Constructing Integral Pointsets in \mathbb{Z}_n^m

Axel Kohnert Sofia October 2007

Bayreuth University Germany axel.kohnert@uni-bayreuth.de

Overview

- The Problem
- Modelling
- Reducing the Size of the Problem
- other Problems

.-p.3/30

• point sets in \mathbb{Z}_n^m

• \mathbb{Z}_6^2

looking for sets with special properties

- all points have pairwise integral distance
- given two points $x = (x_1, \dots, x_m) \in \mathbb{Z}_n^m$, $y = (y_1, \dots, y_m) \in \mathbb{Z}_n^m$
- if $\Sigma_{i=1}^m (x_i y_i)^2$ is a square in \mathbb{Z}_n
- then x and y have integral distance
- integral point-sets, i.e. all pair of points have integral distance

• \mathbb{Z}_6^2

.-p.6/30

- further properties for point-sets
- semi-general position
- no (t+1) points on a (t-1) hyperplane

• \mathbb{Z}_6^2

.-p.8/30

- point-sets with further properties
- general position
- := semi-general and no (t+2) points on a (t-1) hypersphere

4 circles with 8 points, 2 circles with 2 points

• \mathbb{Z}_6^2

.-p.10/30

.-p.11/3

- search for integral point-sets
- becomes a 0 1 solution of a Diophantine system of equations
- for each point there is a variable x_i
- a solution with $x_i = 0$ says this point is not in our point-set
- a solution with $x_i = 1$ says this point is in our point-set

• prescribe the number *s* of points

•
$$\sum_{i=1}^{n^m} x_i = s$$

• any solution is a point-set with the only property, there are *s* points in it.

- integral distance
- for each point (=variable) x_i there are a_i points
 {y₁,..., y_{a_i}} ⊂ {x₁,..., x_{n^m}} which have not integral
 distance
- for each point add the inequality

$$a_i x_i + y_1 + \ldots + y_{a_i} \le a_i.$$

• a 0/1 solution with $x_i = 1$ has no further points in the solution which have no integral distance to x_i .

- semi-general position
- for each (t-1)-hyperplane h_i build by the points $\{y_1, \ldots, y_{r_i}\} \subset \{x_1, \ldots, x_{n^m}\}$
- add the inequality:

$$y_1 + \ldots + y_{r_i} \le t + 1$$

• in a 0/1 solution there are at most t+1 points on each hyperplane h_i

- general position, further inequalities
- for each (t-1)-hypersphere s_i build by the points $\{y_1, \ldots, y_{t_i}\} \subset \{x_1, \ldots, x_{n^m}\}$
- add the inequality:

$$y_1 + \ldots + y_{t_i} \le t + 2$$

• in a 0/1 solution there are at most t+2 points on each hypersphere h_i

- variables $x_1, ..., x_{36}$
- looking for a point-set with 4 points:

 $x_1 + \ldots + x_{36} = 4.$

• integral distance

 $16x_{15} + x_1 + x_2 + x_4 + x_5 + x_7 + \ldots + x_{29} \le 16$

• semigeneral = no 3 on a line

 $x_5 + x_{10} + x_{15} + x_{20} + x_{25} + x_{36} \le 2$

• general = no 4 on a circle

 $x_6 + x_9 + x_{14} + x_{16} + x_{21} + x_{30} + x_{31} + x_{35} \le 3$

- size of the problem
- one equation for the number of points
- for each point one inequality for the integral distance
- for each hyperplane one inequality for semi-general
- for each hypersphere one inequality for general

Reduce the Problem

.-p.22/30

Reduce the Problem

• \mathbb{Z}_6^2

- 1 equation for the number of points
- 36 point inequalities for integral distance
- 42 line inequalities
- 18 * 4 = 72 circle inequalities

- nolonger searching for an arbitrary solution
- decompose the set of all points in disjoint subsets
- search for solutions built from subsets
- = adding up columns in the system of equations
- still too many rows

Reduce the Problem

• prescribing automorphisms of \mathbb{Z}_n^m

•
$$\phi_1(x,y) = (x+2,y)$$
 and $\phi_2(x,y) = (x,y+2)$

- prescribing automorphisms of \mathbb{Z}_n^m
- columns are the orbits of the automorphisms
- but an automorphism ϕ is incidence preserving
- point *p* in hyperplane $h \iff \phi(p) \in \phi(h)$
- point *p* in hypersphere $s \iff \phi(p) \in \phi(s)$
- x and y in integral distance $\iff \phi(x)$ and $\phi(y)$ are in integral distance

- rows corresponding to points/hyperplanes/hyperspheres in the same orbit are identical
- automorphisms also reduce the number of rows
- size of the system of equations is now the number of orbits

Last Words

.-p.28/30

Other Problems

- other rings
- other properties
- other methods for reduction

Last Page

Thank you very much for your attention.

.-p.30/30