable y in it, that can be pulled out of

the bracket. Also, θ and ¬θ can’t be together, where θ is an atomic formula. So,
the only possibilities are that ψi is

8



– x = y
– x > y
– x < y

and their negations with conjunctions between them. So, it is easy to see that
either the formulas define the whole set or the empty set and nothing else, which
means that we have a formula logically equivalent to ∃

∨
i ψi(x, y) and thus, by

use of lemma, only the atomic formulas form eliminating set.

8 Grothendieck Ring of a Structure

Having all the model theoretic terminologies in hand we now look at the definable
sets in aggregate. We would like to define something like all the n-ary definable
subsets i.e. all the definable subsets of An. But we must realize that till now
we haven’t removed the redundancy of formulas. We do it by fixing a fixed
countable sequence of variables as {x1, x2, . . . , xn, . . .}. This still doesn’t remove
the redundancy of formulas as for two formulas φ(An) and ψ(An) may be same
sets but they may be having different variable sets. But we see that this wouldn’t
matter if we are only concerned with the n-ary definable sets rather than the
n-ary formulas. Now by Def(An) denote the set of all n-ary definable subsets of
An (by definable set here we mean all definable set with or without parameters).
Further for each n aggregate these sets to form Def(A) i.e. we take a direct limit
under inclusion. Hence

Def(A) = lim−→
n→∞

Def(An)

Definition 7. For definable sets D1 and D2 in Def(A), and a bijective map
f : D1 −→ D2 is called a definable bijection if Graph(f) = {(ā, f(ā)) | ∀ā ∈
D1} ∈ Def(A)

Now we relate elements of Def(A) by definable bijections, i.e. we say D1 ∼ D2

if there is a definable bijection between D1 and D2. One easily checks that ∼ is
an equivalence relation. Further we look at the quotient space of Def(A) with

respect to ∼ and call it D̃ef(A). With [D] we would represent the equivalence
class of D. Now we would put some algebraic structure on the quotient space
and study it.

8.1 Formal construction

Put the following algebraic structure on (A).

1. 0 := [{Φ}] (equivalence class of empty set)
2. 1 := [{ā}] (equivalence class of singleton)
3. [A] + [B] := [A′ ∪ B′] where A′ ∩ B′ = Φ (note that such A′ and B′ will

always exist)
4. [A].[B] := [A×B]
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It is easy to verify that ‘+′ and ‘.′ are commutative and ‘.′ distributes over ‘+′.

The above definitions define a commutative semiring structure on D̃ef(A).

Definition 8 (Cancellative semiring). A semiring S is said to be cancellative
if for each A,B,C ∈ S, A+ C = B + C ⇒ A = B.

Definition 9. A binary relation ∼ on a semiring S is called a congruence re-
lation if

1. ∼ is an equivalence relation.
2. For a, b, c, d ∈ S, with a ∼ b and c ∼ d we have a+ c ∼ b+ d and ac ∼ bd.

Given a semiring S one can construct a cancellative semiring from it using a
standard procedure described in the following theorem [3]:

Theorem 6. Let S be a semiring and ∼ be a binary relation defined as follows.

for a, b ∈ S, a ∼ b ⇐⇒ ∃c ∈ S, a+ c = b+ c

Then ∼ is a congruence relation. Denote the quotient space of S by S̃. S̃ forms a
cancellative semiring under induced multiplication and addition operation. Fur-
ther the natural map f : S −→ S̃ is a surjective homomorphism of semir-
ings. Moreover given a cancellative semiring T and a surjective homomorphism
g : S −→ T there is a unique semiring homomorphism g : S̃ −→ T such that the
diagram S [dr,”g”] [r, ”f”] [d,”∃!g”]
T commutes.

Further given a cancellative semiring S we now form the ring of differences of
the semiring. Consider the set S×S with a binary relation E defined as follows.

For (a, b), (c, d) ∈ S × S, (a, b)E(c, d) ⇐⇒ a+ d = b+ c

One can easily verify that E is an equivalence relation and hence we look the
the quotient space

(S × S)/E := {(a, b)E | (a, b) ∈ S × S}

where (a, b)E represents the equivalence class of (a, b). The quotient space (S ×
S)/E is also a cancellative semiring with ‘+′ and ‘.′ operations induced from S
as follows:

1. (a, b)E + (c, d)E = (a+ c, b+ d)E .

2. (a, b)E .(c, d)E = (ac+ bd, ad+ bc)E .

Theorem 7. Assuming the above notations the quotient space (S × S)/E form
a ring with −(a, b)E = (b, a)E. Further there is an injective semiring homomor-
phism i : S −→ (S×S)/E such that for a ∈ S, i(a) = (a, 0)E. Moreover given a
ring T with an injective semiring homomorphism g : S −→ T , there is a unique
ring homomorphism g : (S × S)/E −→ T such that the diagram S [dr,”g”] [r,
”i”] (S×S)/E[d, ”∃!g”]
T commutes.
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Using standard notation of K-theory we denote the quotient (S×S)/E by K0(S).
This is called the Grothendieck ring associated with cancellative semiring S.
In respect to model theory one notes that we can define a Grothendieck ring
associated with a structure A using the semiring (A) by using Theorem 6 and
Theorem 7. We would denote the Grothendieck ring associated with (A) by
K0(A).

