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Abstract. In this article, we present an alternative proof of Combinato-
rial Nullstellensatz over which was first proved by Noga Alon. We prove
the theorem for integral domains. This version of Nullstellensatz by Alon
haS diverse applications in various areas of Mathematics such as Graph
Theory, Additive Number Theory, and Algebra itself.

1 Theorem

Theorem 1. Let R be an Integral Domain, and let f = f(x1, ...., xn) be a poly-
nomial in R[X1, ...., Xn]. Let S1, ...., Sn be nonempty subsets of R and define
gi(xi) = Πs∈Si

(xi−s). If f vanishes over all the common zeros of g1, ...., gn (that
is; if f(s1, ...., sn) = 0 for all si ∈ Si), then there are polynomials h1, ....hn ∈
R[X1, ...., Xn] satisfying deg(hi) ≤ deg(f) - deg(gi), so that

f =

n∑
i=1

gihi (1)

Proof. We will use induction on number of variables. For n = 1, let si represent
the zeros. f(X) = Σn

i=1aiX
i, rewrite X as (X − s1) + s1 and expand using

binomial to get
f(X) = Σn

i=1bi(X − s1)i + c0 (2)

where c0 is a constant, but note that 0 = f(s1) = 0 + c0 ⇒ c0 = 0. Now,
f(X) = (X − s1)(Σn

i=1bi(X − s1)i−1) and observe that (Σn
i=1bi(s2 − s1)i−1) = 0

as f(s2) = 0. Now, the summation can be written as a polynomial in (X−s2) and
hence we get, f(X) = (X − s1)(Σn−1

i=1 bi(X − s2)i) + (X − s1)c1. Since f(s2) = 0
and R is an integral domain which implies that c1 = 0. It is evident that we
can continue this process and in the end we will have f = gh, where g and h
are as required. Also, the degree bound on h is also clear from the expression.
Now, assume the case is true for n − 1 variables. Let f be a polynomial in n
variables and let its degree in variable Xi be ni. Also, denote the elements of Si

by sij , where j varies from 1 to ni. Let f = Σn
i=0ai(X2, ..., Xn)Xi

1, where ai is
a polynomial in n-1 variables. Write X1 as (X1 − s11) + s11 and use binomial
expansion. What you get is

f = (X1 − s11)Σn−1
i=0 a

′
i(X1 − s11)i + a′0(X2, ...., Xn) (3)
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Here a′i is also a polynomial in n-1 variables. Note that a′0 vanishes on all tu-
ples of form (s2i1 , s3i2 , ....). So, by induction hypothesis, a′0 can be written in
desired form (from now I will refer it to as D0), which is actually Σgihi, where
deg(hi) ≤ deg(a′0)− deg(gi) ≤ deg(f)− n1 − deg(gi). Now consider the term in
the summation which is f = Σn−1

i=0 a
′
i(X1 − s11)i and call it D1. So, observe that

D1(s1i, s2i1 , s3i2 .....) = 0, except at i = 1. So, we can do the same ”rewriting” of
the polynomial as we did twiw before to get,

P1 = Σn1−1
i=1 bi(X2, ...Xn)(X1 − s12)i + b0(X2, ....Xn) (4)

where b0 vanishes on tuples of form (s2i1 , s3i2 , ....). Now, if we look back at f ,
we have

f = (X1−s11)(X1−s12)(Σn1−2
i=0 bi(X2, ....Xn)(X1−s12))+(X1−s11)(b0(X−2, ...Xn))+D0

(5)
Note that b0 can also be written in desired form. Observe that summation (call
it D2) vanishes on tuples of form (s1i, s2i1 , s3i2 .....) = 0, except at i = 1 and
i = 2. So, for this summation we would do the same thing as for f . This process
keeps going on till we extract out all the s1i′s. So we will finally get an equation
of following form,

f = Σm1−1
j=0 (Πm1−j

i=1 (X1 − s1i)(Dm1−j(X2, ...Xn))) +D0

where all these Dis can be written in desired form. So, except the first term all
terms can be combined together to be written in the form of Σgih

′
i, where

deg(hi) ≤ deg(hi) +m1 − 1 ≤ deg(hi) + n1 ≤ deg(f)− deg(gi) (6)

Hence, it completes the proof.
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