
Page 1

 ALGORITHMIC GRAPH THEORY

 by

 James A. Mc Hugh

 New Jersey Institute of Technology

These notes cover graph algorithms, pure graph theory, and applications of
graph theory to computer systems. The algorithms are presented in a clear
algorithmic style, often with considerable attention to data representation,
though no extensive background in either data structures or programming is
needed. In addition to the classical graph algorithms, many new random and
parallel graph algorithms are included. Algorithm design methods, such as
divide and conquer, and search tree techniques, are emphasized. There is an
extensive bibliography, and many exercises. The book is appropriate as a
text for both undergraduate and graduate students in engineering, mathematics,
or computer science, and should be of general interest to professionals in
these fields as well.

Chapter 1 introduces the elements of graph theory and algorithmic graph
theory. It covers the representations of graphs, basic topics like
planarity, matching, hamiltonicity, regular and eulerian graphs, from both
theoretical, algorithmic, and practical perspectives. Chapter 2 overviews
different algorithmic design techniques, such as backtracking, recursion,
randomization, greedy and geometric methods, and approximation, and
illustrates their application to various graph problems.

Chapter 3 covers the classical shortest path algorithms, an algorithm for
shortest paths on euclidean graphs, and the Fibonacci heap implementation of
Dijkstra's algorithm. Chapter 4 presents the basic results on trees and
acyclic digraphs, a minimum spanning tree algorithm based on Fibonacci
heaps, and includes many applications, such as to register allocation,
deadlock avoidance, and merge and search trees.

Chapter 5 gives an especially thorough introduction to depth first search
and the classical graph structure algorithms based on depth first search, such
as block and strong component detection. Chapter 6 introduces both the
theory of connectivity and network flows, and shows how connectivity and
diverse routing problems may be solved using flow techniques. Applications
to reliable routing in unreliable networks, and to multiprocessor scheduling
are given.

Chapters 7 and 8 introduce coloring, matching, vertex and edge covers, and
allied concepts. Applications to secure (zero-knowledge) communication, the

Page 2

design of deadlock free systems, and optimal parallel algorithms are given.
The Edmonds matching algorithm, introduced for bipartite graphs in Chapter
1, is presented here in its general form.
Chapter 9 presents a variety of parallel algorithms on different
architectures, such as systolic arrays, tree processors, and hypercubes, and
for the shared memory model of computation as well. Chapter 10 presents the
elements of complexity theory, including an introduction to the complexity
of random and parallel algorithms.

Table of Contents

1 Introduction to Graph Theory

1-1 Basic Concepts
1-2 Representations
 1-2-1 Static Representations
 1-2-2 Dynamic Representations
1-3 Bipartite Graphs
1-4 Regular Graphs
1-5 Maximum Matching Algorithms
 1-5-1 Maximum Flow Method (Bigraphs)
 1-5-2 Alternating Path Method (Bigraphs)
 1-5-3 Integer Programming Method
 1-5-4 Probabilistic Method
1-6 Planar Graphs
1-7 Eulerian Graphs
1-8 Hamiltonian Graphs
References and Further Reading
Exercises

2 Algorithmic Techniques

2-1 Divide & Conquer and Partitioning
2-2 Dynamic Programming
2-3 Tree Based Algorithms
2-4 Backtracking
2-5 Recursion
2-6 Greedy Algorithms
2-7 Approximation
2-8 Geometric Methods
2-9 Problem Transformation
2-10 Integer Programming
2-11 Probabilistic Techniques
References and Further Reading
Exercises

3 Shortest Paths

3-1 Dijkstra's Algorithm: Vertex to Vertex
3-2 Floyd's Algorithm: Vertex to All Vertices

Page 3

3-3 Ford's Algorithm: All Vertices to All Vertices
3-4 Euclidean Shortest Paths: Sedgewick-Vitter Heuristic
3-5 Fibonacci Heaps and Dijkstra's Algorithm
References and Further Reading
Exercises

4 Trees and Acyclic Digraphs

4-1 Basic Concepts
4-2 Trees as Models
 4-2-1 Search Tree Performance
 4-2-2 Abstract Models of Computation
 4-2-3 Merge Trees
 4-2-4 Precedence Trees for Multiprocessor Scheduling
4-3 Minimum Spanning Trees
4-4 Geometric Minimum Spanning Trees
4-5 Acyclic Digraphs
 4-5-1 Bill of Materials (Topological Sorting)
 4-5-2 Deadlock Avoidance (Cycle Testing)
 4-5-3 PERT (Longest Paths)
 4-5-4 Optimal Register Allocation (Tree Labelling)
4-6 Fibonacci Heaps and Minimum Spanning Trees
References and Further Reading
Exercises

5 Depth First Search

5-1 Introduction
5-2 Depth First Search Algorithms
 5-2-1 Vertex Numbering
 5-2-2 Edge Classification: Undirected Graphs
 5-2-3 Edge Classification: Directed Graphs
5-3 Orientation Algorithm
5-4 Strong Components Algorithm
5-5 Block Algorithm
References and Further Reading
Exercises

6 Connectivity and Routing

6-1 Conectivity: Basic Concepts
6-2 Connectivity Models: Vulnerability and Reliable Transmission
6-3 Network Flows: Basic Concepts
6-4 Maximum Flow Algorithm: Ford and Fulkerson
6-5 Maximum Flow Algorithm: Dinic
6-6 Flow Models: Multiprocessor Scheduling
6-7 Connectivity Algorithms

Page 4

6-8 Partial Permutation Routing on a Hypercube
References and Further Reading
Exercises

7 Graph Coloring

7-1 Basic Concepts
7-2 Models: Constrained Scheduling and Zero-knowledge Passwords
7-3 Backtrack Algorithm
7-4 Five-color Algorithm
References and Further Reading
Exercises

8 Covers, Domination, Independent Sets, Matchings, and Factors

8-1 Basic Concepts
8-2 Models
 8-2-1 Independence Number and Parallel Maximum
 8-2-2 Matching and Processor Scheduling
 8-2-3 Degree Constrained Matching and Deadlock Freedom
8-3 Maximum Matching Algorithm of Edmonds
References and Further Reading
Exercises

9 Parallel Algorithms

9-1 Systolic Array for Transitive Closure
9-2 Shared Memory Algorithms
 9-2-1 Parallel Dijkstra Shortest Path Algorithm (EREW)
 9-2-2 Parallel Floyd Shortest Path Algorithm (CREW)
 9-2-3 Parallel Connected Components Algorithm (CRCW)
 9-2-4 Parallel Maximum Matching Using Isolation (CREW)
9-3 Software Pipeline for Heaps
9-4 Tree Processor Connected Components Algorithm
9-5 Hypercube Matrix Multiplication and Shortest Paths
References and Further Reading
Exercises

10 Computational Complexity

10-1 Polynomial and Pseudo-polynomial Problems
10-2 Nondeterministic Polynomial Algorithms
10-3 NP-complete Problems
10-4 Random and Parallel Algorithms
References and Further Reading
Exercises

Bibliography

Page 5

1. INTRODUCTION TO GRAPH THEORY

1-1 BASIC CONCEPTS

Graphs are mathematical objects that can be used to model networks, data
structures, process scheduling, computations, and a variety of other systems
where the relations between the objects in the system play a dominant role. We
will consider graphs from several perspectives: as mathematical entities
with a rich and extensive theory; as models for many phenomena, particularly
those arising in computer systems; and as structures which can be processed by
a variety of sophisticated and interesting algorithms. Our objective in this
section is to introduce the terminology of graph theory, define some
familiar classes of graphs, illustrate their role in modelling, and define
when a pair of graphs are the same.

TERMINOLOGY

A graph G(V,E) consists of a set V of elements called vertices and a set E
of unordered pairs of members of V called edges . We refer to Figure 1-1 for
a geometric presentation of a graph G. The vertices of the graph are shown
as points, while the edges are shown as lines connecting pairs of points.
The cardinality of V, denoted |V|, is called the order of G, while the
cardinality of E, denoted |E|, is called the size of G. When we wish to
emphasize the order and size of the graph, we refer to a graph containing p
vertices and q edges as a (p,q) graph. Where we wish to emphasize the
dependence of the set V of vertices on the graph G, we will write V(G) instead
of V, and we use E(G) similarly. The graph consisting of a single vertex is
called the trivial graph .

 Figure 1-1 here

We say a vertex u in V(G) is adjacent to a vertex v in V(G) if {u,v} is an
edge in E(G). Following a convention commonly used in graph theory, we will
denote the edge between the pair of vertices u and v by (u,v). We call the
vertices u and v the endpoints of the edge (u,v), and we say the edge (u,v) is
incident with the vertices u and v. Given a set of vertices S in G, we
define the adjacency set of S, denoted ADJ(S) , as the set of vertices adjacent
to some vertex in S. A vertex with no incident edges is said to be isolated ,
while a pair of edges incident with a common vertex are said to be adjacent .

The degree of a vertex v, denoted by deg(v), is the number of edges incident
with v. If we arrange the vertices of G, v 1,...,v n, so their degrees are in

nondecreasing order of magnitude, the sequence (deg(v 1),...,deg(v n)) is

called the degree sequence of G. We denote the minimum degree of a vertex
in G by min(G) and the maximum degree of a vertex in G by max(G). There is a
simple relationship between the degrees of a graph and the number of edges.

Page 6

THEOREM (DEGREE SUM) The sum of the degrees of a graph G(V,E) satisfies

 |V|

Σ deg(v i) = 2|E|.

 i = 1

The proof follows immediately from the observation that every edge is incident
with exactly two vertices. Though simple, this result is frequently useful
in extending local estimates of the cost of an algorithm in terms of vertex
degrees to global estimates of algorithm performance in terms of the number of
edges in a graph.

A subgraph S of a graph G(V,E) is a graph S(V',E') such that V' is contained
in V, E' is contained in E, and the endpoints of any edge in E' are also in
V'. A subgraph is said to span its set of vertices. We call S a spanning
subgraph of G if V' equals V. We call S an induced subgraph of G if whenever u
and v are in V' and (u,v) is in E, (u,v) is also in E'. We use the notation
G - v, where v is in V(G), to denote the induced subgraph of G on V-
{v}. Similarly, if V' is a subset of V(G), then G - V' denotes the induced
subgraph on V - V'. We use the notation G - (u,v), where (u,v)
is in E(G), to denote the subgraph G(V,E - {(u,v)}). If we add a new edge
(u,v), where u and v are both in V(G) to G(V,E), we obtain the graph G(V, E U
{(u,v)}), which we will denote by G(V,E) U (u,v). In general, given a pair
of graphs G(V 1,E 1) and G(V 2,E 2), their union G(V 1,E 1) U G(V 2,E 2) is the graph

G(V1 U V 2, E 1 U E 2). If V 1 = V 2 and E 1 and E 2 are disjoint, the union is

called the edge sum of G(V 1,E 1) and G(V 2,E 2). The complement of a graph

G(V,E), denoted by G c, has the same set of vertices as G, but a pair of
vertices are adjacent in the complement if and only if the vertices are not
adjacent in G.

We define a path from a vertex u in G to a vertex v in G as an alternating
sequence of vertices and edges,

 v 1, e 1, v 2, e 2, ... ek-1, v k,

where v 1 = u, v k = v, all the vertices and edges in the sequence are

distinct, and successive vertices v i and v i+1 are endpoints of the

intermediate edge e i . If we relax the definition to allow repeating vertices

in the sequence, we call the resulting structure a trail . If we relax the
definition further to allow both repeating edges and vertices, we call the
resulting structure a walk . If we relax the definition of a path to allow
the first and last vertices (only) to coincide, we call the resulting closed
path a cycle . A graph consisting of a cycle on n vertices is denoted by
C(n). If the first and last vertices of a trail coincide, we call the
resulting closed trail a circuit . The length of a path, trail, walk, cycle, or
circuit is its number of edges.

We say a pair of vertices u and v in a graph are connected if and only there
is a path from u to v. We say a graph G is connected if and only if every pair
of vertices in G are connected. We call a connected induced subgraph of G of
maximal order a component of G. Thus, a connected graph consists of a single
component. The graph in Figure 1-1 has two components. A graph that is not

Page 7

connected is said to be disconnected . If all the vertices of a graph are
isolated, we say the graph is totally disconnected .

A vertex whose removal increases the number of components in a graph is called
a cut-vertex. An edge whose removal does the same thing is called a bridge .
A graph with no cut-vertex is said to be nonseparable (or biconnected). A
maximal nonseparable subgraph of a graph is called a block (biconnected
component or bicomponent). In general, the vertex connectivity (edge
connectivity) of a graph is the minimum number of vertices (edges) whose
removal results in a disconnected or trivial graph. We call a graph G k-
connected or k-vertex connected (k-edge connected) if the vertex (edge)
connectivity of G is at least k.

If G is connected, the path of least length from a vertex u to a vertex v in G
is called the shortest path from u to v, and its length is called the distance
from u to v. The eccentricity of a vertex v is defined as the distance from
v to the most distant vertex from v. A vertex of minimum eccentricity is
called a center . The eccentricity of a center of G is called the radius of
G, and the maximum eccentricity among all the vertices of G is called the
diameter of G. We can define the nth power of a connected graph G(V,E),

denoted by G n as follows: V(G n) = V(G), and an edge (u,v) is in E(G n) if and

only if the distance from u to v in G is at most n. G 2 and G 3 are called the
square and cube of G, respectively.