8.2 PHP and ontoPHP

In this section following [1] we define the concepts of Pigeon Hole Principle(PHP)
and onto Pigeon Hole Principle(ontoPHP) for a structure. A structure A is said
to satisfy ontoPHP if for every D ∈ Def(A) and a ∈ D, there does not exists a
definable bijection between D and D\{a}. Further a structure is said to satisfy
PHP if for every D1, D2 ∈ Def(A) such that D1 ( D2, there does not exists a
definable bijection between D1 and D2. With all this we have following.

Lemma 4. Given a structure A, K0(A) is non trivial iff A satisfies ontoPHP.

Proof.

K0(A) = 0 ⇐⇒ 0 = 1

⇐⇒ ([D], 0)E = ([D] + [{a}], 0)E for some D ∈ Def(A), and a ∈ An

where (., .)E represent the equivalence class as defined in previous section.

Definition 10 (Partially ordered ring). A commutative ring R with unity
is said to be partially ordered if there exists P ⊆ R such that the following
conditions are satisified:

1. 0 ∈ P
2. 1 ∈ P
3. P + P ⊆ P
4. P.P ⊆ P
5. For x 6= 0 and x ∈ P then −x 6∈ P

P as above is usually referred as the positive part of ring R. With this we have
the following result.

Theorem 8. A structure A satisfies PHP iff K0(A) is a partially ordered ring.

Proof. The proof is easy. One can look at [1] theorem 4.3.

8.3 A brief survey on known Grothedieck rings

Only a few examples of Grothendieck rings are known. If M is a finite struc-
ture, then K0(M) ∼= Z. Krajiček and Scanlon showed in [1, Example 3.6] that
K0(R) ∼= Z using dimension theory and cell decomposition theorem for o-
minimal structures, where R denotes a real closed field. Cluckers and Haskell [4], [5]
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proved that the fields of p-adic numbers and Fq((t)), the field of formal Laurent
series, both have trivial Grothendieck rings, by constructing definable bijections
from a set to the same set minus a point. Denef and Loeser [6], [7] found that
the Grothendieck ring K0(C) of the field C of complex numbers regarded as ring
admits the ring Z[X,Y ] as a quotient. Krajiček and Scanlon obtained a strong
result that K0(C) contains an algebraically independent set of size c of the con-
tinuum, and hence the ring Z[Xi : i ∈ c] embeds into K0(C). Perera showed in
[8, Theorem 4.3.1] that K0(M) ∼= Z[X] whenever M is an infinite module over
an infinite division ring. Prest conjectured [8, Chapter 8, Conjecture A] that
K0(M) is nontrivial for all nonzero right R-modules M . In his PhD. thesis, Ku-
ber [3], [9] solved the conjecture by showing that K0(M) is actually a quotient
of a monoid ring and, furthermore, it is nontrivial.

9 Model Theory for DLOs Without End Points

9.1 Theory of DLOs without end points

Fix the signature (<) and let Q be the structure of the signature, then Q =
(Q,<). Further define the theory of DLO without end points with following
axiomatization:

1. Linear Order: ∀x ∀y (x < y ∨ x < y ∨ x = y).

2. Linear Order: ∀x ¬(x < x).

3. Transitivity: ∀x ∀y ∀z (x < y ∧ y < z ⇒ x < z).

4. Without end points: ∀x ∃y (y < x)

5. Without end points: ∀x ∃y (x < y)

6. Density: ∀x ∀y (x < y ⇒ ∃z(x < z ∧ z < y))

Further Theorem 5 implies that theory of DLOs without end points admits quan-
tifier elimination. Examples of DLOs without end points include the structures
(Q, <) and (R, <). Our aim in the following sections would be to compute the
Grothendieck ring of DLOs without end points denote by K0(Q). Here are few
notations which we fix beforehand for ease.

1. We denote the variable set {Xn+1, Xn+2, . . . , Xn+m} by X[n+1 : n+m] for
n ∈ N.

2. With X we refer to {X1, X2, . . . , Xn} for some n ∈ N. We would use X and
X[1 : n] interchangeably though they have the same meaning.

3. CΦ represents set of conjunctive clauses for a propositional formula Φ(X)
written in DNF.

4. For a conjunctive clause γ, f ∈ γ means an atomic formula f of the language
which appears in γ.
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9.2 Definable sets in dimension n

Let D∅n represent the set of definable sets in Xn by formulas containing no
parameters :

D∅n := {Φ(Qn)
∣∣ Φ(X[1 : n] is a formula with n variables only)}.

Given a definable set D ∈ D∅n such that D = Φ(Qn), we convert Φ(X) into DNF
with conjunctive clauses containing only positive literals (due to strict order).
Now we show that D∅n forms a finite Boolean algebra. For proving this we devise
a pictorial representation of atomic formulas present in a conjunctive clause of
Φ(X).

Xi

Xj

For Xi > Xj

Xi Xj For Xi = Xj

Definition 11. Call a definable set D ∈ D∅n to be related set if D = Φ(Qn)
such that every pair of variables (Xi, Xj) appearing in Φ are comparable (via the
order relation of the structure) and the comparablity is unique throughout D i.e.
∀a ∈ D we have unique relation between (ai, aj) for all (i, j).

