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Abstract

We construct new binary and ternary self-orthogonal linear codes. In order to do
this we use an equivalence between the existence of a self-orthogonal linear code over
a prime �eld with a prescribed minimum distance and the existence of a solution of
a certain system of Diophantine linear equations. To reduce the size of the system
of equations we restrict the search for solutions to solutions with special symmetry
given by matrix groups. Using this method we found at least 6 new distance-optimal
codes, which are all self-orthogonal.
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1 Introduction

A self-orthogonal linear [n, k]-code is a k-dimensional subspace of the n-
dimensional vector space GF (q)n over the �nite �eld GF (q) with the ad-
ditional requirement that C ⊆ C⊥. Here, we restrict the �nite �eld to GF (2)
and GF (3).

The qk codewords of length n are the elements of the subspace, they are written
as row vectors. The Hamming weight wt(c) of a codeword c is de�ned to be
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the number of nonzero entries of c, the minimum distance dist(C) of a code C
is the minimum of all weights of the nonzero codewords in C. A [n, k]−code
of minimum distance d, is called a [n, k, d]-code.

For �xed dimension k one is interested in codes with high minimum distance
d as these allow the correction of b(d− 1)/2c errors. On the other hand one is
interested in codes of small redundancy, i.e. in codes of small length n. A linear
[n, k]-code C is called optimal if there is no linear [n, k, dist(C) + 1]-code. We
could construct self-orthogonal codes whose parameters improve the known
bounds for general linear codes in several cases.

In Section 2 we characterize for parameters n, k, d the [n, k, d]-codes as so-
lutions of a system of Diophantine linear equations. In Section 3 additional
equations are added to this system in order to restrict the search to self-
orthogonal codes. Then, in Section 4 we further restrict the search to codes
with a prescribed group of automorphisms to reduce the size of the linear
system. In Section 5 the problem of solving the system of Diophantine linear
equations is transferred to the problem of �nding certain vectors in a lattice.
Finally, Section 6 contains the results of the computer search.

2 Linear Codes with Prescribed Minimum Distance

If Γ denotes a generator matrix of a q-ary [n, k]-code C then the code is given
by the set C = {v ·Γ | v ∈ GF (q)k}. If v ·w :=

∑
i vi ·wi is the standard inner

product and if γj indicates the jth column of the generator matrix Γ, then
each codeword v · Γ can be written as

v · Γ = (v · γ0, . . . , v · γn−1)

It is clear that the codewords v · Γ and λ · v · Γ, where v ∈ GF (q)k and
λ ∈ GF (q)∗, are codewords that have the same weight. Let Σv be the numbers
of columns u of the generator matrix for which v · u = 0. Then the codeword
vΓ has weight d′ if and only if Σv = n− d′.

Let Ω be a set of representatives of the set of subspaces of dimension 1,
i. e. Ω := {〈v〉 | v ∈ GF (q)k \ {0}}. From now on we will simply use the
notation v ∈ Ω instead of 〈v〉 ∈ Ω. Then Γ is a generator matrix of a [n, k, d]-
code over GF (q) if and only if

max{Σv | v ∈ Ω} = n− d.

This observation leads us to the following theorem which shows the equivalence
between the construction of codes with a prescribed minimum distance and
solving a system of Diophantine linear equations.
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Let Mk,q = (mv,w) be the |Ω|×|Ω|matrix whose rows resp. columns correspond
to the elements of Ω. The entry mv,w, corresponding to row v and column w,
is de�ned by

mv,w :=

 1 if v · w = 0

0 otherwise.

Theorem 1 [3] There is a q-ary [n, k, d′]-code with minimum distance d′ ≥ d
if and only if there is a vector x ∈ Z|Ω| and a vector y ∈ Z|Ω| satisfying
0 ≤ xi ≤ n, respectively 0 ≤ yi ≤ n− d, 0 ≤ i < |Ω|, and

(Mk,q| − I) ·

 x

y

 = 0 and
∑
v∈Ω

xv = n, (1)

where I is the identity matrix.