If we impose directions on the edges of a graph, interpreting the edges as
ordered rather than unordered pairs of vertices, we call the corresponding
structure a directed graph or digraph . In contrast and for emphasis, we will
sometimes refer to a graph as an undirected graph . We will follow the usual
convention in graph theory of denoting an edge from a vertex u to a vertex v
by (u,v), leaving it to the context to determine whether the pair is to be
considered ordered (directed) or not (undirected). The first vertex u is
called the initial vertex or initial endpoint of the edge, and the second
vertex is called the terminal vertex or terminal endpoint of the edge. If G is
a digraph and (u,v) an edge of G, we say the initial vertex u is adjacent to
v, and the terminal vertex v is adjacent from u. We call the number of
vertices adjacent to v the in-degree of v, denoted indeg(v), and the number of
vertices adjacent from v the out-degree of v, denoted outdeg(v). The Degree
Sum Theorem for graphs has the obvious digraph analog.

THEOREM (DIGRAPH DEGREE SUM) Let G(V,E) be a digraph; then

 |V| |V|

Σ indeg(v i) = Σ outdeg(v i) = |E|.

 i = 1 i = 1

Generally, the terms we have defined for undirected graphs have
straightforward analogs for directed graphs. For example, the paths, trails,
walks, cycles, and circuits of undirected graphs are defined similarly for
directed graphs, with the obvious refinement that pairs of successive vertices
of the defining sequences must determine edges of the digraph. That is, if the
defining sequence of the directed walk (path, etc.) includes a subsequence

Page 8

vi , e i , vi+1 , then e i must equal the directed edge (v i , v i+1). If we relax

this restriction and allow e i to equal either (v i , v i+1) or (v i+1 , v i), we

obtain a semiwalk (semipath , semicycle , and so on).

A digraph G(V,E) is called strongly connected , if there is a (directed) path
between every pair of vertices in G. A vertex u is said to be reachable from a
vertex v in G, if there is a directed path from v to u in G. The digraph
obtained from G by adding the edge (v,u) between any pair of vertices v and
u in G whenever u is reachable from v (and (v,u) is not already in E(G)) is
called the transitive closure of G.

There are several other common generalizations of graphs. For example, in a
multigraph , we allow more than one edge between a pair of vertices. In
contrast, an ordinary graph that does not allow parallel edges is sometimes
called a simple graph . In a loopgraph , both endpoints of an edge may be the
same, in which case such an edge is called a loop (or self-loop). If we
allow both undirected and directed edges, we obtain a so-called mixed graph .

SPECIAL GRAPHS

Various special graphs occur repeatedly in practice. We will introduce the
definitions of some of these here, and examine them in more detail in later
sections.

A graph containing no cycles is called an acyclic graph . A directed graph
containing no directed cycles is called an acyclic digraph , or sometimes a
Directed Acyclic Graph (DAG). Perhaps the most commonly encountered special
undirected graph is the tree , which we define as a connected, acyclic graph.
An arbitrary acyclic graph is called a forest . Thus, the components of a
forest are trees. We will consider trees and acyclic digraphs in Chapter 4.

A graph of order N in which every vertex is adjacent to every other vertex
is called a complete graph , and is denoted by K(N). Every vertex in a complete
graph has the same full degree. More generally, a graph in which every
vertex has the same, not necessarily full, degree is called a regular graph .
If the common degree is r, the graph is called regular of degree r .

A graph that contains a cycle which spans its vertices is called a hamiltonian
graph . These graphs are the subject of an extensive literature revolving
around their theoretical properties and the algorithmic difficulties
involved in efficiently recognizing them. A graph that contains a circuit
which spans its edges is called an eulerian graph . Unlike hamiltonian
graphs, eulerian graphs are easy to recognize. They are merely the connected
graphs all of whose degrees are even. We will consider them later in this
chapter.

A graph G(V,E) (or G(V 1,V 2,E)) is called a bipartite graph or bigraph if its

vertex set V is the disjoint union of sets V 1 and V 2, and every edge in E has

the form (v 1,v 2), where v 1 î V 1 and v 2 î V 2. A complete bipartite graph is a

bigraph in which every vertex in V 1 is adjacent to every vertex in V 2. A

complete bigraph depends only on the cardinalities M and N of V 1 and V 2

respectively, and so is denoted by K(M,N). Generally, we say a graph G(V,E) or

Page 9

G(V1,...,V k,E) is k-partite if the vertex set V is the union of k disjoint

sets V 1,...,V k, and every edge in E is of the form (v i ,v j), for vertices v i î

Vi and v j î V j , V i and V j distinct. A complete k-partite graph is defined

similarly. We refer to Figure 1-2 for an example.

 Figure 1-2 here

GRAPHS AS MODELS

We will describe many applications of graphs in later chapters. The
following are illustrative.

Assignment Problem

Bipartite graphs can be used to model problems where there are two kinds of
entities, and each entity of one kind is related to a subset of entities of
the other. For example, one set may be a set V 1 of employees and the other a

set V 2 of tasks the employees can perform. If we assume each employee can

perform some subset of the tasks and each task can be performed by some subset
of the employees, we can model this situation by a bipartite graph
G(V1,V 2,E), where there is an edge between v 1 in V 1 and v 2 in V 2 if and only

if employee v 1 can perform task v 2.

We could then consider such problems as determining the smallest number of
employees who can perform all the tasks, which is equivalent in graph-
theoretic terms to asking for the smallest number of vertices in
V1 that together are incident to all the vertices in V 2, a so-called covering

problem (see Chapter 8). Or, we might want to know how to assign the largest
number of tasks, one task per employee and one employee per task, a problem
which corresponds graph-theoretically to finding a maximum size regular
subgraph of degree one in the model graph, the so-called matching problem .
Section 1-3 gives a condition for the existence of matchings spanning V 1, and

Section 1-5 and Chapters 8 and 9 give algorithms for finding maximum matchings
on graphs.

Data Flow Diagrams

We can use directed bipartite graphs to model the flow of data between the
operators in a program, employing a data flow diagram . For this diagram, let
the data (program variables) correspond to the vertices of one part V 1 of the

bigraph G(V 1,V 2), while the operators correspond to the other part V 2. We

include an edge from a datum to an operator vertex if the corresponding
datum is an input to the corresponding operator. Conversely, we include an
edge from an operator vertex to a datum, if the datum is an output of the
operator. A bipartite representation of the data flow of a program is shown in
Figure 1-3.

 Figure 1-3 here

A data flow diagram helps in analyzing the intrinsic parallelism of a program.
For example, the length of the longest path in a data flow diagram

Page 10

determines the shortest completion time of the program, provided the maximum
amount of parallelism is used. In the example, the path X(+:1)P(DIV:2)Q(-
:4)S(DIV:6)U is a longest path; so the program cannot possibly be completed in
less than four steps (sequential operations). A minimum length parallel
execution schedule is {1}, {2, 3} concurrently, {4, 5} concurrently, and
{6}, where the numbers indicate the operators.

GRAPH ISOMORPHISM

For any mathematical objects, the question of their equality or identity is
fundamental. For example, a pair of fractions (which may look different) are
the same if their difference is zero. Just like fractions, a pair of graphs
may also look different but actually have the same structure. Thus, the graphs
in Figure 1-4 are nominally different because the vertices v 1 and v 2 are

adjacent in one of the graphs, but not in the other. However, if we ignore the
names or labels on the vertices, the graphs are clearly structurally
identical. Structurally identical graphs are called Isomorphic, from the Greek
words iso for "same" and morph for "form." Formally, we define a pair of
graphs G 1(V,E) and G 2(V,E) to be isomorphic if there is a one-to-one

correspondence (or mapping) M between V(G 1) and V(G 2) such that u and v are

adjacent in G 1 if and only if the corresponding vertices M(u) and M(v) are

adjacent in G 2. See Figure 1-5 for another example.

 Figures 1-4 and 1-5 here

To prove a pair of graphs are isomorphic, we need to find an isomorphism
between the graphs. The brute force approach is to exhaustively test every
possible one-to-one mapping between the vertices of the graphs, until we
find a mapping that qualifies as an isomorphism, or determine there is none.
See Figure 1-6 for a high-level view of such a search algorithm. Though
methodical, this method is computationally infeasible for large graphs. For
example, for graphs of order N, there are a priori N! distinct possible 1-1
mappings between the vertices of a pair of graphs; so examining each would
be prohibitively costly. Though the most naive search technique can be
improved, such as in the backtracking algorithm in Chapter 2, all current
methods for the problem are inherently tedious.

 Figure 1-6 here

A graphical invariant (or graphical property) is a property associated with
a graph G(V,E) that has the same value for any graph isomorphic to G. One
may fortuitously succeed in finding an invariant a pair of graphs do not
share, thus establishing their nonisomorphism. Of course, two graphs may agree
on many invariants and still be nonisomorphic, although the likelihood of this
occurring decreases with the number of their shared properties. The graphs
in Figure 1-7 agree on several graphical properties: size, order, and degree
sequence. However, the subgraph induced in G 2(V,E) by the vertices of degree

2 is regular of degree 0, while the corresponding subgraph in G 1(V,E) is

regular of degree 1. This corresponds to a graphical property the graphs do
not share; so the graphs are not isomorphic. The graphs in Figure 1-8 also
agree on size, order, and degree sequence. However, G 1(V,E) appears to have

Page 11

cycles only of lengths 4, 6, and 8, while G 2(V,E) has cycles of length 5. One

can readily show that G 1 is bipartite while G 2 is not, so these graphs are

also nonisomorphic.

 Figures 1-7 and 1-8 here

1-2 REPRESENTATIONS

There are a variety of standard data structure representations for graphs.
Each representation facilitates certain kinds of access to the graph but makes
complementary kinds of access more difficult. We will describe the simple
static representations first. The linked representations are more complicated,
but more economical in terms of storage requirements, and they facilitate
dynamic changes to the graphs.

1-2-1 STATIC REPRESENTATIONS

The standard static representations are the |V|x|V| adjacency matrix, the edge
list, and the edge incidence matrix.

ADJACENCY MATRIX

We define the adjacency matrix A of a graph G(V,E) as the |V|x|V| matrix:
 -
 | 1 if (i,j) is in E(G)
 A(i,j) = -
 | 0 if (i,j) is not in E(G).
 -

The adjacency matrix defines the graph completely in O(|V| 2) bits. We can
define a corresponding data type Graph_Adjacency or Graph as follows. We
assume that the vertices in V are identified by their indices 1..|V|.

type Graph = record
 |V|: Integer Constant
 A(|V|,|V|): 0..1

end

Following good information-hiding practice, we package all the defining
information, the order |V| (or |V(G)|) included, in one data object.

Let us consider how well this representation of a graph facilitates
different graph access operations. The basic graph access operations are

(1) Determine whether a given pair of vertices are adjacent, and

(2) Determine the set of vertices adjacent to a given vertex.

Since the adjacency matrix is a direct access structure, the first
operation takes O(1) time. On the other hand, the second operation takes
O(|V|) time, since it entails sequentially accessing a whole row (column) of
the matrix.

Page 12

We define the adjacency matrix representation of a digraph G in the same way
as for an undirected graph:

 -
 | 1 if (i,j) is in E(G)
 A(i,j) = -
 | 0 if (i,j) is not in E(G).
 -
While the adjacency matrix for a graph is symmetric, the adjacency matrix
for a digraph is asymmetric.

Matrix operations on the matrix representations of graphs often have graphical
interpretations. For example, the powers of the adjacency matrix have a simple
graphical meaning for both graphs and digraphs.

THEOREM (ADJACENCY POWERS) If A is the adjacency matrix of a graph (or

digraph) G(V,E), then the (i,j) element of A k equals the number of distinct
walks from vertex i to vertex j with k edges.

The smallest power k for which A k(i,j) is nonzero equals the distance from

vertex i to vertex j. Since the expansion of (A + I) k contains terms
for every positive power of A less than or equal to k, its (i,j) entry is
nonzero if and only if there is a walk (path) of length k or less from i to j.

The reachability matrix R for a digraph G is defined as

 -
 | 1 if there is a path from
 R(i,j) = - vertex i to vertex j,
 |
 | 0 otherwise.
 -

We can compute R in O(|V| 4) operations using the Adjacency Powers Theorem,
but can do it much more quickly using methods we shall see later.

EDGE LIST

The edge list representation for a graph G is merely the list of the edges
in G, each edge being a vertex pair. The pairs are unordered for graphs and
ordered for digraphs. A corresponding data type Graph_Edge_List or simply
Graph is

type Graph = record
 |V|: Integer Constant
 |E|: Integer Constant
 Edges(|E|,2): 1..|V|

end

Page 13

For completeness, we include both the order |V| and the size |E|. The array

Edges contains the edge list for G. (Edges(i,1), Edges(i,2)) is the i th edge
of G, i = 1..|E|.

The storage requirements for the list are O(|E|) bits, or strictly speaking,
O(|E| log |V|) bits since it takes O(log |V|) bits to uniquely identify one of
|V| vertices. If the edges are listed in lexicographic order, vertices i and j
can be tested for adjacency in O(log |E|) steps (assuming comparisons take
O(1) time). The set of vertices adjacent to a given vertex v can be found in
time O(log(|E|) + deg(v)), in contrast with the O(|V|) time required for an
adjacency matrix.

INCIDENCE MATRIX

The incidence matrix is a less frequently used representation. Let G be a
(p,q) undirected graph. If we denote the vertices by v 1,...,v p and the edges

by e 1,...,e q, we can define the incidence matrix B of G as the pxq matrix:

 -
 | 1 if vertex v i is incident with edge e j ,

 B(i,j) = -
 | 0 otherwise.
 -

There is a well-known relationship between the incidence matrix and the
adjacency matrix. If we define the degree matrix D of a graph G as the |V|
by |V| matrix whose diagonal entries are the degrees of the vertices of G
and whose off-diagonal entries are all zero, it is easy to prove the
following:

THEOREM (INCIDENCE TRANSPOSE PRODUCT) Let G be a nonempty graph, with

incidence matrix B, adjacency matrix A, and degree matrix D. Then BB t = A + D.