Clearly they will correspond to the diagrams of the form

X1

X2

X3

Xk

where Xi refers to a tuple, (Xi1 , Xi2 , · · · , Xili
) corresponding to the diagrams

of the form

Xi1 Xi2 Xi3
Xili
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where Xit ∈ X[1 : n] for t ∈ {1, 2, . . . , li} such that each Xi appears exactly once
in the diagram. For a related set R let H(R) represent the diagram associated
to R.

Definition 12. [Height of a related set] Define the height of a related set R to
be k in H(R).

Proposition 1. The related sets in D∅n form atoms for boolean algebra structure
on D∅n.

Proof. To begin with we show that any two distinct related sets are mutually
disjoint. Say R1 and R2 are distinct related sets in D∅n then there exists variable
pair (Xi, Xj) which differs in their relation in R1 and R2. WLOG assume that
Xi < Xj in R1 and Xj < Xi in R2 and if a ∈ R1 ∩R2 then

Q |= Φ1(a)

Q |= Φ2(a)

but we cannot have ai < aj and aj > ai both in strict dense linear order
simultaneously. Hence a contradiction.
For showing that any definable set can be written as their disjoint union we do
a conjunctive clause wise analysis. Fix a clause γ ∈ CΦ, if Xi > Xj for some i, j
appears in the clause then this means that we just look at the set of all related
diagrams with Xi < Xj (similarly with Xi = Xj). Every such atomic formula
fixes the relation between two variables. Let for every f ∈ γ, Sγf represent the
set of all the related sets which satisfy f . The quantity

Sγ =
⋂
f∈γ

Sγf

is the set definable by the conjunctive clause (by definition). Now for the formula
Φ(X) we have

D =
⋃
γ∈C

Sγ

Now the set defined by the union of elements in D is set definable by Φ(X).

We fix the following notations before proceeding.

1. By At∅n we would mean the set of related sets of D∅n.

2. By A(X[1 : n − 1], a) for some a ∈ Q we mean evaluation at Xn = a and
similarly for any definable set D.

3. Let Dan denote the set of all the definable sets defined by formulas of n
variables and a parameters.

We abuse the notation slightly by using At∅n for set of equivalence classes of
formulas which represent same atom in D∅n. One also notes that the pictorial
representation of formula will essentially be putting a in place of Xn. With all
this we have following proposition.
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Proposition 2. Dan forms a boolean algebra with

{A(X[1 : n], a) 6= ∅ | A ∈ At∅n+m}

as the set of atoms.

Proof. The disjointness of A1(X, a) and A2(X, a) follows from the fact that
A1(X,X[n+ 1 : n+m]) and A2(X,Xn+1, . . . , Xn+m) are disjoint. To show that
they generate any definable set in Dan, we show that the evaluation map

evala
X[n+1:n+m]

: D∅n+m → Dan
D(X[1 : n+m]) 7→ D(X[1 : n], a).

The above map is clearly a surjection. If A is an atom below D in the boolean
algebra D∅n+m then A(X, a) lies below D(X[1 : n], a) in Dan. To see this if

A(X, a) = ∅ then its trivial otherwise if X |= A(b, a) for some b then X |= D(b, a)
as A(X[1 : m+ n]) is below D(X[1 : m+ n]) which also implies that A(X, a) is
below D(X, a). Hence the result.

Definition 13 (Decomposition into related sets). We define the map

Atn;a : Dan → P(Atan)

D 7→ {A ∈ Atan|A ∩D 6= ∅}

This maps gives us the atomic decomposition of definable set D ∈ Dan. We define
related set in Dan to be an element which is defined by a formula in which any
pair of the form (Xi, Xj) or (Xi, aj) are related for all (i, j) and the relation
between (Xi, Xj) or (Xi, aj) is unique. Clearly every element in Atan is a related
set by because any element in At∅n+m is related. We claim the converse to be true.
To see this just construct the formula corresponding to related set R ∈ Dan and
with slight abuse of notation let R(X, a) represent the formula for R. As noted
in the proof, the map evala

X[n+1:n+m]
is a surjection. We obtain a representative

formula R′(X[1 : n+m]) such that

evala
X[n+1:n+m]

(R′(X[1 : n+m])) = R(X, a)

where R′(X[1 : n + m]) is obtained just by replacing each Xn+i by ai and now
use the previous proposition. Further we order a in descending order for our
convenience. One notes that ordering has no affect.
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Xp1

Xp2

Xp1

Xpk

where pi ∈ {ai, ei} and Xai refers to a tuple, (Xi1 , Xi2 , · · · , Xili
) correspond-

ing to diagrams of the form

ai Xi1 Xi2 Xi3
Xili

and Xei refers to a tuple (Xi1 , Xi2 , · · · , Xili
) corresponding to diagrams of the

form

Xi1 Xi2 Xi3
Xili

Definition 14 (Components of a related set). Define the set of compo-
nents of a related set R ∈ Atan as

Comp(R) := {Xpi | for each Xpiappearing in H(R)}.

Similar to Definition 12 we define Height of related set R ∈ Atan as

Height(R) = card

{
Xpi ∈ Comp(R)

∣∣ pi = ei

}
.