Mk,q is the point-hyperplane incidence matrix of the �nite projective geometry
PG(k−1, q). The number m = (qk−1)/(q−1) of rows and columns of Mk,q is
the limiting factor of this approach, since solving the system of Diophantine
linear equations is only possible for small values of m. Therefore we apply
a well-known method, also described in [2,3], to shrink the matrix Mk,q to a
much smaller on MG

k,q by prescribing a subgroup G of the general linear group
GL(k, q). This approach will be described in Section 4.

3 Self-Orthogonality

For an [n, k]-code C the dual code C⊥ is de�ned as

C⊥ = {w ∈ GF (q)n | w · c = 0 for all c ∈ C}.

C⊥ is an [n, n − k]-code. If C ⊆ C⊥ the code C is called self-orthogonal, if
C = C⊥ the code C is called self-dual. That means, a code C is self-orthogonal
if and only if

v · w = 0 for all v, w ∈ C .

It is known that if Γ is a generator matrix of C and γ(0), γ(1), . . . , γ(k−1) are
the rows of Γ then C is self-orthogonal if and only if

γ(i) · γ(j) =
∑

0≤s<n

γ(i)
s · γ(j)

s = 0 for all 0 ≤ i ≤ j < k.

These are
(

k+1
2

)
equations over GF (q). As we saw in the previous section, each

column of Mk,q corresponds to a possible column v ∈ Ω of a generator matrix
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Γ. With the notation of (1) and v(i) denoting the i-th entry of the column
vector v, the additional equations over GF (q) can therefore be written as∑

v∈Ω

xv(v
(i) · v(j)) = 0 for 0 ≤ i ≤ j < k. (2)

These equations guarantee, that the row products of a generator matrix Γ
built from the columns of Ω are all zero. Combining this with the result from
the previous section we get the following theorem.

Theorem 2 Let q ∈ {2, 3}. There exists a q-ary self-orthogonal [n, k, d′]-code
with minimum distance d′ ≥ d if and only if there is a vector x ∈ Z|Ω| and a
vector y ∈ Z|Ω|, where 0 ≤ xi ≤ n, respectively 0 ≤ yi ≤ n − d, 0 ≤ i < |Ω|,
satisfying the system of equations

(Mk,q| − I) ·

 x

y

 = 0 and Pk,q · x ≡ 0 mod q and
∑
v∈Ω

xv = n,

where the (
(

k+1
2

)
× |Ω|)-matrix Pk,q = (p(i,j),v) is de�ned by

p(i,j),v ≡ v(i) · v(j) mod q,

for 0 ≤ i ≤ j < k and v ∈ Ω.

In general, for codes over GF(q) with q 6∈ {2, 3} self-orthogonality is not
preserved by projective equivalence. In that case the existence of a solution
vector in the above theorem is a su�cient, but not a necessary condition for
the existence of a self-orthogonal code with the prescribed parameters.

The condition �= 0� from (2) has to be translated from a condition in GF (q)
to a condition over Z. For prime �elds the translation is obvious. We remark
that the translation is also possible for non-prime �elds.

4 Codes with Prescribed Automorphisms

A linear code C with generator matrix Γ has a corresponding multiset Γ̂ of
1-dimensional subspaces of GF (q)k by taking the spaces generated by the
columns of Γ. We say Γ has G ≤ GL(k, q) as a group of projective automor-
phisms if the action of G leaves Γ̂ invariant. This works as a de�nition of an
automorphism group of the code C, as taking a di�erent generator matrix Γ′

gives a conjugated subgroup G′ of G as group of projective automorphisms of
Γ′ [2].
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Let G be a subgroup of GL(k, q), let ω0, . . . , ωm−1 be the orbits of G on the
1-subspaces of GF (q)k and let Ω0, . . . , Ωm−1 be the orbits of G on the set
of (k − 1)-subspaces with representatives Ki ∈ Ωi. Let MG

k,q = (mG
i,j) be the

m×m matrix with entries

mG
i,j := |{T ∈ ωj | T ⊆ Ki}|, 0 ≤ i, j < m .