We define the incidence matrix B of the digraph G as the p x q matrix:
 -
 | +1 if vertex v i is incident with edge e j

 | and e j is directed out of v i ,

 |
 B(i,j) = - -1 if vertex v i is incident with edge e j ,

 | and e j is directed into v i ,

 |
 | 0 otherwise.
 -

The following theorem is easy to establish using the Binet-Cauchy Theorem on
the determinant of a product of matrices.

THEOREM (SPANNING TREE ENUMERATION) Let G(V,E) be an undirected connected
graph, and let B be the incidence matrix of a digraph obtained by assigning
arbitrary directions to the edges of G. Then, the number of spanning trees

of G equals the determinant of BB t .

Page 14

1-2-2 DYNAMIC REPRESENTATIONS

The adjacency list representation for a graph (or digraph) G(V,E) gives for
each vertex v in V(G), a list of the vertices adjacent to v. We denote the
list of vertices adjacenct to v by ADJ(v). Figure 1-9 gives an example. The
details of the representation vary depending on how the vertices and edges are
represented.

 Figure 1-9 here

Vertex Representation

The vertices can be organized in

(1) A linear array,
(2) A linear linked list, or
(3) A pure linked structure.

In each case, the set of adjacent vertices ADJ(v) at each vertex v is
maintained in a linear linked list; the list header for which is stored in the
record representing v. Each of the three types of vertex organization are
illustrated for the digraph in Figure 1-9 in Figure 1-10.

 Figure 1-10 here

In the linear array organization, each vertex is represented by a component of
a linear array, which acts as the header for the list of edges incident at the
vertex. In the linear list organization, the vertices are stored in a
linked list, each component of which, for a vertex v, also acts as the
header for the list of edges in ADJ(v). Refer to Figure 1-10a and b for
illustrations.

In the pure linked organization, a distinguished vertex serves as an entry
vertex to the graph or digraph, and an Entry Pointer points to that entry
vertex. The remaining vertices are then accessed solely through the links
provided by the edges of the graph. The linked representation for a binary
search tree is an example. If not every vertex is reachable from a single
entry vertex, a list of enough entry pointers to reach the whole graph is
used. Refer to Figure 1-10c for an illustration.

Edge Representation

The representation of edges is affected by whether

(1) The adjacency list represents a graph or digraph, and whether
(2) The representative of an edge is shared by its endpoint
 vertices or not.

In the case of an undirected graph, the endpoints of an edge
(v i ,v j) play a symmetric role, and so should be equally easily accessible

Page 15

from both ADJ(v i) and ADJ(v j). The most natural approach is to represent the

edge redundantly under both its endpoints, as one does for an adjacency
matrix. Alternatively, we can let both lists ADJ(v i) and ADJ(v j) share the

representative of the edge. The adjacency list entry for each edge then merely
points to a separate record which represents the edge. This shared record
contains pointers to both its endpoints and any data or status fields
appropriate to the edge. Figure 1-11 illustrates this approach.

 Figure 1-11 here

The adjacency list for a digraph, on the other hand, typically maintains an
edge representative (v i ,v j) on ADJ(v i) but not on ADJ(v j). But, if we wish to

facilitate quick access to both adjacency-to vertices and adjacency-from
vertices, we can use a shared edge representation that lets us access an
edge from both ADJ(v i) and ADJ(v j). Refer also to Figure 1-11.

Positional Pointers

Many of the graph processing algorithms we will consider process the adjacency
lists of the graph in a nested manner. That is, we first process a list
ADJ(v i) partially, up to some edge e 1. Then, we start processing another edge

list ADJ(v j). We process that list up to an edge e 2. But, eventually, we

return to processing the list ADJ(v i), continuing with the next edge after

the last edge processed there, e 1. In order to handle this kind of

processing, the algorithm must remember for each list the last edge on the
list that it processes.

We will define a positional pointer at each vertex, stored in the header
record for the vertex, to support this kind of nested processing. The
positional pointer will initially point to the first edge on its list and be
advanced as the algorithm processes the list. Using the positional pointers,
we can define a Boolean function Next(G,u,v) which returns in v the next
edge or neighbor of u on ADJ(u), and fails if there is none. Successive
calls to Next(G,u,v) return successive ADJ(u) elements, starting with the
element indicated by the initial position of the positional pointer.
Eventually, Next returns the last element. The subsequent call of
Next(G,u,v) fails, returning a nil pointer in v and setting Next to False.
If we call Next(G,u,v) again, it responds in a cyclic manner and returns a
pointer to the head of ADJ(u).

Data Types

We can define data types corresponding to each of the adjacency list
representations we have described. We will illustrate this for the linear
array representation of a graph by defining a data type Graph. First, we
will define the constituent types, Vertex and Edge.

We define the type Vertex as follows. We assume the vertices are indexed
from 1..|V|. Each vertex will be represented by a component of an array
Head(|V|), the array components of which will be records of type Vertex.

The representative of the i th vertex will be stored in the i th position of
Head. The type definition is

Page 16

type Vertex = record
 Vertex data fields: Unspecified
 Successor: Edge pointer
 Positional Pointer: Edge pointer

end

Successor(v), for each vertex v, is the header for ADJ(v) and points to the
first element on ADJ(v). Positional Pointer(v) is used for nested processing
as we have indicated.

The Edge type is defined as

type Edge = record
 Edge data fields: Unspecified
 Neighboring Vertex: 1..|V|
 Successor: Edge pointer

end

Neighboring Vertex gives the index of the other endpoint of the edge.
Successor just points to the next edge entry on the list.

The overall type Graph is then defined as

type Graph = record
 |V|: Integer Constant
 Head(|V|): Vertex

end

We can define similar data types for the other graph representations.

1.3 BIPARTITE GRAPHS

We described a model for an employee-task assignment problem in Section 1-1
and considered the problem of assigning every employee to a task, with one
task per employee and one employee per task. We can analyze this problem
using the concept of matching. A matching M on a graph G(V,E) is a set of
edges of E(G) no two of which are adjacent. A matching determines a regular
subgraph of degree one. We say a matching spans a set of vertices X in G if
every vertex in X is incident with an edge of the matching. We call a matching
that spans V(G) a complete (spanning or perfect) matching . A 1-1 mapping
between employees and tasks in the assignment problem corresponds to a
spanning matching.

A classical algorithm for constructing maximum matchings uses alternating
paths , which are defined as paths whose edges alternate between matching and
nonmatching edges. Refer to Figure 1-12 for an example. We can use alternating
paths in a proof of a simple condition guaranteeing the existence of a
spanning matching in a bigraph, and hence a solution to the assignment
problem.

 Figure 1-12 here

Page 17

THEOREM (NONCONTRACTING CONDITION FOR EXISTENCE OF SPANNING MATCHINGS IN
BIPARTITE GRAPHS) If G(V 1,V 2,E) is bipartite, there exists a matching

spanning V 1 if and only if |ADJ(S)| ≥ |S| for every subset S of V 1.

The proof of the theorem is as follows. First, we observe that if there exists
a matching spanning V 1, |ADJ(S)| must be greater than or equal to |S| for

every subset S of V 1. We will establish the converse by contradiction.

Suppose the condition is satisfied, but there is no matching that spans
V1. Let M be a maximum matching on G. By supposition, there must be some

vertex v in V 1 not incident with M. Define S as the set of vertices in G

reachable from v by alternating paths with respect to M; v is the only
unmatched vertex in S. Otherwise, we could obtain a matching larger than M
merely by reversing the roles of the edges on the alternating path P from v to
another unmatched vertex in S. That is, we could change the matching edges
on P into nonmatching edges, and vice versa, increasing the size of the
matching.

Define W i (i = 1,2) as the intersection of S with V i . Since W 1 and W 2 both

lie in S and all of S except v is matched, W 1 - {v} must be matched by M to

W2. Therefore, |W 2| = |W 1| - 1. W 2 is trivially contained in ADJ(W 1).

Furthermore, ADJ(W 1) is contained in W 2, by the definition of S. Therefore,

ADJ(W1) must equal W 2, so that |ADJ(W 1)| = |W 2| = |W 1| - 1 < |W 1|, contrary to

supposition. This completes the proof.

We next consider the question of how to recognize whether or not a graph is
bipartite. The following theorem gives a simple mathematical
characterization of bipartite graphs.

THEOREM (BIPARTITE CHARACTERIZATION) A (nontrivial) graph G(V,E) is
bipartite if and and only if it contains no cycles of odd length.

The proof of this theorem is straightforward.

Despite its mathematical appeal, the theorem does not provide an efficient way
to test whether a graph is bipartite. Indeed, a search algorithm based on
the theorem that tested whether every cycle was even would be remarkably
inefficient, not because of the difficulty of generating cycles and testing
the number of their edges, but because of the sheer volume of cycles that have
to be tested. Figure 1-13 overviews an exhaustive search algorithm that
systematically generates and tests every combinatorial object in the graph
(here, cycles) which must satisfy a certain property (here, not having odd
length) in order for a given property (here, bipartiteness) to be true for the
graph as a whole. The performance of the algorithm is determined by how
often its search loop is executed, which in turn is determined by how many
test objects the graph contains. In this case, the number of test objects
(cycles) is typically exponential in the number of vertices in the graph.

 Figure 1-13 here

Page 18

Another search algorithm to test for bipartiteness follows immediately from
the definition: merely examine every possible partition of V(G) into
disjoint parts V 1 and V 2, and test whether or not the partition is a

bipartite one. Once again, the difficulty that arises is not in generating and
testing the partitions but in examining the exponential number of partitions
that occur.

We now describe an efficient bipartite recognition algorithm. The idea of
the algorithm is quite simple. Starting with an initial vertex u lying in
part V 1, we fan out from u, assigning subsequent vertices to parts (V 1 or V 2)

which are determined by the initial assignment of u to V 1. Obviously, the

graph is nonbipartite only if some vertex is forced into both parts.

A suitable representation for G is a standard linear array, where the Header
array is H(|V|) and the array components are records of type

type Vertex = record
 Part: 0..2
 Positional Pointer: Edge pointer
 Successor: Edge pointer

end

The entries on the adjacency lists have the form

type Edge = record
 Neighbor: 1..|V|
 Successor: Edge pointer

end

We call the type of the overall structure Graph .

The function Bipartite uses a utility Get(u) which returns a vertex u for
which Part(u) is zero or fails. The outermost loop of the procedure
processes the successive components of the graph. The middle loop processes
the vertices within a component. The innermost loop processes the immediate
neighbors of a given vertex. The algorithm takes time O(|V| + |E|). This is
the best possible performance since any possible algorithm must inspect
every edge because the inclusion of even a single additional edge could
alter the status of the graph from bipartite to nonbipartite.

Function Bipartite (G)

(* Returns the bipartite status of G in Bipartite *)

var G: Graph
 Component: Set of 1..|V|
 Bipartite: Boolean function
 v,u: 1..|V|

Set Bipartite to True
Set Part(v) to 0, for every v in V(G)

Page 19

while Get(u) do

Set Component to {u}
Set Part(u) to 1

while Component <> Empty do

 Remove a vertex v from Component

for every neighbor w of v do

if Part(w) = 0

then Add w to Component
Set Part(w) to 3 - Part(v)

else if Part(v) = Part (w)
then Set Bipartite to False

Return

End_Function _Bipartite

1.4 REGULAR GRAPHS

A graph G(V,E) is regular of degree r if every vertex in G has degree r.
Regular graphs are encountered frequently in modeling. For example, many
parallel computers have interconnection networks which are regular. The five
regular polyhedra (the tetrahedron, cube, octahedron, dodecahedron, and
icosahedron) also determine regular graphs. The following theorems summarize
their basic properties.

THEOREM (REGULAR GRAPHS) If G(V,E) is a (p,q) graph which is regular of degree
r, then

 pr = 2q.

If G is also bipartite, then

 |V 1| = |V 2|.

Interestingly, every graph G can be represented as an induced subgraph of a
larger regular graph.

THEOREM (EXISTENCE OF REGULAR SUPERGRAPH) Let G(V,E) be a graph of maximum
degree M. Then, there exists a graph H which is regular of degree M and
that contains G as an induced subgraph.

The following result of Koenig is classical. It is an example of a so-called
factorization result (see also Chapter 8).

Page 20

THEOREM (PARTITIONING REGULAR BIGRAPHS INTO MATCHINGS) A bipartite graph
G(V1,V 2,E) regular of degree r can be represented as an edge disjoint union

of r complete matchings.

We can prove this result using the condition for the existence of spanning
matchings in bipartite graphs given in Section 1-3. The proof is by
induction on the degree of regularity r. The theorem is trivial for r equal to
1. We will assume the theorem is true for degree r - 1 or less, and then
establish it for degree r.

First, we shall prove that V 1 satisfies the condition of the Bipartite

Matching Theorem. Let S be a nonempty subset of V 1 and let ADJ(S) denote the

adjacency set of S. We will show that |ADJ(S)| ≥ |S|. Observe that there

are r|S| edges emanating from S. By the regularity of G, the number of edges
linking ADJ(S) and S cannot be greater than r|ADJ(S)|. Therefore, r|ADJ(S)|

≥ r|S|, or |ADJ(S)| ≥ |S|, as required. Therefore, we can match V 1 with a

subset of V 2.