It’s clear how to construct a formula from an related set. Hence we induce
order relation between Xpi ’s from the order relation on X[1 : n] naturally. For
Xpi , Xpj ∈ Comp(R), we say Xpi < Xpj if in H(R) Xpj appears above Xpi .
Further extend the definition of Height() to Dan by defining

Height(D) = max{Height(R) | R ∈ (D)}

for any D ∈ Dan.

Definition 15. Assume ā is sorted in descending order then for ai ∈ ā let

#(Xai , Xai+1
) = card

({
Xek ∈ C(A1)

∣∣ Xai < Xek < Xai+1

})
.
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Definition 16 (Equivalence up to permutation). For any n, a and for
A1, A2 ∈ Atan we say H(A1) and H(A2) are equivalent up to permutation,
denoted as H(A1) ∼σ H(A2) if for every consecutive ai, aj such that ai > aj

#(Xai , Xaj ) = #(Y ai , Y aj )

where A1 is represented in dummy variables X[1 : n] and A2 by Y [1 : n].

The above definition directly implies Height(A1) = Height(A2) and

card(Comp(A1)) = card(Comp(A2)).

With slight abuse of terminology we further call two related sets A1 and A2

to be equivalent up to permutation denoted by A1 ∼σ A2 if H(A1) ∼σ H(A2).
With all this we have the following proposition :

Proposition 3. If A1 ∼σ A2 then there is a definable bijection between A1 and
A2.

Proof. We construct a bijection using definitions. Let A1, A2 ∈ Atan. Assuming
that a is ordered in descending order. Renaming the variables X[n+ 1 : 2n] by
Y [1 : n] just for ease of notation. The following formula

f(X,Y ) = A1(X) ∧A2(Y )
∧

Xp∈Comp(A1)

Xp = Y p

Note that the formula f is valid because A1 ∼σ A2. To see that its graph of an
bijection we evaluate f(X,Y ) on b ∈ A1 we have Y p = bp, ∀Y p ∈ Comp(A2).
This implies each Yi = bji for some bji ∈ b. Clearly the tuple (Yi)

n
i=1 = (bji)

n
i=1 ∈

A2. One can easily extract a bijection g : A1 → A2 out of f(X,Y ).

10 Computation of D̃ef

10.1 Local and global characteristic

In previous section we defined a relation ∼σ on Atan (Definition 16). Proposi-
tion 3 makes this relation an equivalence relation as if A1 ∼σ A2 then there is a
definable bijection between A1 and A2. We look at the quotient = / ∼σ as we
want to construct . For A ∈ we represent its equivalence class in / ∼σ by [A].
Define for each [A] ∈ / ∼σ, the map

: Dan → N
D 7→ card

(
{B ∈ Atān(D) | BσA}

)
.

This definition gives rise to following map :
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: Dan →
⊕

N

D 7→
⊕

T∈Atān/σ

χTD.

We call to be local characteristic and to be global characteristic in Dan.

Proposition 4. Given D1 ∈ Dān and D2 ∈ Db̄n if ∃ a parameter set c̄ such that
χātb̄tc̄n (D1) = χātb̄tc̄n (D2) then there is a definable bijection between D1 and D2.

Proof. The proof is easy and directly follows from Proposition 3.

Let DQn := tāDān. Motivated from above proposition we give the following
definition.

Definition 17. For D1, D2 ∈ DQn . We say D1 ∼σ D2, if ∃ ā such that (D1) =
(D2). Clearly this is an equivalence relation because of above proposition. Let
D ∈ Dān, so its equivalence class is denoted by [D] and

DQn /σ := {[D] | D ∈ DQn }.

Proposition 5. Let A1, A2 ∈ Atān and A1 6= A2, we have χān(A1 t A2) =
χān(A1) + χān(A2).

Proof. Obvious by definition of χān.

10.2 Main lemma

Lemma 5. Given a definable bijection Φ ∈ Da∪b∪c2m between two definable sets -

P1 ∈ Dam, P2 ∈ Dbm. Then ∃ c̄ such that

χa∪b∪cm (P1) = χa∪b∪cm (P2)). (1)

Proof. Let Φ = tmi=1Ai. Consider Ai and fix i. Note that Ai is the graph of a
definable bijection. Let the variables beX[1 : 2m]. Let qi ∈ Ai denote a 2m-tuple.
Compare (qi)m+1 with (qi)j(j ∈ [1 : m]). Assume that each (qi)j(j ∈ [1 : m]) is
either strictly less or strictly greater than (qi)m+1. It means that in the related
set Φ the relations are either

Xm+1 > Xj or Xm+1 < Xj for j ∈ [1 : m].

Also, there will be relations between X[m+ 1 : 2m]. Form three sets

(Xm+1)<, (Xm+1)=, (Xm+1)>

as described earlier and find the least element in (Xm+1)<, call it Xu; find the
greatest element in (Xm+1)>, call it Xv. Note that if Xj ∈ Xm+1)= ⇒ j > m.
Clearly

(qi)u < (qi)m+1 < (qi)v
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and we can find q such that

(qi)u < q < (qi)v and q 6= (qi)m+1

as universe Q is dense. Now consider another tuple qi
′ such that (qi

′)j = q for
j such that Xj ∈ (Xm+1)= and for other j, it remains unchanged. Note that
qi
′ ∈ Ai, as all relations are still satisfied. But this is a contradiction to the fact

that Ai is a bijection as we get two image of one m-tuple. Thus ∃ j < m + 1
such that j ∈ (Xm+1)=. This whole process can be carried out for any Xj for
j > m.