Further, let PG
k,q = (pG

(i,j),s) be the
(

k+1
2

)
×m matrix with entries

pG
(i,j),s ≡

∑
v∈ωs

v(i) · v(j) mod q, 0 ≤ i ≤ j < k, 0 ≤ s < m.

With this notation we can formulate the construction theorem for self-orthogonal
linear codes with a prescribed group of automorphisms.

Theorem 3 Let q ∈ {2, 3}. There is a q-ary self-orthogonal [n, k, d′]-code
with minimum distance d′ ≥ d such that a generator matrix of this code has
G as a subgroup of the group of automorphisms if and only if there is a vector
x ∈ Zm with xi ∈ {0, . . . , bn/|ωi|c}, 0 ≤ i < m, a vector y ∈ Zm with

yi ∈ {0, . . . , n− d}, 0 ≤ i < m, and a vector z ∈ Z(k+1
2 ) satisfying

MG
k,q −I 0

PG
k,q 0 −q · I

|ω0| . . . |ωm−1| 0 0

 ·


x

y

z

 =


0

0

n

 , (3)

where I is the identity matrix.

Note that in the above system of equations the integer variables zi, 0 ≤ i <
i
(

k+1
2

)
are implicitly bounded by the restrictions on the vector x and y.

As for Theorem 2, in the case of q 6∈ {2, 3} the above condition is su�cient
but not necessary.

5 Solving Systems of Diophantine Linear Equations

It is well known that �nding solutions of the above system of Diophantine
linear equations is an NP-hard problem. Here, we try to �nd solutions with
lattice point enumeration [9]. The linear system is transferred into the problem
of �nding certain small vectors in a lattice. The search for these vectors is done
with lattice basis reduction followed by exhaustive enumeration.

The system (3) of equations consists of 3m columns and m + 1 +
(

k+1
2

)
rows.

The upper bounds on the variables xi, 0 ≤ i ≤ m− 1, are bn/|ωi|c, the upper
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bounds on the variables yi, 0 ≤ i ≤ m− 1, are n− d.

In general, �nding solutions for this system can be formulated as the following
integer programming problem:

Let n and m be positive integers and A be an m × n integer matrix and
c ∈ Zm. Further, let r ∈ Nn be a vector of upper bounds. Does there exist
a vector x ∈ Zn such that

A · x = c and 0 ≤ x ≤ r ? (4)

Our algorithm to solve the problem (4) for arbitrary values of r ∈ Nn con-
sists of two steps. First, we compute a basis consisting of integer vectors
b(1), b(2), . . . , b(n−m+1) of the extended homogeneous system, i. e. the negative
of the right hand side vector is appended as column 0 to the left hand side
matrix A in (4): −c A


︸ ︷︷ ︸

=: A′

·


x0

...

xn

 = 0 . (5)

Since we can assume that the extended matrix A′ has full row-rank m, the
kernel of the system (5) has dimension n−m + 1.

We can assume that there are no obviously �xed variables and no obvious
contradictions, i. e. we can at least assume that 0 < ri ∈ N for 1 ≤ i ≤ n. The
basis of the lattice consists of the columns of the following (m+n+1)×(n+1)-
matrix (see [10]): 

−N · d N · A

−rmax 2s1 0 · · · 0

−rmax 0 2s2 · · · 0
...

...
. . .

...

−rmax 0 · · · · · · 2sn

rmax 0 · · · · · · 0


where N ∈ N is a large constant and

rmax = lcm{r1, . . . , rn} and si =
rmax

ri

, 1 ≤ i ≤ n .

If N is large enough, see [1], the reduced basis will consist of n−m+1 vectors
with only zeroes in the �rst m rows and m vectors which contain at least one
nonzero entry in the �rst m rows. The latter vectors can be removed from the
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basis. From the remaining n − m + 1 vectors we can delete the �rst m rows
which contain only zeroes. This gives a basis b(1), b(2), . . . , b(n−m+1) ∈ Zn+1 of
the kernel of (5). In the second step of the algorithm all integer linear combi-
nations of the basis vectors b(1), b(2), . . . , b(n−m+1) ∈ Zn+1 which correspond to
solutions of the problem (4) are enumerated. Since we are only interested in
non-homogeneous solutions of (5) we can demand that x0 = 1 in (5).