Since G is regular, |V 1| = |V 2|. Therefore, the matching is actually a

perfect matching. We can remove this matching to obtain a reduced regular
graph of degree r - 1. It follows by induction that G(V 1,V 2,E) can be covered

by a union of r edge disjoint matchings. This completes the proof.

Regular graphs are prominent in extremal graph theory , the study of graphs
that attain an extreme value of some numerical graphical property under a
constraint on some other graphical property. An extensively studied class of
extremal regular graphs are the cages . Let us define the girth of a graph G as
the length of a shortest cycle in G. Then, an (r,n)-cage is an r-regular graph
of girth n of least order. If r equals 3, then we call the (r,n)-cage an n-
cage. Alternatively, an n-cage is a 3-regular (or cubic) graph of girth n.
Cages are highly symmetric, as illustrated by the celebrated examples of n-
cages shown in Figure 1-14, the Petersen graph , the unique five-cage, and in
Figure 1-15, the Heawood graph , the unique six-cage.

 Figure 1-14 and 1-15 here

1-5 MAXIMUM MATCHING ALGORITHMS

There are a number of interesting algorithms for finding maximum matchings
on graphs. This section describes four of them, each illustrating a
different methodology: maximum network flows, alternating paths, integer
programming, or randomization.

1-5-1 MAXIMUM FLOW METHOD (BIGRAPHS)

A maximum matching on a bipartite graph can be found by modeling the problem
as a network flow problem and finding a maximum flow on the model network. The
theory of network flows is elaborated in Chapter 6. Basically, a flow
network is a digraph whose edges are assigned capacities, and each edge is

Page 21

interpreted as a transmission link capable of bearing a limited amount of
"traffic flow" in the direction of the edge. One can then ask for the
maximum amount of traffic flow that can be routed between a pair of vertices
in such a network. This maximum traffic flow value and a set of routes that
realize it can be found using maximum flow algorithms. Efficient maximum
flow algorithms for arbitrary graphs are given in Chapter 6.

To model the bipartite matching problem as a maximum network flow problem,
we can use the kind of flow network shown in Figures 1-16 and 1-17. We
transform the bigraph to a flow network by introducing vertices s and t, which
act as the source and sink of the traffic to be routed through the network; we
then direct the edges of the bigraph downwards and assign a capacity limit
of one unit of traffic flow per edge. A flow maximization algorithm is then
used to find the maximum amount of traffic that can be routed between s and t.
The internal (bipartite) edges of the flow paths determine a maximum
matching on the original bigraph. In the example, the traffic is routed on the
paths s-v 1-v 4-t, s-v 2-v 6-t, and s-v 3-v 5-t, one unit of traffic flow per

path. The corresponding maximum matching is (v 1,v 4), (v 2,v 6), and (v 3,v 5).

 Figure 1-16 and 1-17 here

1-5-2 ALTERNATING PATH METHOD (BIGRAPHS)

The method of alternating paths is a celebrated search tree technique for
finding maximum matchings. A general method for arbitrary graphs is given in
Chapter 8, but it simplifies greatly when the graph is bipartite, which is the
case considered here.

Let G(V,E) be a graph and let M be a matching on G. A path whose successive
edges are alternately in M and outside of M is called an alternating path with
respect to M. We call a vertex not incident with an edge of M a free (or
exposed) vertex relative to M. An alternating path with respect to M whose
first and last vertices are free is called an augmenting path with respect
to M. We can use these paths to transform an existing matching into a larger
matching by simply interchanging the matching and nonmatching edges on an
augmenting path. The resulting matching has one more edge than the original
matching. Refer to Figure 1-18 for an example.

 Fig. 1-18 here

Augmenting paths be used to enlarge a matching; if they do not exist, a
matching must already be maximum.

THEOREM (AUGMENTING PATH CHARACTERIZATION OF MAXIMUM MATCHINGS) A matching M
on a graph G(V,E) is a maximum matching if and only if there is no
augmenting path in G with respect to M.

The proof follows. We show that if M is not a maximum matching there must
exist an augmenting path in G between a pair of free vertices relative to M.
The proof is by contradiction. Suppose that M' is a larger matching then M.
Let G' denote the symmetric difference of the subgraphs induced by M and M'.
That is, the edges of G' are the edges of G which are in either M or M' but
not both. By supposition, there are more edges in G' from M' than from M.

Page 22

Observe that every vertex in G' has degree at most two (in G') since, at most,
two edges, one from M and one from M', are adjacent to any vertex of G'.
Therefore, the components of G' are either isolated vertices, paths, or
cycles. Furthermore, since none of the edges of a given matching are
mutually adjacent, each path or cycle component of G' must be an alternating
path. In particular, any path of even length and every cycle (all of which are
necessarily of even length) must contain an equal number of edges from M and
M'. Therefore, if we remove every cycle and every component consisting of an
even length path from G', there still remain more edges of M' than of M.
Therefore, at least one of the remaining path components must have more
edges from M' than M, indeed exactly one more edge. Since the edges of this
path alternate between M and M', its first and last edges must lie in M'.
Consequently, neither the first nor last vertex of the path can lie in M.
Otherwise, the path could be extended, contrary to the maximality of a
component. Thus, the component must be an alternating path with respect to M
with free endpoints, that is, an augmenting path with respect to M. This
completes the proof.

The Characterization Theorem suggests a procedure for finding a maximum
matching. We start with an empty matching, find an augmenting path with
respect to the matching, invert the role of the edges on the path (matching to
nonmatching, and vice versa), and repeat the process until there are no more
augmenting paths, at which point the matching is maximum. The difficulty lies
in finding the augmenting paths. We shall show how to find them using a search
tree technique. The technique is extremely complicated when applied to
arbitrary graphs, but simplifies in the special case of bipartite graphs.

ALTERNATING SEARCH TREE

The augmenting path search tree consists of alternating paths emanating from a
free vertex (Root), like the tree shown in Figure 1-19. The idea is simply to
repeatedly extend the tree until it reaches a free vertex v (other than Root).
If the search is successful, the alternating path through the tree from Root
to v is an augmenting path. Thus, in the example the tree path from Root to
v9 is augmenting. We can show, conversely, that if the search tree does not

reach a free vertex, there is no augmenting path (with Root as a free
endpoint) in the graph. The blocked search tree is called a Hungarian
tree , and its vertices can be ignored in all subsequent searches. When the
search trees at every free vertex become blocked, there are no augmenting
paths at all, and so the matching is maximum.

 Figure 1-19 here

We construct the search tree by extending the tree two alternating edges at
a time, maintaining the alternating character of the paths through the
search tree (as required in order to eventually find an augmenting alternating
path) by always making the extensions either from the root of the tree or from
the outermost vertex of some matching edge. That is, suppose that (u,x) is a
matching edge already lying in the search tree and that x is the endpoint of
(u,x) lying farthest from the root of the search tree, as illustrated in
Figure 1-20. Denote an unexplored edge at x by (x,y). If y is free, the path

Page 23

through the tree from Root to y is an augmenting path, and the search may
terminate. Otherwise, if y is a matched vertex, we let its matching edge be
(y,z). Then, we can extend the search tree by adding the pair of alternating
edges (x,y) and (y,z) to the tree.

 Figure 1-20 here

We will refer to search tree vertices as either outer or inner vertices
according to whether their distance, through the search tree, from the root is
even or odd, respectively. The tree advances from outer vertices only. If we
construct a search tree following these guidelines, the tree will find an
augmenting path starting at the exposed vertex Root if there is one, though
not necessarily a given augmenting path. We state this as a theorem.

THEOREM (SEARCH TREE CORRECTNESS) Let G(V,E) be an undirected graph and let
Root be an exposed vertex in G. Then, the search tree rooted at Root finds
an augmenting path at Root if one exists.

To prove this, we argue as follows. Suppose there exists an augmenting path
P from Root to an unmatched vertex v, but that the search tree becomes blocked
before finding any augmenting path from Root, including P. We will show this
leads to a contradiction.

Let z be the last vertex on P, starting with v as the first, which is not in
the search tree; z exists since by supposition v is not in the search tree.
Let w be the next vertex after z on P, proceeding in the direction from v to
Root; w must lie in the search tree, and so must all the vertices on P between
w and Root, though not necessarily all the edges of P between w and Root.
Furthermore, (w,z) cannot be a matching edge, since every tree vertex is
already matched except for Root, which is free. Therefore, (w,z) is an
unmatched edge. We will distinguish two cases according to whether w is an
outer or an inner vertex.

(1) In the case that w is an outer vertex, the search procedure would
eventually extend the search tree from w along the unmatched edge (w,z) to
z, unless another augmenting path had been detected previously,
contradicting the assumption that z is not in the search tree.

(2) We will show the case where w is an Inner vertex cannot occur. For,
since P is alternating, the tree matching edge at w, that is
(w,w 1), would be the next edge of P. Therefore, P would necessarily continue

through the tree in the direction of (w,w 1). Subsequently, whenever P entered

an inner vertex, necessarily via a nonmatching edge, P would have to exit that
vertex by the matching tree edge at the vertex, since P is alternating.
Furthermore, if P exits the tree at any subsequent point, it must do so for at
most a single edge, only from an outer vertex and only via an unmatched
edge. If we denote such an edge by (x,y) and x is the vertex where P exits and
y is the vertex where P reenters the tree, y cannot also be an outer vertex.
For otherwise, the path through the search tree from z, the common ancestor of
x and y, to x, plus the edge (x,y), plus the path through the search tree from
y to z would together constitute an odd cycle. But, since the graph is a
bigraph, it contains no odd cycles by our Characterization Theorem for
bigraphs. Consequently, the reentry vertex y must be an inner vertex.

Page 24

Therefore, just as before, P must leave y along the matching edge in the
tree which is incident at y. This pattern continues indefinitely, preventing P
from ever reaching Root, which is contrary to the definition of P as an
augmenting path. This completes the proof of the theorem.

The Hungarian Trees produced during the search process have the following
important property.

THEOREM (HUNGARIAN TREES) Let G(V,E) be an undirected graph. Let H be a
Hungarian tree with respect to a matching M on G rooted at a free vertex Root.
Then, H may be ignored in all subsequent searches. That is, a maximum matching
on G is the union of a maximum matching on H and a maximum matching on G - H.

The proof is as follows. Let M 1 be a maximum matching for G - H, and suppose

that M' is an arbitrary matching for G, equal to M 1' U M H' U M I , where M 1' is

in G - H, M H' is in H, and M I satisfies that the intersection of M I and (G -

H) U H is empty. By supposition, |M 1| ≥ |M 1'|. Furthermore, since every edge

in M I is incident with at least one inner vertex of H; then if I' is the set

of inner vertices in H which are incident with M I , then |M I | is at most |I'|.

Finally, observe that H - I' consists of |I'| + 1 disjoint alternating trees
whose inner vertices together comprise I - I', where I denotes the set of
inner vertices of H. Since the cardinality of a maximum matching in an
alternating tree equals the number of its inner vertices, it follows that

|MH'| is at most |I - I'|. Combining these results, we obtain that |M'| ≤
|M1'| + |M H'| + |M I | ≤ |M 1| + |I - I'| + |I'| = |M 1| + |I| = |M 1 U M H|, which

completes the proof.

MAXIMUM MATCHING ALGORITHM

A procedure Maximum_Matching constructs the matching. Its hierarchical
structure is

Maximum_Matching (G)
 Next_Free (G,Root)
 Find_Augmenting_Tree (G,Root,v)
 Create (Q)
 Enqueue (w,Q)
 Next (G,Head(Q),v)
 Apply_Augmenting_Path (G,Root,v)
 Remove_Tree (G)
 Clear(G)

Next_Free returns a free vertex Root, or fails. The procedure
Find_Augmenting_Tree then tries to construct an augmenting search tree
rooted at Root. If Find_Augmenting_Tree is successful, the free vertex at
the terminus of the augmenting path is returned in v, and
Apply_Augmenting_Path uses the augmenting path to change the matching by
following the search tree (predecessor) pointers from the breakthrough
vertex v back to Root, modifying the existing matching accordingly. If
Find_Augmenting_Tree fails, the resulting blocked search tree is by definition

Page 25

a Hungarian tree, and we ignore its vertices during subsequent searches, since
they cannot be part of any augmenting path.

We have used a queue based search procedure (called Breadth First
Search , see Chapter 5) to control the search order, whence the utilities
Create (Q) and Enqueue (w,Q). However, other search techniques such as depth
first search could have been used. Find_Augmenting_Tree uses Next(G,u,v) to
return the next neighbor v of u, and fails when there is none. The utility
Clear (G) is used to reset Pred and Positional Pointer back to their initial
values for every vertex in G. Remove_Tree (G) removes from G the subgraph
induced by a current Hungarian tree in G. The other utilities are familiar.
Refer to Figure 1-21 for an example, where an initial nontrivial matching is
given in Figure 1-21a.

 Figure 1-21 here

The outer-inner terminology used to describe the search process is not
explicit in the algorithm. In Find_Augmenting_Tree, w is an outer vertex.
These are the only vertices queued for subsequent consideration for
extending the search tree. The vertices named v in Find_Augmenting_Tree
correspond to what we have called inner vertices. The tree is not extended
from them so they are not queued.

We will now describe the data structures for the algorithm. We represent the
graph G(V,E) as a linear list with vertices indexed 1..|V|. The components
of the list are of type Vertex. Both the search tree and the matching are
embedded in the representation of G. Each vertex component heads the adjacency
list for the vertex. The type definition is as follows:

type Vertex = record
 Matching vertex: 0..|V|
 Pred: Vertex pointer
 Positional Pointer,
 Successor: Edge_Entry pointer

end

Matching vertex gives the index of the matching vertex for the given vertex;
it is 0 if there is none. Pred points to the predecessor of the given vertex
in the search tree or is nil. Pred(v) is nil until v is scanned: so it can be
used to detect whether a vertex was scanned previously. Positional Pointer and
Successor serve their customary roles as explained in Section 1-2.