Form a related set involving variables Xj for j ∈ [1 : m] and their relations
between variables and parameters of ā∪ b̄∪ c̄ as that in Φ. Thus, we get for each
related set of Φ we have one-one correspondence between related sets of P1 and
P2, where the parameter set is ā ∪ b̄ ∪ c̄.

Also, these two related sets are equivalent up to permutations. Hence proof
of the lemma is complete.

Corollary 2. Let D1, D2 ∈ Dan be such that Height(D1) 6= Height(D2) then
there is not definable bijection between them.

Proof. The proof directly follows from above lemma.

10.3 Aggregation with respect to n

Let D ∈ DQn . Also, assume that ΨD denotes a defining formula for D then

∆Q
n,n+1 : DQn → D

Q
n+1

D 7→ D′

where D′ ∈ DQn+1 and has the defining formula ΨD′ = ΨD ∧ (Xn+1 = X1). For a
general n < m (in case of n = m, define ∆Q

n,n to be identity), ∆Q
n,m is defined as

DQn ↪→ DQ
n+1 ↪→ DQ

n+2 . . . . ↪→ DQ
m. (2)

Lemma 6. ∆Q
n,m : DQn → DQm induces a map ∆Q

n,m/σ : DQn /σ → DQn /σ, which
is defined as [D1] 7→ [∆(D1)].

Proof. The only thing to check is that map is well defined. Note that the height
and relative arrangement of parameters is not changed under the map ∆Q

n . Thus
the lemma is true.

Let N denote the set of natural numbers. Clearly 〈N,≤〉 forms a directed set.
Let DQn /σ be the family of sets indexed by N and ∆Q

n,m/σ : DQn /σ → DQm/σ be
function defined as above. Note that the following two properties are satisfied :

– ∆Q
n,n/σ is the identity map.

– ∆Q
n,p/σ = (∆Q

m,p/σ) ◦ (∆Q
n,m/σ) for n ≤ p ≤ m.
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Both are obvious. Hence the pair 〈DQn /σ,∆Q
n,m/σ〉 forms a directed system

over N and direct limit of the system is defined :

D̃ef :=

⊔
nDQn
'

where if [D1] ∈ DQn /σ and [D2] ∈ DQm/σ, [D1] ' [D2] if there is some p such
that ∆Q

n,p/σ([D1]) = ∆Q
m,p/σ([D2]).

10.4 D̃ef(Q)

In this section we show that (Q) = constructed in the above section.

Theorem 9. Two definable sets are in bijection if and only if they are in the
same equivalence class in .

Proof. (⇒) : Assume that D1 ∈ Dān and D2 ∈ Db̄n are in bijection. Then by
Lemma 5, there exists a parameter set c containing ā and b̄, such that χā∪b̄∪c̄n

is equal. Hence they are in same equivalence class in DQn /σ and consequently
in . Now, if D1 ∈ DQn and D2 ∈ DQm are in bijection (and WLOG assume that
n < m). Let ∆Q

n,m(D1) = D′1 and hence [D1]' = [D2]' and D1 and D2 are in
definable bijection with each other and hence D′1 and D2 are. By the previous
argument, [D′1] ' [D2]. Thus we have [D1]' = [D2]'.

(⇐) : Assume that two sets D1 and D2 are in same equivalence class in .
Thus

[∆Q
n,m(D1)] = [∆Q

p,m(D2)] (3)

Clearly D1 is in bijection with ∆Q
n,m(D1) and similarly for D2. Thus D1 and D2

are in bijection.

In the next section we will study (Q) by endowing the usual semi ring struc-
ture on it as discussed in subsection 8.1.

11 Grothendieck ring of dense linear orders (K0(Q))

Let us denote the element of a ring as [D]'. Let us define the ring structure as
previously done in section 8.

– 0 := [Φ]'
– 1 := [∗]'
– [A]' + [B]' := [A′ tB′]',

where A′ ∩B′ = ∅ and [A]' = [A′]', [B]' = [B′]'.
– [A] ∗ [B] := [A×B] ,which is the cartesian product of A and B.

Theorem 10 (Cancellativity). [A]' + [C]' = [B]' + [C]' ⇒ [A]' = [B]'.
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Proof. [A]'+[C]' = [A′tC ′]' = [B′tC ′′]'. By Theorem 9, A′tC ′ and B′tC ′′
are in bijection with each other. Let D1 = A′tC ′ ∈ Dān and D2 = B′tC ′′ ∈ Db̄m,
and WLOG assume that n < m. Let ∆ā

n,m(D1) = ∆ā
n,m(A′) t∆ā

n,m(C ′) = D′1,
where D′1 ∈ Dām. Since D′1 is in bijection with D2, using Lemma 5

χātb̄tc̄m (D′1) = χātb̄tc̄m (D2)

Using Proposition 3, we have

χātb̄tc̄m (∆ā
n,m(A′) t∆ā

n,m(C ′)) = χātb̄tc̄m (∆ā
n,m(A′)) + χātb̄tc̄m (∆ā

n,m(C ′))

and

χātb̄tc̄m (∆ā
n,m(B′) t∆ā

n,m(C ′′)) = χātb̄tc̄m (∆ā
n,m(B′)) + χātb̄tc̄m (∆ā

n,m(C ′′))

C ′ and C ′′ are bijective image of same set C. Thus there exists some parameter
set p̄ in which their characteristic is same. Thus from above two relations we
have that ∃ some parameter set P̄ such that

χP̄m(A′) = χP̄m(B′) (4)

So B′ and A′ are in definable bijection and consequently B and A. Hence proof
is complete.