Theorem 4 Let

v = u1 · b(1) + u2 · b(2) + . . . + un−m+1 · b(n−m+1)

be an integer linear combination of the basis vectors with v0 = rmax. Then v
is a solution of the system (4) if and only if

v ∈ Zn+1 where − rmax ≤ vi ≤ rmax, 1 ≤ i ≤ n .

The exhaustive enumeration is done with the backtracking algorithm of Rit-
ter [8], see also [2,9,10] for a detailed description. After �nding the �rst solution
of (4) the enumeration is stopped.

6 Results

In this section we present the parameters of all linear codes we constructed
with the proposed method and which are improvements of the bounds (for
general linear codes) in [6]. We restricted ourself to the binary and ternary
case.

We are not aware of tables of bounds for self-orthogonal codes. A complete
list of the best parameters of the codes we could construct, together with
generator matrices and the group of automorphisms used, are available at [4].

Parameters of new optimal codes:

[177, 10, 84]2 [38, 7, 21]3 [191, 6, 126]3

[202, 6, 132]3 [219, 6, 144]3 [60, 7, 36]3

Parameters of codes which are improvements to the bounds in [6] but which
are not optimal codes:

[175, 10, 82]2 [140, 11, 64]2 [61, 7, 36]3

[188, 7, 120]3 [243, 7, 156]3
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The computation was done on a 2GHz PC with 1GB main memory. To con-
struct the systems of equations we directly use the de�nitions given in section
(4). The time needed to do this is small compared to the time needed to
solve the corresponding system of Diophantine equations. The computation
times depend heavily on the number of orbits and the number n− d which is
the upper bound of parts of the variables. Also the number

(
k
2

)
of equations

to ensure self-orthogonal solutions comes into play. All this is shown in the
following table which gives detailed information for the 6 optimal codes:

code # orbits time n− d
(

k
2

)
[177, 10, 84]2 51 < 3h 93 45

[38, 7, 21]3 101 < 100s 17 21

[60, 7, 36]3 67 < 100s 24 21

[202, 6, 132]3 44 < 10s 70 15

[219, 6, 144]3 38 < 10s 75 15

[191, 6, 126]3 44 < 10s 65 15

One further problem is to choose a group such that the reduction is large
enough to get a system which can be handled by the algorithm, but on the
other hand which is also a group of automorphisms of a self-orthogonal code
with high minimum distance. We experimented with several subgroups of
GL(k, q). For more details see [5] where we described the situation in the
more general case of arbitrary linear codes with prescribed automorphisms. In
the case of self-orthogonal codes we noticed that the cyclic groups (i.e. only
one generator) were especially good. So for example in the case of q = 2 and
k = 9 all the distance-optimal self-orthogonal codes were found by using cyclic
groups.

In most cases it was possible to �nd self-orthogonal codes, which meet the
minimum weight of the best known linear codes. Of course this is possible
only in the case of even weight (in the binary case) and weight d with d ≡ 0
mod 3 (in the ternary case). This situation is shown in the following table for
the case q = 2 and k = 9. It lists the length n and minimum distance d of
all self-orthogonal codes which could be constructed with the above method
and whose minimum distance is as least as high as the best known codes in
[6]. An entry 30 − 33 means that codes of length 30, 31, 32, and 33 could be
constructed.
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n d n d n d n d n d

21− 25 8 70− 74 32 118− 121 56 175− 176 84 222− 223 108

30− 33 12 80− 81 36 127− 128 60 182− 184 88 226 110

38− 42 16 84 38 135− 138 64 189, 191 92 228− 233 112

45 18 86− 90 40 142 66 194 94 238− 240 116

47− 50 20 93 42 144− 145 68 196− 201 96 243 118

53 22 95− 97 44 148 70 205 98 245− 248 120

55− 58 24 100 46 150− 154 72 207− 209 100 250 122

63− 65 28 102− 106 48 159− 160 76 212 102 252 124

68 30 111− 113 52 166− 170 80 214− 216 104 256 128
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