We represent the adjacency lists as doubly linked lists with the
representative for each edge shared by its endpoints. This organization
facilitates the deletion of vertices and edges required when Hungarian trees
are deleted from G. The records on the adjacency lists are of type Edge_Entry.
Each of these points to its list predecessor, successor, and its associated
edge representative. The edge representative itself is of type Edge and is
defined by

type Edge = record
 Endpoints(2): 1..|V|
 Endpoint-pointer(2): Edge_Entry pointer

end

Page 26

Endpoints(2) gives the indices of the endpoints of the represented edge; while
Endpoint-pointer(2) points to the edge entries for these endpoints. We call
the overall representation for the graph type Graph. Q packages a queue
whose entries identify outer vertices to be processed.

The formal statements of Maximum_Matching and Find_Augmenting_Tree are as
follows.

Procedure Maximum_Matching (G)

(* Finds a maximum matching in G *)

var G: Graph
 Root, v: Vertex pointer
 Next_Free, Find_Augmenting_Tree: Boolean function

while Next_Free (G, Root) do

if Find_Augmenting_Tree (G, Root,v)

then Apply_Augmenting_Path (G, Root,v)
 Clear (G)

else Remove_Tree (G)

End_Procedure _Maximum_Matching

Function_Find_Augmenting_Tree (G,Root,v)

(* Tries to find an augmenting tree at Root, returning the
 augmenting vertex in v and fails if there is none. *)

var G: Graph
 Root, v, w: Vertex pointer
 Q: Queue
 Empty, Next, Find_Augmenting_Tree: Boolean function
 Dequeue: Vertex pointer function

Set Find_Augmenting_Tree to False
Create (Q); Enqueue (Root, Q)

repeat

while Next(G,Head(Q),v) do

if v Free then (* Augmenting path found *)
Set Pred(v) to Head(Q)
Set Find_Augmenting_Tree to True
return

Page 27

 else if v unscanned

 then (* Extend search tree *)
 Let w be vertex matched with v

Set Pred(w) to v
Set Pred(v) to Head(Q)

 Enqueue(w,Q)

until Empty(Dequeue(Q))

End_Function _Find_Augmenting_Tree

The performance of the matching algorithm is summarized in the following
theorem.

THEOREM (MATCHING ALGORITHM PERFORMANCE) Let G(V,E) be an undirected graph.
Then, the search tree matching algorithm finds a maximum matching on G in
O(|V||E|) steps.

The proof of the theorem is as follows. The performance statement depends
strongly on the Hungarian Trees Theorem. Observe that there are at most |V|/
2 search phases, where a search phase consists of generating successive search
trees, each rooted at a different free vertex, until either one search tree
succeeds in finding an augmenting path, or every search tree is blocked.
Each such search phase may generate many search trees. Nonetheless, since
the Hungarian trees can be ignored in all subsequent searches (even during the
same phase), at most |E| edges will be explored during a phase up to the point
where one of the searches succeeds or every search fails. Thus, each search
phase takes time at most time O(|V| + |E|); so the algorithm takes O(|V||E|)
steps overall. This completes the proof.

1-5-3 INTEGER PROGRAMMING MODEL

Integer programming is a much less efficent technique than the previous
methods for finding maximum matchings, but it has the advantage of being
easy to apply and readily adaptable to more general problems, such as weighted
matching, where the objective is to find a maximum weight matching on a
weighted graph. The method can also be trivially adapted to maximum degree-
constrained matching, where the desired subgraph need not be regular of degree
one but only of bounded degree. An application of degree-constrained
matching is given in Chapter 8. Despite the simplicity of the method, it
suffers from being NP-Complete (see Chapter 10 for this terminology).

The idea is to use a system of linear inequalities for 0-1 variables to
model the matching problem, for an arbitrary graph, and then apply the
techniques of 0-1 integer programming to solve the model. Let G(V,E) be a
graph for which a maximum matching is sought and let A ij be the adjacency

matrix of G. Let x ij , i, j (j > i) = 1,...,|V| denote a set of variables

which we constrain to take on only 0 or 1 as values. We also constrain the
variables; so they behave like indicators of whether an edge is in the
matching or not. That is, we restrict each x ij so that it is 0 if (i,j) is

not a matching edge and is 1 if (i,j) is a matching edge. Finally, we

Page 28

define an objective function whose value equals the number of edges in the
matching and which is maximized subject to the constraints. The formulation is
as follows.

Edge Constraints

 x ij ≤ A ij , for i, j (j > i) = 1,...,|V|

Matching Constraints

 |V| |V|

Σ x ij + Σ x ji ≤ 1, for i = 1,...,|V|

 j > i j < i

Objective Function (Matching size)

 |V|

Σ (Σ x ij)

 i = 1 j > i

The edge constraints ensure only edges in the graph are allowed as matching
edges. The matching constraints ensure there is at most one matching edge at
each vertex, as required by the graphical meaning of a matching. The objective
function just counts the number of edges in the matching.

Figure 1-22 gives a simple example. The system of inequalities for the example
is as follows.

Edge Constraints

 x 12 ≤ 1, x 13 ≤ 1, x 23 ≤ 1.

Matching Constraints

 x 12 + x 13 ≤ 1, x 12 + x 23 ≤ 1, x 23 + x 13 ≤ 1.

Objective Function

 x 12 + x 13 + x 23

Three solutions are possible: x 12 = 1, x 13 = 0, x 23 = 0, and the two symmetric

variations of this. Each corresponds to a maximum matching.

 Figure 1-22 here

1-5-4 PROBABILISTIC METHOD

Surprisingly, combinatorial problems can sometimes be solved faster and more
simply by random or probabilistic methods than by deterministic methods. The

Page 29

algorithm we describe here converts the matching problem into an equivalent
matrix problem, which is then "solved" by randomizing. The method is due to
Lovasz and is based on the following theorem of Tutte.

THEOREM (TUTTE MATRIX CONDITION FOR PERFECT MATCHING) Let G(V,E) be an
undirected graph. Define a matrix T of indeterminates as follows: for every
pair i,j (j > i) = 1, ..., |V|, for which (i,j) is an edge of G, set T(i,j) to
an indeterminate +x ij and set T(j,i) to an indeterminate -x ij ; otherwise, set

T(i,j) to 0. Then, G has a complete matching if and only if the determinant of
T is not identically zero.

The matrix T is called the Tutte matrix of G and its determinant is the
Tutte determinant . The theorem provides a simple test for the existence of a
complete matching in a graph. However, there are computational difficulties
involved in applying the theorem.

It is usually straightforward to calculate a determinant. For example,
Gaussian Elimination can be used to reduce the matrix to upper triangular form
and the determinant is then just the product of the diagonal entries of the

upper triangular matrix. This procedure has complexity O(|V| 3). However,
Gaussian Elimination cannot be used when the matrix entries are symbolic, as
is the case here. In order to evaluate a symbolic, as opposed to a numerical
determinant, we apparently must fall back on the original definition of a
determinant. Recall that by definition a determinant of a matrix T is a sum of
|V|! terms.

Σ sign(i 1, ..., i |V|)T(1,i 1)* ... *T(|V|,i |V|),

 all permutations

where (i 1, ..., i |V|) is a permutation of the indices 1,...,|V| and sign(x)

returns the sign of the permutation x: +1 if x is an even permutation and -1
if x is an odd permutation. To apply the Tutte condition entails testing if
the symbolic polynomial that results from the evaluation of the determinant is
identically zero or not. This apparently simple task is really quite daunting.
The polynomial has |V|! terms, which is exponential in |V|. Therefore, even
though the required evaluation is trivial in a conceptual sense, it is very
nontrivial in the computational sense.

Observe that we do not actually need to know the value of the determinant,
only whether it is identically zero or not. This suggests the following
alternative testing procedure: perform the determinant condition test by
randomly assigning values to the symbolic matrix entries and then evaluating
the resulting determinant by a numerical technique like Gaussian Elimination.

If the determinant randomly evaluates to nonzero, then the original symbolic
determinant must be nonzero; so the graph must have a complete matching. If
the determinant evaluates to zero, there are two possibilities. Either it is
really identically zero or it is not identically zero, but we have randomly
(accidentally) stumbled on a root of the Tutte determinant. Of course, by
repeating the random assignment and numerical evaluation process a few
times, we can make the risk of accidentally picking a root negligible. In
particular, if the determinant randomly evaluates to zero several times, it is
almost certainly identically zero. Thus, we can with great confidence

Page 30

interpret a zero outcome as implying that the graph does not have a complete
matching. Thus, positive conclusions (that is, a complete matching exists) are
never wrong, while negative conclusions (that is, a complete matching does not
exist) are rarely wrong.

The random approach allows us to apply the determinant condition efficiently
and with a negligible chance of error. The following procedure
Prob_Matching_Test (G) formalizes this approach. Because a subsequent
procedure that invokes Prob_Matching_Test will make vertex and edge
deletions from the graph, we will use a linear list representation for G
instead of the simpler adjacency matrix representation. The vertex type is

type Vertex = record
 Index: 1..|V|
 Adjacency_Header: Edge pointer
 Successor: Vertex pointer

end

G itself is just a pointer to the head of the vertex list. Each vertex has
an index field for identification, an Adjacency_Header field, which points
to the first element on its edge list, and a Successor field, which points
to the succeeding vertex on the vertex list. We can assume the vertex
records are ordered according to index. We will use adjacency lists structured
in the same manner as for the alternating paths algorithm to facilitate
deletions that will be required in a later algorithm.

Function Prob_Matching_Test (G)

(* Succeeds if G has a perfect matching, and fails otherwise *)

var G: Vertex pointer
 X(|V|,|V|), T(|V|,|V|): Integer
 R: Integer Constant
 Prob_Matching_Test: Boolean function

Set T to a Tutte matrix for G
Set Prob_Matching_Test to False

repeat R Times

Set X to a random instance of T

if Determinant (X) <> 0
then Set Prob_Matching_Test to True

return

End_Function _Prob_Matching_Test

Prob_Matching_Test(G) determines whether or not G has a complete matching, but
does not show how to find a complete matching if one exists. But, we can
easily design a constructive matching algorithm (for graphs with complete

Page 31

matchings) using this existence test. The following procedure
Prob_Complete_Matching returns a complete matching if one exists. We assume
that M is initially empty. The representations are the same as before. Figures
1-23 and 1-24 illustrate the technique.

Procedure Prob_Complete_Matching(G, M)

(* Returns a complete matching in M, or the empty set if there
 is none *)

var G: Vertex pointer
 x: Edge
 M: Set of Edge
 Prob_Matching_Test: Boolean function

if Prob_Matching_Test(G)

then Select an edge x in G
Set G to G - x

if Prob_Matching_Test (G)

then Prob_Complete_Matching (G, M)

else Set M to M U {x}
Set G to G - {Endpoints of x}

 Prob_Complete_Matching (G, M)

End_Procedure _Prob_Complete_Matching

 Figures 1-23 and 1-24 here

1-6 PLANAR GRAPHS

A graph G(V,E) is called a planar graph if it can be drawn or embedded in
the plane in such a way that the edges of the embedding intersect only at
the vertices of G. Figures 1-25 and 1-26 show planar and nonplanar graphs.
Both planar and nonplanar embeddings of K(4) are shown in Figure 1-25, while a
partial embedding of K(3,3) is shown in Figure 1-26. One can prove that K(3,3)
is nonplanar; so this embedding cannot be completed. For example, the
incompletely drawn edge x in the figure is blocked from completion by existing
edges regardless of whether we try to draw it through region I or region II.
Of course, this only shows that the attempted embedding fails, not that no
embedding of K(3,3) is possible, though in fact none is. This section
describes the basic theoretical and algorithmic results on planarity. We begin
with a simple application.

 Figures 1-25 and 1-26 here

MODEL: FACILITY LAYOUT

Consider the following architectural design problem. Suppose that n simple
planar areas A 1,...,A n (of flexible size and shape) are to be laid out next

Page 32

to each other but subject to the constraint that each of the areas be adjacent
to a specified subset of the other areas. The adjacency constraints can be
represented using a graph G(V,E) whose vertices represent the given areas A i

and such that a pair of vertices are adjacent in G if and only if the areas
they represent are supposed to be adjacent in the layout. The planar layout
can be derived as follows:

(1) Construct a planar representation R of G(V,E).

(2) Using R, construct the planar dual G' of G as follows:

 (i) Corresponding to each planar region r of R, define
 a vertex v r of G', and

 (ii) Let a pair of vertices v r and v r ' in G' be adjacent if

 the pair of corresponding regions r and r' share a
 boundary edge in R.

(3) Construct a planar representation R' of G'.

If step (1) fails, G is nonplanar and the constraints are infeasible.
Otherwise, steps (1) and (2) succeed. (Strictly speaking, in step (2ii), if
r and r' have multiple boundary edges in common, we connect v r and v' r

multiply; and if an edge lies solely in one region r, we include a self-loop
at v r in G'. Neither case occurs here.) It can be shown that if G is planar,

its dual G' is also; so the planar representation required by step (3) exists.
The representation R' is the desired planar layout of the areas A 1,...,A n.

The regions of R' correspond to the given areas, and the required area
adjacency contraint are satisfied. The process is illustrated in Figure 1-27.