The above theorem shows that D̃ef is a semiring under ‘+′ operation. Now
our task is to convert the semiring into ring by defining meaning of additive
inverse.
Given the cancellative semiring we follow the standard procedure of Theorem 7

is D̃ef , now we will define an equivalence relation E on D̃ef × D̃ef such that

([D1]', [D2]') E ([D3]', [D4]')⇐⇒ [D1]' + [D4]' = [D2]' + [D3]'

Then E is an equivalence relation. Let ([D1]'1/∼2
, [D2]'1/∼2

)E denote the equiv-
alence class then the quotient structure

(R×R)/E := {([D1]'1/∼2
, [D2]'1/∼2

)E : ([D1]'1/∼2
, [D2]'1/∼2

) ∈ D̃ef × D̃ef}

forms a ring with respect to standard operations. The ring R×R/E as discussed
in section 8 is called Grothendieck ring of the structure Q denoted by K0(Q).

Let [D] represent the equivalence class of a definable set D in to ease the
notations. Due to Theorem 7 we abuse the notation slightly by using [D] for
[([D], 0)]E ∈ K0(Q). The meaning of [D] would be clear from the context and
in case of an ambiguity the context would be stated exclusively. Further for
definable set D′ we say that [D′] is contained in [D] if there is definable set
D′′ ∈ [D] such that D′ ⊆ D. Further one notes that for D1 and D2 such that
[D1] = [D2] we have Height(D1) = Height(D2). Hence we extend the definition
of Height() to .
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11.1 Multiplication of two related sets

It suffices to study multiplication in with semi ring structure on it, as it is
embedded inside K0(Q). Let a be the ordered set of k elements of Q ∪ {±∞}
sorted in descending order and n = (n1, n2, . . . , nk) be k tuple of non negetive
integers. Let aRn be the related set corresponding to the formula

(X1 > X2) ∧ . . . ∧ (Xn1
> a1) ∧ . . . ∧ (Xn1+n2

> a2) ∧ . . . ∧ (Xn1+...+nk
> ak)

and
[a
Rn
]
∈ be its equivalence class. With Ran we would mean (∞,a)R(0,n) to

simplify the notation. With all this we have following proposition.

Proposition 6. With the above notations we have the following:

1. Let a1, a2, a3 ∈ Q ∪ {±∞} be such that a1 > a2 > a3, then[(a1,a2,a3)
R(0,n,0)

]
.
[(a1,a2,a3)

R(0,0,m)

]
=
[(a1,a2,a3)

R(0,n,m)

]
.

2. Let m ≤ n then

[
Ram
][
Ran
]

=

m∑
i=0

(
n+ i

i

)(
n

m− i

)[
Ran+i

]
.

3. Given a ∈ Q ∪ {±∞} a k tuple we have

[Rain ] =
⊕

R∈(R
ai
n )

[R]

where each R has form aR(n1,n2,...,ni,0,0,...,0) for some non-negetive integers
nj and n1 + n2 + . . .+ ni ≤ n.

Proof. 1. The proof follows from the definition of ‘.’ operation on .

2. The idea is to show equality by introducing relations between variables of
Ram and Ran. Let us name variables of Ram as X[1 : m] and of Ran as Y [1 : m].
So in the cartesian product there is no relation to be satisfied between any
of Xi and Yj for all i and j i.e. they are free to take values irrespective of
value taken by other variable. Hence it is easy to see that we will have cases
in which i variables of Ram are in equality relations with i variables of Ran,
for i ∈ [0 : m]. Clearly every such set is a subset of Ram ×Ran. Also, let q̄ be
a tuple in Ram × Ran, then it is obvious that the relations in this tuple will
fall in one of the m + 1 cases. Now our task is reduced to find number of
possible related sets in each case.
For a fixed i look at the coefficient of Ram+i , that means m− i variables are
equal to Yi′s. Others are strictly placed between two variables. One should
take care of the already existing order relations between Xi′s. Note that
there are m! different ordering of X[1 : m]. Since every ordering gives same
number of sets after multiplying, thus we ignore ordering and will divide the
final answer by m!. Now, choose m− i variables which are to be made equal
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and then choose m− i variables out of n ; these can be arranged in (m− i)!
ways, also the left over i variables will have (n+ 1)(n+ 2)(n+ 3) . . . (n+ i)
possible arrangements. Thus combining all these we have

1

m!

((
m

m− i

)(
n

m− i

)
(m− i)!(n+ 1)(n+ 2) . . . (n+ i)

)
. (5)

On simplifying we get the required term in the summation. Further using
the fact that [Ran] 6= [Ram] for m 6= n (Corollary 2), we get the required sum.