 Figure 1-27 here

PLANARITY TESTING

There are two classical tests for planarity. The Theorem of Kuratowski
characterizes planar graphs in terms of subgraphs they are forbidden to
have, while an algorithm of Hopcroft and Tarjan determines planarity in linear
time and shows how to draw the graph if it is planar.

Kuratowski's Theorem uses the notion of homeomorphism, a generalization of
isomorphism. We first define series insertion in a graph G(V,E) as the
replacement of an edge (u,v) of G by a pair of edges (u,z) and (z,v), where
z is a new vertex of degree two. That is, we insert a new vertex on an
existing edge. We define series deletion as the replacement of a pair of
existing edges (u,z) and (z,v), where z is a current vertex of degree two,
by a single edge (u,v), and delete z. That is, we "smooth away" vertices of
degree two. Then, a pair of graphs G 1 and G 2 are said to be homeomorphic if

they are isomorphic or can be made isomorphic through an appropriate
sequence of series insertions and/or deletions.

THEOREM (KURATOWSKI'S FORBIDDEN SUBGRAPH CHARACTERIZATION OF PLANARITY) A
graph G(V,E) is planar if and only if G contains no subgraph homeomorphic to
either K(5) or K(3,3).

Page 33

We omit the difficult proof of the theorem. Figures 1-28 and 1-29 illustrate
its application. The graph in Figure 1-28 is Petersen's graph. Though this
graph does not contains a subgraph isomorphic to either K(5) or K(3,3), it
does contain the homeomorph of K(3,3) shown in Figure 1-29; so it is
nonplanar.

 Figures 1-28 and 1-29 here

Kuratowski's Theorem suggests an exhaustive search algorithm for planarity
based on searching for subgraphs homeomorphic to one of the forbidden
subgraphs. But, it is not obvious how to do this in polynomial time since
the forbidden homeomorphs can have arbitrary orders (see the exercises).
Williamson (1984) describes a fairly complicated algorithm based on depth-
first search that finds a Kuratowski subgraph in a nonplanar graph in O(|V|)
time.

It is sometimes simpler to apply Kuratowski's planarity criterion in a
different form. We define contraction as the operation of removing an edge
(u,v) from a graph G and identifying the endpoints u and v (with a single
new vertex uv) so that every edge (other than (u,v)) originally incident
with either u or v becomes incident with uv. We say a graph G 1(V,E) is

contractible to a graph G 2(V,E) if G 2 can be obtained from G 1 by a sequence

of contractions.

THEOREM (CONTRACTION FORM OF KURATOWSKI'S THEOREM) A graph G(V,E) is planar if
and only if G contains no subgraph contractible to either K(5) or K(3,3).

We can use the Contraction form of Kuratowski's Theorem to directly show
Petersen's graph is nonplanar, since it reduces to K(5) if we contract the
edges (v i ,vi+5), i = 1,...,5.

DEMOUCRON'S PLANARITY ALGORITHM

We have mentioned that the Hopcroft-Tarjan planarity algorithm tests for
planarity in time O(|V|), and also shows how to draw a planar graph. But,
instead of describing this complex algorithm, we will present the less
efficient, but simpler and still polynomial, algorithm of Demoucron, et al.
The algorithm is based on a criterion for when a path in a graph can be
drawn through a face of a partial planar representation of the graph.

Let us define a face of a planar representation as a planar region bounded
by edges and vertices of the representation and containing no graphical
elements (vertices or edges) in its interior. The unbounded region outside the
outer boundary of a planar graph is also considered a face. Let R be a
planar representation of a subgraph S of a graph G(V,E) and suppose we try
to extend R to a planar representation of G. Then, certain constraints will
immediately impose themselves.

First of all, each component of G - R, being a connected piece of the graph,
must, in any planar extension of R, be placed within a face of R. Otherwise,
if the component straddled more than one face, any path in the component
connecting a pair of its vertices lying in different faces would have to cross

Page 34

an edge of R, contrary to the planarity of the extension. A further constraint
is observed by considering those edges connecting a component c of G - R to
a set of vertices W in R. All the vertices in W must lie on the boundary of
a single face in R. Otherwise, c would have to straddle more than one face
of R, contrary to the planarity of the extension.

These constraints on how a planar representation can be extended are only
necessary conditions that must be satisfied by any planar extension.
Nonetheless, we will show that we can draw a planar graph merely by never
violating these guidelines.

Before describing Demoucron's algorithm, we will require some additional
terminology. If G is a graph and R is a planar representation of a subgraph
S of G, we define a part p of G relative to R as either

(1) An edge (u,v) in E(G) - E(R) such that u and v in V(R), or

(2) A component of G - R together with the edges (called
pending edges) that connect the component to the vertices

 of R.

A contact vertex of a part p of G relative to R is defined as a vertex of G
- R that is incident with a pending edge of p. We will say a planar
representation R of a subgraph S of a planar graph G is planar
extendible to G if R can be extended to a planar representation of G. The
extended representation is called a planar extension of R to G. We will say
a part p of G relative to R is drawable in a face f of R if there is a
planar extension of R to G where p lies in f. We have already observed the
following necessary condition for drawability in a face.

 Let p be a part of G relative to R.
 Then, p is drawable in a face f of R only if
 every contact vertex of p lies in V(f).

The condition is certainly not sufficient for drawability, since it merely
says that if the contact vertices of a part p are not all contained in the set
of vertices of a face f, p cannot be drawn in f in any planar extension of R
to G. For convenience, we shall say that a part p which satisfies this
condition is potentially drawable in f, prescinding from the question of
whether or not either p or G are planar.

Demoucron's algorithm works as follows. We repeatedly extend a planar
representation R of a subgraph of a graph G until either R equals G or the
procedure becomes blocked, in which case G is nonplanar. We start by taking
R to be an arbitrary cycle from G, since a cycle is trivially planar
extendible to G if G is planar. We then partition the remainder of G not
yet included in R into parts of G relative to R and apply the drawability
condition. For each part p of G relative to R, we identify those faces of R in
which p is potentially drawable. We then extend R by selecting a part p, a
face f where p is drawable, and a path q through p, and add q to R by
drawing it through f in a planar manner. The process can become blocked
(before G is completely represented) only if we find some part that does not
satisfy the drawability condition for any face, in which case R is not
planar extendible to G and G is nonplanar.

Page 35

A high level procedural statement of Demoucron's algorithm follows. We rely on
the previous discussion to make the meaning of the data types clear.

Function Draw (G, R)

(* Returns a planar representation of G in R, or fails *)

var G: Graph
 R: Planar Representation
 p: Part
 P: Set of Part
 f: Face
 F: Set of Face
 Draw: Boolean function

Set Draw to True
Set R to some cycle in G

repeat

Set P to the set of parts of R relative to G

for each p in P do Set F(p) to the set of faces of R
 in which p is drawable

if F(p) is empty for any p

then Set Draw to False

else if For some part p, F(p) contains only a single face

then Let f be the (unique) face in which p is drawable

else Let p be any part and let f be a face in F(p)

 Let q be a path between a pair of contact vertices
 of p with R that contains only edges of p

Set R to R U q

until R = G or not Draw
End_Function _Draw

The construction of a path q between a pair of contact vertices c 1 and c 2 on

the boundary of a face f of a planar representation R is illustrated in Figure
1-30. An application of Demoucron's algorithm to Petersen's graph is shown
in Figures 1-31 and 1-32. Initially, R consists of the cycle v 1-v 2-v 3-v 4-v 5-

v1. There is only one part of G relative to R, consisting of all the

remaining vertices and edges of G, that is, the induced subgraph on vertices
v6..v 10 and the edges connecting this subgraph to the cycle R. The contact

vertices of this part are v 1..v 5. Any path through this unique part which

Page 36

connects one of its contact vertices to another can serve as the path q
described in the procedure. We will select v 1-v 6-v 8-v 3 as q and update R to

R U q. The new subgraph R has two interior faces and a single exterior face.
There is only one part of G relative to R, as shown in Figure 1-32, and its
contact vertices are {v 2,v 4,v 5,v 6,v 8}. Since none of the faces of R contains

this set of contact vertices, the part is not drawable in any face; hence we
conclude Petersen's graph is nonplanar.

 Figures 1-30, 1-31, and 1-32 here

THEOREM (CORRECTNESS OF DEMOUCRON'S ALGORITHM) Let G(V,E) be a graph. Then,
Demoucron's algorithm finds a planar embedding of G if G is planar or
correctly recognizes G as nonplanar.

The proof of the theorem is as follows. We use an induction over the
(implicit) loop index of the algorithm. We show that if G is planar, the
representation R constructed by the algorithm is always planar extendible to a
planar representation of G. The initial representation R is a cycle, and so is
trivially planar extendible, provided G is planar in the first place. In
general, we show that if the current representation R is planar extendible
to G, its updated representation remains planar extendible. If R is planar
extendible, every part of G relative to R must have some face of R in which it
is drawable. We will distinguish two cases depending on whether or not some
part is drawable in only a single face.

If a part p has a unique face f in which it is drawable, since R is planar
extendible and there is only one possible choice of face in which to embed p
with respect to R, then p must lie in f in every possible planar extension
of R to G. Consequently, we may draw the path q through f and the resulting
extension of R remains planar extendible.

Suppose, on the other hand, that for every part p of G relative to R there are
at least two faces in which p is drawable. We will show that in this case
the choice of face in which p is drawn is not critical. Let f be a face in
which p is drawable. Then, we show there exists a planar extension of R to G
for which p lies in f. Let RX denote an extension of R to G where p lies in
a face f' not equal to f. Then, the contact vertices of p must lie on both the
border of f and the border of f', and so must lie on the shared boundary B
between f and f'. Consider all the parts of G relative to R whose contact
vertices lie on B. Some of these parts lie in f in RX and some lie in f' in
RX. Define a new planar representation RX' of G by flipping these parts
about B. That is, flip those parts lying in f in RX so they lie in f' in
RX', and flip those parts lying in f' in RX so they lie in f in RX'. Then, RX'
is a planar representation of G for which p lies in f. Therefore, we can
draw p in f and R remains planar extendible, as required.

Thus far, we have shown that if G is planar, the algorithm can extend a planar
representation of a subgraph until all of G is drawn. On the other hand, of
course, if G is nonplanar, the algorithm will recognize this at some stage
by finding a part with no face in which it can be drawn, which completes the
proof of the theorem.

Page 37

PLANAR GRAPH THEORY

We will now prove some elementary but basic results of planar graph theory.
The first theorem is simple and was one of the first contributions to the
subject. Its name derives from the relation it identifies between the number
of vertices, edges, and faces of a polyhedron (cube, tetrahedron, etc.). The
edges of these solids define planar graphs when they are appropriately
projected on the plane.

THEOREM (EULER POLYHEDRON FORMULA) Let G(V,E) be a connected planar graph
and let |F| denote the number of faces in a planar embedding of G. Then,

 |F| + |V| = |E| + 2.

See Figure 1-33 for an example.

 Figure 1-33 here

The proof of the theorem is as follows. It is by induction on the number of
edges of the graph. If the graph has only one edge, |V| = 2, |E| = 1, and |F|
= 1; so the theorem is trivial. By induction, we assume the theorem is true
for any graph with n edges, and then consider what happens if we add a further
edge. (Refer to Figure 1-34.) If the additional edge leads to a new vertex,
|V| and |E| will both increase by 1, while |F| will remain unchanged; so the
balance of the equation will be maintained. On the other hand, if the new edge
is between existing vertices, the edge must divide an existing face into two
parts, thus increasing both |F| and |E| by 1, which again preserves the
equation. This completes the proof.

 Figure 1-34 here

THEOREM (LINEAR BOUND ON |E|) If G(V,E) is a planar graph, then

 |E| ≤ 3|V| - 6.

The proof is as follows. We let |F i | denote the number of edges bounding the

i th face of some planar representation of G. Each face must contain at least
3 bounding edges. Therefore,

 |F|

Σ |F i | ≥ 3|F|.

 i = 1

Since each edge borders exactly two faces, the summation counts each edge
twice. Therefore,

 |F|

Σ |F i | = 2|E|.

 i = 1

Page 38

Combining these results and using the Euler Polyhedron Formula, we obtain

 |E| ≤ 3|V| - 6,

as was to be shown.

THEOREM (NONPLANARITY OF KURATOWSKI GRAPHS) The graphs K(3,3) and K(5) are
nonplanar.

The proof of this theorem is as follows. The nonplanarity of K(5) follows by
contradiction from the Linear Bound Theorem, since if K(5) were planar we

would have |E| (= 10) ≤ 3|V| - 6 = 9, which is a contradiction. For K(3,3),

we argue as follows. By Euler's Theorem, |F| = |E| - |V| + 2 = 5. However,
since every cycle in K(3,3) has at least four edges, we can refine the proof

of the Linear Bound Theorem in this case to prove that |F| ≤ 4. That is, if

K(3,3) were planar we would have

 |F|

Σ |F i | ≥ 4|F|.

 i = 1

whence, emulating the Linear Bound proof, we could conclude that |E| (= 9)

≥ 2|F|, so that |F| ≤ 4, contrary to the previous lower bound of 5 for |F|.

Therefore, K(3,3) must be nonplanar. This completes the proof of the theorem.

The following upper bound on the minimum degree will prove useful when we
consider an algorithm for five-coloring a planar graph in Chapter 7.

THEOREM (MINIMUM DEGREE BOUND) If G(V,E) is a planar graph, min(G) ≤ 5.

The proof is by contradiction. Suppose that the minimum degree of G is at
least 6. Then,

 |V|

Σ deg(v i) ≥ 6|V|.

 i = 1

Since the sum of the degrees is always 2|E|,

 it follows that |E| is at least 3|V|, contrary to the Linear Bound Theorem.
It follows that the minimum degree of G must be at most 5, which completes the
proof.