3. The proof is clear.

Lemma 7. With the above notations and Raini
∈ for i ∈ {1, 2, . . . , k}, and for

[D] =

k∏
i=0

[
Raini

]
we have

[a
Rn
]

contained in [D] where n = (ni)
k
i=1 and a = (ai)

k
i=1. Further[a

Rn
]

has the property that among all other [R] contained in [D] it has maximum
value for nk with Height(R) = n.

Proof. The proof is easy and follows the Proposition 6 as follows. From part 3
of the proposition we know that each

[
Raini

]
contains aR0,0,...,ni,0,,0 and for any

other R ∈ (Raini
) with height R = ni, we have (Xai−1

, Xai) < ni. Using the part
1,2 of the proposition distributivity property of we have the lemma.

Theorem 11. With all above notations we have

O :=
Z
[
aXn | n ∈ N; a ∈ Q ∪ {−∞}

]
(aXk

aXl)−
l∑
i=0

(
k+i
i

)(
k
l−i
)
aXk+i | k, l ∈ N; a ∈ Q ∪ {−∞}

' K0(Q),

where aXn for n ∈ N and a ∈ Q, represents a formal variable.

Proof. With all this define the association map

Ψ : {aXn | a ∈ Q,n ∈ N} −→ K0(Q)
aXn 7−→ [Ran]

Extend the association map Ψ naturally to a ring homomorphism from O to
K0(Q) and represent it by Ψ . We will show that Ψ is an isomorphism. Ψ is well
defined from Part 2 of Proposition 6. Surjectivity of Ψ is easy to show and follows
from Part 1 and 3 of Proposition 6. Hence we would directly show that Ψ is an
injection. Let

I := (aXk
aXl)−

l∑
i=0

(
k + i

i

)(
k

l − i

)
aXk+i | k, l ∈ N; a ∈ Q ∪ {−∞} (6)
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Further for f ∈ Z
[
aXn | n ∈ N; a ∈ Q ∪ {−∞}

]
, let f represent the correspond-

ing element in O. Let g = c
k∏
i=1

aiXmi
ni

be general monomial of f where ni,mi ∈ N

and c ∈ Z. For any monomial g of f define

Height(g) = Height(Ψ(g)) =

k∑
i=1

nimi.

Further define

Height(f) = max{Height(g) | g is a monomial of f}

Now each (aXn)m ≡ caXnm + lower height terms (mod I) for some positive
integer c. Hence for every monomial

g ≡ c′
k∏
i=1

aiXnimi
+ lower height terms (mod I)

for some c ∈ Z. We want to show that Ker(Ψ) = 0. One notes that if f ≡
f ′ (mod I) thenHeight(f) = Height(f ′). Hence we defineHeight(f) = Height(f).
Let f ∈ Ker(Ψ) be such that Height(f) = n is minimum. Let f ′ ≡ f (mod I)
be such that every monomial g of f with Height(g) = n has the form

c′
k∏
i=1

aiXnimi

Such a f ′ exists from previous analysis. Let

k = card
(
{aj | ajXmappears in any monomial of f for some n}

)
> 1

otherwise the proof is trivial. Let

f ′ = f1 + f2 ,

where f1 has all coefficients of monomials positive and f2 has all coefficients of
monomials negetive. We have Ψ(f ′) = 0 hence Ψ(f1) = Ψ(f2). WLOG assume
that the set {aj | ajXmappears in any monomial of f ’ for some m} is ordered in
descending order. Let

gmax =

k∏
i=1

aiXni

with Height(g) = n be the monomial of f such that nk is maximum. If there
exist two or more such monomials then from amongst them choose the one in
which nk−1 is maximum and so on. It is easy to see that this process will render
us a unique g. Note that g will either be in f1 or f2. WLOG assume that g is in f1.

We claim that
[a
Rn
]

where a = (a1, . . . , ak) and n = (n1, . . . , nk) is contained

24



in Ψ(gmax) interpreted in and no other Ψ(g) with Height(g) = n contains [R].
To see this suppose there is g 6= gmax and Ψ(g) contains [R], further let

g =

l∏
j=1

ajXn′j

k∏
i=l+1

aiXni

for l ≤ k. Clearly by construction we see that n′l < nl. Hence from Lemma 7

we see that Ψ

(
l∏

j=1

ajXn′j

)
contains [(a1,...,al)R(n′1,...,n

′
l)

] with the property that

among all other [R] contained in Ψ

(
l∏

j=1

ajXn′j

)
it has maximum value for n′l.

Clearly as for i > lai < al hence by Part 3 of Proposition 6, Ψ(g) does not

contain
[a
Rn
]
. This implies that Ψ(f1) = Ψ(f2) does not hold in . Hence the

coefficient of gmax = 0 which is a contradiction, therefore f = 0. This established
the isomorphism between K0(Q) and O.

12 Some Interesting Combinatorial Properties of K0(Q)

In this section we discuss some interesting combinatorial properties of O and
hence of K0(Q).

Theorem 12. For a, b ∈ Q ∪ {−∞} and a < b

nf(b, a) = Ψ−1(
[(b,a)

R0,n

]
)

then

1. For any c ∈ Q ∪ {−∞} such that a < c < b we have

nf(b, a) =

n∑
i=0

if(b, c)n−if(c, a) +

n−1∑
i=0

if(b, c)n−if(c, a)

2. (n!)(nf(b, a)) =
n−1∏
i=0

(1f(b, a)− i)

Proof. 1. Since Ψ is an isomorphism hence nf(b, a) satisfies the same relation
as [(b,a)R0,n]. Therefore by part 1 and 3 of Proposition 6 we have the result.