EMBEDDING GRAPHS ON MANIFOLDS

The attempted embedding of K(3,3) in Figure 1-26 succeeds except for the
single edge x. But, K(3,3) can be embedded on the surface of a torus , the
closed two-dimensional manifold that corresponds to the surface of a doughnut.

Page 39

We can represent a torus in a planar fashion by cutting it across its
tubular cross-section, and then cutting the resulting cylinder to form a
rectangle. We consider the opposite borders of the resulting rectangle as
identified. Figure 1-35 gives a toroidal embedding of K(3,3). We think of
the edge x in the figure, that strikes out vertically towards the upper border
of the rectangle, as passing around the back of the torus, reappearing on
the lower border after having circumnavigated the tubular dimension of the
torus. The edge y that starts out to the right and reappears at the opposite
point on the left border of the rectangle corresponds to a radial
circumnavigation of the torus.

 Figure 1-35 here

This example suggests two common generalizations of the concept of planar
embedding: the genus of a graph and the crossing number of a graph.

The genus of a (closed two-dimensional) surface is the number of handles on
the surface. Thus, we can consider a sphere as having genus zero, while a
torus, which can be visualized as a sphere with one handle has genus one.
The genus of a graph G is then defined as the genus of the surface of least
genus on which G can be embedded, that is, drawn without spurious edge
intersections. For example, since we can draw K(3,3) on the torus but not on
the sphere (which is equivalent for present purposes to the plane), K(3,3) has
genus one. K(5), K(6), and K(7) can also be embedded on the torus; so their
genus' are also one. On the other hand, K(8) requires a two handled sphere for
embedding and so has genus two.

The crossing number of a graph G(V,E) is defined as the minimum number of edge
crossings among all possible embeddings of G in the plane. Obviously, the
crossing number of a planar graph equals zero while, as we have just seen, the
crossing number of K(3,3) equals one.

1-7 EULERIAN GRAPHS

An euler trail in a graph G(V,E) is a closed trail (or circuit) that spans all
the edges of G. An open euler trail is an open trail that spans all the
edges of G. An eulerian graph is a graph that contains an eulerian trail. A
semieulerian graph is a graph that contains an open euler trail. Eulerian,
semieulerian, and noneulerian graphs are shown in Figure 1-36.

 Figure 1-36 here

For convenience, we will use the following notation (for this section only).
Let T be a trail (open or closed) in a connected graph G(V,E). Then, we denote
by G - T the graph obtained by removing E(T) from E(G) along with any vertices
in V(G) isolated as a result of the removal of E(T) from G. Eulerian graphs
have a simple characterization in terms of their degree sequences.

THEOREM (CHARACTERIZATION OF EULERIAN GRAPHS) Let G(V,E) be a connected graph.
Then, G is eulerian if and only if the degree of every vertex in G is even.

The proof of the theorem is as follows. The necessity of the condition is
obvious. If G is eulerian, the euler trail clearly induces a graph whose

Page 40

vertices have even degree. We can prove sufficiency as follows. Since every
vertex in G has even degree, G must contain some closed trail T. Since G is
connected, every component of G - T must be incident with some vertex of T.
The subgraphs induced by each of these components are connected and have
degree sequences with even degrees; so we may assume by induction that each of
these components is eulerian. Let T' be an euler trail in a component that
intersects T at a vertex v. We can combine T and T' into one euler trail by
starting T at any of its vertices, proceeding until we reach v, and then
following the trail T' until we have traversed it completely; whence we
continue with the traversal of T. If we repeat this process, we eventually
obtain a closed spanning trail of G. This completes the proof of the theorem.

If a connected graph has only two vertices of odd degree, it is
semieulerian. This is a special case of the following more general theorem.

THEOREM (EULER TRAIL DECOMPOSITION) Let G(V,E) be a connected graph with 2k
vertices of odd degree. Then, the edges of G can be partitioned into k edge
disjoint open trails E 1,...,E k.

The proof of the theorem is as follows. Denote the 2k vertices of odd degree
by v 1,...,v k and w 1,...,w k. Add k new vertices u 1,...,u k to G together

with 2k new edges (v i ,u i) and (u i ,w i), where i = 1,...,k. Denote the

resulting graph by G'. By the previous theorem, G' is eulerian, and so has
an euler trail. Since every new vertex u i is of degree two in G', removing

these vertices from the trail, breaks the euler trail on G' into k edge
disjoint open tails, which together cover the edges of G. This completes the
proof.

An eulerian directed graph is a digraph containing a directed euler trail.
We say a digraph G is connected if the underlying undirected graph of G is
connected. The following theorem is easily proved.

THEOREM (CHARACTERIZATION OF DIRECTED EULERIAN GRAPHS) Let G(V,E) be a
connected digraph. Then, G is eulerian if and only if for every vertex v in
V(G), indeg(v) equals outdeg(v).

EULER TRAIL ALGORITHMS

We will describe two algorithms for finding euler trails in graphs. The
first algorithm, which is due to Fleury, has an intuitive appeal; while the
second algorithm, which is motivated by the proof of the Eulerian
Characterization Theorem, is more efficient.

Fleury's algorithm is a visually convenient way of constructing an euler trail

in an eulerian graph but suffers from O(|E| 2) performance. The idea of
Fleury's algorithm is to successively trace out the edges of a trail,
erasing traversed edges and any resulting isolated vertices as we proceed,
never traversing an edge if in doing so we would disconnect the remaining
graph into nontrivial components or isolate the starting vertex before all the
edges are traversed. Thus, Fleury's algorithm repeatedly extends an incomplete

Page 41

eulerian trail T from its terminal vertex v by appending to T any edge x
incident with v which is not a bridge of G - T and whose removal would not
isolate the starting vertex before all the edges are traversed. Since it takes
O(|E|) time to test whether an edge is a bridge, each edge only has to be
tested once, and there are |E| edges in G, Fleury's algorithm has

performance O(|E| 2).

Refer to Figure 1-37 for an illustration of the pitfalls avoided by Fleury's
algorithm. If we start a trail at the vertex c traversing it until we obtain T
= c-b-a, at that point the edge (a,d) which is incident with the endpoint a of
T is a bridge of G - T. If we follow the edge selection principle in Fleury's
algorithm and continue the trail via either of the edges (a,e) or (a,g), we
will be able to successfully complete an euler trail. On the other hand, if we
extend T via the edge (a,d), which is contrary to the bridge avoidance
criterion in Fleury, the resulting trail becomes trapped when it reaches c,
before it has traversed all of E(G). The following theorem is easily proved.
 Figure 1-37 here

THEOREM (FLEURY'S ALGORITHM)Let G(V,E) be an eulerian graph.Then, Fleury's

algorithm finds an euler trail in G in O(|E| 2) time.

We will now describe an O(|E|) algorithm for euler trails based on the proof
of the eulerian characterization theorem. We start with a trail T consisting
of a single vertex and extend it until it becomes blocked. We then select a
previously reached but incompletely traversed vertex from which we initiate
a new closed trail T'. We then subsequently patch T' onto T, forming a new and
more extensive trail. The process continues until all of E(G) is traversed.

If we denote the list of vertices that have been reached by the partial
euler trail T but that still have untraversed incident edges by PL (meaning
the Pending list), the vertices on PL correspond to those vertices in the
characterization proof at which additional closed trails were patched onto
an existing trail to produce a more extensive closed trail. The pending list
becomes exhausted precisely when we have completed an euler trail on the
component of G in which the trail was initiated, which in the case that G is
connected is an euler trail on G.

We will now describe the procedure for constructing the euler trail more
formally. We first consider the design of the requisite data structures. We
will represent the graph G(V,E) as a linear array with doubly linked adjacency
lists and with shared representatives for its edges to facilitate the edge
deletions that will be required by the algorithm. We include a field,
denoted PL-Pointer(v), at each vertex v, which points to the entry for v, if
any, on the pending list PL. Another direct access pointer, denoted by
Occurrence(v), points to an entry for v on T, if there is one. Both T and PL
are represented by doubly linked lists. This organization, in conjunction with
Occurrence, allows us to efficiently patch additional closed trails onto T.
Similarly, in conjunction with the PL-Pointer field, it allows us to easily
delete elements from PL. The corresponding type definitions are as follows.

Page 42

type Graph = record
 H(|V(N)|): Vertex

end

 Vertex = record
 Positional-Pointer, Successor: Edge pointer
 PL-Pointer, Occurrence: Entry pointer

end

 Edge = record
 Shared-rep: Shared-edge pointer
 Edge-successor,
 Edge-predecessor: Edge pointer

end

 Shared-edge =
record

 E(1,2): 1..|V|
 Endpoints(2): Edge pointer

end

type List = record
 Head, Tail: Entry pointer

end

 Entry = record
 Index: 1..|V|
 Predecessor, Successor: Entry pointer

end

The procedure for constructing the euler trail is named Euler. Euler uses
several subprocedures, which we will now describe. Create(T) initializes a
doubly linked list T. Put(u,T) adds a vertex u to the end of T; while
Put(u,PL,G) adds u to the pending list PL (it has a null effect if u is
already on the list) and sets the corresponding PL-Pointer in G to point to
that entry. Get(PL,w) returns an element w from the pending list PL, without
deleting it, and fails if there is none. The function Next(G,w,v) returns in v
the next neighbor of w or fails if there is none. Delete_edge(G,w,v) deletes
the edge (w,v) from G. Empty(G,u) succeeds if the adjacency list at u is
empty; Single(G,u) succeeds if the adjacency list at u has at most one more
element; while Empty(G) succeeds if G is empty. Delete(w,G,PL) deletes the
entry for w on PL using PL-Pointer(w) in G (and has a null effect if w is
not on the list).

The procedure Patch(T,T',w) patches the closed trail T' that begins and ends
at w onto the trail T by replacing one occurrence of w on T by the trail T'.
Patch has a simple string substitution interpretation.

(1) If the trail T is x 1-x 2-...-a-(w)-b-...-x n,

(2) and the substitute trail T'is (w-w 1-...-w k-w),

Page 43

(3) the new trail T U T' after substitution is

 x 1-x 2-...-a-(w-w 1-...-w k-w)-b-...-x n, or

 x 1-x 2-...-a-w-w 1-...-w k-w-b-...-x n.

The doubly linked representations for T and T' together with the Occurrence
field in G which points to an occurrence of w in T allow an O(1) realization
of Patch. The procedure for Euler follows.

Function Euler (G, u, T)

(* Returns euler trail for G starting at u in T, or fails *)

var G: Graph
 u,w,v: 1..|V|
 T, T', PL: List
 Next, Get, Empty, Single, Euler: Boolean function

Create(T); Put(u,T); Create(PL); Put(u,PL,G)

while Get (PL,w) do

 Create(T'); Put(w,T')

while Next(G,w,v) do Put (v,T')
 Delete_edge (G,w,v)

if Empty (G,w) then Delete (w,G,PL)
if Single(G,v) then Delete (v,G,PL)

else Put (v,PL,G)
Set w to v

 Patch (T,T',w)

Set Euler to Empty (G)
End_Function _Euler

1-8 HAMILTONIAN GRAPHS

We have already defined hamiltonian graphs as graphs that contain spanning
cycles. There is an extensive and profound theory of hamiltonian graphs, which
is currently largely of theoretical interest. We will consider this topic here
partly because, like Mount Everest, "It is There," but also because the
problem of recognizing such graphs plays a paradigmatic role in algorithmic
complexity theory. Indeed, the recognition of these graphs is a classic
instance of a problem for which straightforward search algorithms are
available but for which no efficient algorithm seems possible.

We call a spanning cycle in a hamiltonian graph a hamiltonian cycle , while a
spanning path in a graph is called a hamiltonian path . Analogous terms are
defined for digraphs. The problem of determining whether a graph has a

Page 44

hamiltonian cycle is called the hamiltonian cycle problem . The related
traveling salesman problem seeks to find the shortest spanning circuit in a
weighted graph, which, when the edge weights satisfy the triangle
inequality, can be shown to be a hamiltonian cycle. The hamiltonian cycle
and traveling salesman problems are both NP-Complete, that is, as we shall see
in Chapter 10, they are probably unsolvable in polynomial time. We will
describe a backtracking algorithm for finding hamiltonian cycles, a search
technique often appropriate for nonpolynomial problems. We will also
describe an approximation algorithm for the euclidean version of the traveling
salesman problem.

MODEL: OPTIMAL SCHEDULES

The following problem can be solved by finding a shortest hamiltonian path
in a weighted digraph. Let {P i , i = 1,...,n} be a set of n processes, all of

which need a resource which they access sequentially. An ordered list of the
processes constitutes a process schedule. If a process P i is scheduled just

prior to process P j , a reset cost c ij is incurred in preparing the resource

to run P j . The cost of a schedule is defined as the total of the reset costs

summed over all the whole schedule. We can model the scheduling of the set
of processes and the reset costs as a weighted digraph G, where the
processes correspond to the vertices of the digraph and the weight of an
edge (i,j) equals the reset cost c ij . The cost of a process schedule then

corresponds to the total cost of the edges between successive processes of the
schedule. If we define an optimal schedule as a schedule of minimum cost, an
optimal schedule corresponds to a shortest hamiltonian path in G.

BASIC CONCEPTS

In general, it is difficult to determine if a graph has a hamiltonian cycle or
hamiltonian path, but there are some simple necessary and/or sufficient
conditions for a graph to be hamiltonian. The following theorem of Ore is
well-known.