2. From part 2 of Proposition 6 putting m = 1 and n = n− 1 we have n[Ran] +
(n − 1)[Ran−1] = [Ran−1][Ra1 ]. One can observe that the same relation holds

for [(b,a)R(0,n)], i.e.

n[(b,a)R(0,n)] + (n− 1)[(b,a)R(0,n−1)] = [(b,a)R(0,n−1)][
(b,a)R(0,1)].

Therefore the result follows.
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Theorem 13. The ring O is partially ordered or equivalently Q satisfies PHP.

Proof. We will use Theorem 8. Further Lemma 5 implies that there cannot be a
definable bijection between a definable set and its proper definable subset. Hence
the result.

Remark 1. Very few structures satisfy PHP.

Theorem 14. Let Xk := aXk, ∀k ∈ N. Then(
Xk

l−1∏
i=0

(X1 − i)
)

=
(
l!
)( l∑

i=0

(
k + i

i

)(
k

l − i

)
Xk+i

)
(7)

∀ k, l ∈ N.

Proof. Putting l = 1 in Proposition 6 and doing elementary calculations we get
:

l∏
i=1

(k + i))Xk+l = Xk(

l−1∏
j=0

(X − k − j) (8)

Let us look at the RHS.

(Xk)(kPl) +Σl
i=1(lCi)(

kPl−i)(

i∏
s=1

(k + s)) (Xk+i) (9)

Using Equation 8 we get

(Xk)(kPl) +Σl
i=1(lCi)(

kPl−i) (

i−1∏
j=0

(X1 − k − j))Xk

As Xk can be factored out thus we will focus on the following expression :

P1(X1) := (kPl) +Σl
i=1(lCi)(

kPl−i) (

i−1∏
j=0

(X1 − k − j))

and show it equal to

P2(X1) := (X1)(X1 − 1)(X1 − 2) . . . (X1 − l + 1).

We will evaluate P1(X) at X1 = k + t, where t = 0, 1, 2, ..., l and show that
P2(k + t) − P1(k + t) = 0. And since we are in integral domain, polynomial of
degree l can have atmost l zeros, which will force P1−P2 to be identically zero.
For t = 0, checking is straightforward as the summation term vanishes. To prove
for k + t in general, we will use induction.
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So, for t = r, assume that P1(r) = P2(r). Now, for t = r + 1,

P1(r) = kPl +Σr+1
i=1 (lCi)(

kPl−i)(

i−1∏
j=0

(r + 1− j))

= kPl +Σr
i=1(lCi)(

kPl−i)(

i−1∏
j=0

(r − j))

+ Σr
i=1(lCi) (kPl−i)(

i−1∏
j=0

(r + 1− j)−
i−1∏
j=0

(r − j))

+ (lCr+1) (kPl−r−1)

r∏
j=0

(r + 1− j)

Note that, if i > 1 , then (
i−1∏
j=0

(r + 1 − j) −
i−1∏
j=0

(r − j)) = (i)(
i−2∏
j=0

(r − j)) and

for i = 1, it is 1 , as evident from the formula. Using induction hypothesis, the
sum of first two terms in the sum is (k+rPl). Hence, the remaining part can be
written as

(l)(kPl−1) + (l)(Σr
i=2(l−1Ci−1) (kPl−i)

i−2∏
j=0

(r − j)) + (lCr+1) (kPl−r−1)

r∏
j=0

(r + 1− j)

Re-indexing the summation we get

l(kPl−1 + Σr−1
i=1 (l−1Ci) (kPl−i−1)

i−1∏
j=0

(r− j))+ (lCr+1) (kPl−r−1)

r∏
j=0

(r+1− j)

(10)

Note that the term (lCr+1) (kPl−r−1)
r∏
j=0

(r+1−j) can be re-written as (l−1Cr)(l/r+

1) (kPl−r−1)
r∏
j=0

(r+1−j) and hence, we have (l−1Cr)(l) (kPl−r−1)
r∏
j=1

(r+1−j) =

(l−1Cr)(l) (kPl−r−1)
r−1∏
j=0

(r − j) = (l)(l−1Cr) (kPl−r−1)
r∏
j=0

(r − j)

Hence, (1) can be re-written as,

(l)(kPl−1 + Σr
i=1(l−1Ci) (kPl−i−1)

i−1∏
j=0

(r − j))

which is equal to k+rPl−1. by induction on l. And now, we use the relation
kPl+ l kPl−1 =k+1 Pl (easily proved using counting arguments). Hence, one side
is k+r+1Pl. Now, evaluating the other side is easy. P2(k+r+1) = (k+r+1)(k+
r)(k+ r− 1) . . . .(k+ r+ 1− (l− 1)) =k+r+1 Pl. Thus we get the required result.
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Corollary 3. Let I be the ideal as defined in Equation 6 and define :

I ′ :=

〈
(k!)(aXk)−

k−1∏
i=0

(aX1 − i) | k ∈ N; a ∈ Q ∪ −∞
〉
. (11)

Given an element α ∈ I there exists and integer lα such that (lα!)α ∈ I ′.

Proof. Follows from the previous theorem.
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