THEOREM (ORE'S PATH AND CYCLE LENGTH CONDITION) Let G(V,E) be a graph of order

|V| ≥ 3, and suppose that for every pair of

nonadjacent vertices u and v in G

 deg(u) + deg(v) ≥ M,

for an integer M. If M equals |V|, G is hamiltonian, while if G is
connected, it contains a path of length M.

We shall prove the theorem in the special case that M equals |V| and leave the
generalization to the complete theorem to the reader. The proof is by
contradiction. Suppose the theorem does not hold for some order |V|. Let G
be a nonhamiltonian graph of order |V| = p which satisfies the conditions of
the theorem and has maximum size among all such graphs. Let u and v be
nonadjacent vertices in G. Then, G U (u,v) must be hamiltonian, and so there
must be a hamiltonian path P in G from u to v. Let the successive vertices
of P be u = u 1, u 2 ,..., u p = v. If u is adjacent to u i , then v cannot be

adjacent to ui-1. Otherwise, the sequence u 1, u 2 ,..., ui-1, v, up-1 ,...,

Page 45

ui , u 1 would determine a hamiltonian cycle in G, contrary to assumption.

Therefore, for every vertex in G that u is adjacent to, there is a vertex in G

that v is not adjacent to. That is, deg(v) ≤ |V| - 1 - deg(u), contrary to

the condition of the theorem. It follows that G must be hamiltonian, which
completes the proof.

We refer to Figure 1-38 for an example illustrating the sharpness of the
theorem. The conclusions of the theorem can be strengthened, for when M =
|V| the graph can be shown to have cycles of every order, unless |V| is even
and G is isomorphic to K(|V|/2,|V|/2).

 Figure 1-38 here

The Theorem of Ore provides a sufficient condition for the existence of a
hamiltonian cycle. The following theorem gives a necessary and sufficient
condition. First, we define the closure of a graph G(V,E) of order |V| as
the graph obtained from G by recursively inserting an edge between every
pair of nonadjacent vertices of degree sum at least |V| (or which becomes so
recursively as the result of adding edges).

THEOREM (CLOSURE CONDITION FOR HAMILTONICITY) A graph G(V,E) is hamiltonian if
and only if the closure of G is hamiltonian.

We refer to Figure 1-39 for an example of the closure operation. The final
graph is K(6), which is hamiltonian; so the original graph is hamiltonian.

 Figure 1-39 here

There is a simple condition for a digraph to have a hamiltonian path.

THEOREM (REDEI'S CONDITION) If G(V,E) is a digraph whose underlying graph is
complete, G has a directed hamiltonian path.

The proof is by an induction on the order of G. Assume the theorem is true for
digraphs with order at most p, and consider a digraph G of order p + 1. Let
u be any vertex in G. Then, by induction, the digraph G - u has a
hamiltonian path P: u 1 ,..., u p. By assumption, either (u, u 1) or (u 1, u) is

in G. If (u, u 1) is in G, then u, u 1 ,..., u p determines a hamiltonian path

in G, as required. If (u 1, u) is in G, let u i be the first vertex on P for

which (u,u i) is in G, if any. If u i exists, then u 1, u 2 ,..., ui-1, u, u i ,

ui+1 ,..., u p determines a hamiltonian path in G. Otherwise, u 1, u 2 ,..., u p,

u determines a hamiltonian path in G. This completes the proof.

There are interesting relations between hamiltonicity, connectivity,
planarity, and the powers of a graph. We call a graph G(V,E) hamiltonian
connected if there is a hamiltonian path between every pair of vertices in
G. A hamiltonian graph is necessarily hamiltonian connected, though not vice
versa. We have the following theorem.

THEOREM (HAMILTONIAN POWERS) If G(V,E) is one connected, the cube of G is
hamiltonian connected. If G(V,E) is two connected, the square of G is

Page 46

hamiltonian connected.

The square of the one connected graph in Figure 1-40 is nonhamiltonian,
proving the sharpness of the first condition in the theorem. Contrary to the
progression suggested by the theorem, it is not the case that if G is three
connected, G must be hamiltonian. Indeed, Figure 1-41 shows Tutte's famous
counterexample to the longstanding conjecture that even three connected
cubic planar graphs were necessarily hamiltonian.

 Figure 1-40 and 1-41 here

THEOREM (TUTTE'S CONDITION) If G(V,E) is four connected and planar, G is
hamiltonian.

BACKTRACKING ALGORITHM

Backtracking is a general technique for generating solutions to a
combinatorial problem by systematically extending partial solutions to the
problem. The technique is described in greater detail in Chapters 2 and 8.
We will use it here to find hamiltonian cycles in a graph G. We will assume
G is represented by the type adjacency matrix (with matrix ADJ), described
in Section 1-2.

The algorithm is stated in Find_Hamiltonian_Path(G). This finds all the
hamiltonian paths in a graph G(V,E) by repeatedly extending partial
hamiltonian paths. The successive vertices of the path are stored in an
array Path. Find_Hamiltonian_Path provides the driver logic for the
backtracking algorithm, while the procedure Next(Path,k) does the work of
getting the next candidate vertex for extending the path. Next returns, in
Path(k), the next vertex which is adjacent to the current endpoint of the
path, Path(k - 1), and which has an index higher than the current value of
Path(k). If there is no such vertex, Next returns the dummy index |V(G)| +
1. The new path is Path(1) ,..., Path(k - 1) 3 Path(k), where 3 denotes
path concatenation. We use an array Status to indicate if a vertex is on the
current path. Status(i) is 1 if vertex i is on the path, and 0 otherwise. To
simplify the implementation of Next, we use the conditional operator
or*, which leaves a later operand unevaluated if an earlier one is true.

Procedure Find_Hamiltonian_Paths (G)

(* Finds all hamiltonian Paths in G *)

var G: Graph
 k: 1..|V|
 Path(1..|V|): 0..|V| + 1
 Status(1..|V| + 1): 0..1
 No_More_Paths: Boolean

Set Path (1..|V|) to 0
Set Status (1..|V| + 1) to 0
Set k to 1

Page 47

Set No_More_Paths to False

repeat

 Next(Path, k)

case

 1: k < |V| and Path(k) ≤ |V| : Set k to k + 1

 2: k = |V| and Path(k) ≤ |V| : Display Path(1..|V|)

Set Status(Path(|V|)) to 0

 3: k > 1 and Path(k) > |V| : Set Path(k) to 0
Set Status(Path(k - 1)) to 0
Set k to k - 1

 4: k = 1 and Path(k) > |V| : Set No-More_Paths to True

until No-More_Paths

End_Procedure _Find_Hamiltonian_Paths

Procedure Next(Path,k)

(* Returns in Path(k) the next vertex adjacent to Path(k - 1)
 not currently on the path *)

var G: Graph
 k: 1..|V|
 Path(1..|V|): 0..|V| + 1
 Status(1..|V| + 1): 0..1

repeat

repeat Increment Path(k) until Status(Path(k)) = 0

until k = 1 or* Path(k) > |V| or* Adj(Path(k),Path(k-1)) = 1

if Path(k) ≤ |V| then Set Status(Path(k)) to 1

End_Procedure _Next

We refer to Figures 1-42 and 1-43 for an example.

 Figures 1-42 and 1-43 here

We can adapt the same procedure with minor variations to find a variety of
other combinatorial objects such as

Page 48

(1) Hamiltonian cycles,
(2) A longest path starting at a given vertex,
(3) A longest path between a given pair of vertices,
(4) A longest path between a given pair of vertices and which
 avoids a given set of vertices, and
(5) Paths of length at least k starting at a given vertex.

APPROXIMATE ALGORITHM

Let G(V,E) be a complete graph with positive weights assigned to each edge. We
denote the weight assigned to edge (i,j) by c(i,j). We will say G is a
euclidean graph if the edge weights satisfy the triangle inequality

 c(i,j) + c(j,k) ≥ c(i,k),

for every three vertices i, j, and k. For euclidean graphs, optimal
circuits are optimal cycles.

THEOREM (EUCLIDEAN HAMILTONIAN CYCLES) If G(V,E) is a euclidean graph, a
hamiltonian cycle on G of least cost is also a solution to the traveling
salesman problem on G.

The proof of the theorem is as follows. We will show that a least cost circuit
can always be transformed into a hamiltonian cycle of equal cost. Thus,
suppose C is a least cost circuit in G which is not a cycle. Then, C must
contain at least one multiply covered vertex u and so can be represented as
a sequence

 v 1- ... -u- ... -v i -u-v j - ... -v k-v 1.

If we replace the edges (v i ,u) and (u,v j) by the single edge (v i ,v j), then u

still lies on the modified cycle since u had already been spanned before
this occurrence of u. It follows from the triangle inequality that

 c(v i ,v j) ≤ c(v i ,u) + c(u,v j).

Therefore, replacement does not increase the cost of the circuit and the new
circuit remains closed and spanning. If we repeat this procedure for every
such vertex u that appears at multiple points on the circuit, we must
eventually obtain a simple, non-self-intersecting circuit, that is, a cycle.
By construction, the cycle is spanning and of minimum cost. This completes the
proof of the theorem.

Although it is computationally difficult to obtain an exact solution to the
traveling salesman problem, we can easily obtain a good approximation to an
optimal solution. Indeed, if the graph is euclidean, by the preceding
theorem we can even convert an approximately optimal circuit to an
approximately optimal hamiltonian cycle. We will assume that G is euclidean.

The procedure for an approximate solution to the traveling salesman problem on
G is as follows:

Page 49

(1) Construct a minimum weight spanning tree mst on G,
(2) Convert mst to an eulerian graph eul by doubling its edges,
(3) Construct an euler trail et on eul , and
(4) Apply the euclidean transformation to convert eul to a
 spanning cycle cyc .

The minimum weight spanning tree referred to in (1) can be efficiently
constructed using techniques described in Chapter 4. The doubling of the edges
in (2) transforms the graph into what is strictly speaking a multi-graph
(where parallel edges are allowed). Nonetheless, the standard results for
eulerian graphs developed in the preceding section still apply, whence
eul is eulerian and so contains an euler trail et . Then, in (4), we apply
the circuit-to-cycle transformation described previously. We refer to
Figure 1-44 for an example of the procedure. In the example, the approximately
optimal solution C 3 is actually optimal. It is easy to establish the

following bound on the error of the approximation.

 Figure 1-44 here

THEOREM (TSP ERROR BOUND) Let G(V,E) be a euclidean graph. Let S denote an
optimal solution to the traveling salesman problem on G and let cost(S) denote
its weight. Let cyc denote the spanning cycle constructed by the approximation
procedure we have described and let cost(cyc) denote its weight. Then,

 cost(cyc) ≤ 2 cost(S).

The proof is simple. The total weight of the spanning tree mst is certainly
less than or equal to the weight of an optimal circuit S since any spanning
circuit contains a spanning tree. Therefore, the weight of et is at most
twice the weight of mst . It follows that the cost of the spanning cycle cyc is
at most twice the cost of an optimal solution.

CHAPTER 1: REFERENCES AND FURTHER READING

Behzad, et al. (1979) is an excellent, detailed introduction to pure graph
theory. Wilson (1985) is a delightful briefer introduction to the subject.
Harary (1971) is classical and comprehensive. See Capobianco and Molluzzo
(1978) for a comprehensive collection of examples and counterexamples to
conjectures in graph theory. Roberts (1984) has many interesting examples of
the applications of combinatorics in general, and graphs in particular, as
does the older Busacker and Saaty (1965).

Gibbons (1985) is a very readable introduction to graph algorithms.
Reingold, Nievergelt and Deo (1977), Christofides (1975), and Papadimitriou
and Steiglitz (1982) cover combinatorial and graph algorithms, as do Gondran
and Minoux (1984) and Swamy and Thulasiraman (1981). Tarjan (1983) has
extensive discussions of efficient data structures for graph algorithms. For
data structures, see Standish (1980) and all the volumes of Knuth. Mc Hugh
(1986) gives an overview of data structures. Welsh (1983) reviews random
combinatorial algorithms and refers to Lovasz (1979). See also, Lovasz and
Plummer (1987) and the references given for matching in Chapter 8. See Bondy
and Murty (1976) for the algorithm of Demoucron, et al., as well as Demoucron,

Page 50

Malgrange, and Pertuiset (1964); also see Gibbons (1985) for a discussion. The
procedure for drawing a planar graph with straight line segments described
in the exercises is from Tutte (1963). The linear time planarity algorithm was
given in Hopcroft and Tarjan (1974).

CHAPTER 1: EXERCISES

(1) Let G(V,E) be a graph. Prove either G or G c is connected.

(2) What is the largest number of edges in a disconnected graph G of order
|V|?

(3) Show a graph of order |V| with more than |V| 2 / 4 edges cannot be
bipartite.

(4) Construct two nonisomorphic graphs with the same reachability matrix.

(5) What are the nonisomorphic graphs of order 5?

(6) Show G is bipartite if and only if its adjacency matrix can be rearranged
and partitioned into submatrices A ij (i, j = 1,2), where A 11 and A 22 are 0,

and A 12 and A 21 are transposes. Show G is disconnected if and only if its

adjacency matrix can be rearranged and partitioned into submatrices so that
A12 and A 21 are 0. What partitions are feasible if G has a cut-vertex? a

bridge?

(7) Define a perfect graph as a graph all of whose degrees are distinct.
Prove there is no nontrivial perfect graph.

(8) Design algorithms for converting from one graphical representation to
another, for adjacency matrix, edge list, and adjacency list.

(9) Design an algorithm for computing G - v, G - (u,v), G U {v}, and G U (u,v)
with respect to each representation.

(10) Write an algorithm that generates random graphs of given edge density,
that is, with a given value of 2|E|/(|V|(|V| - 1)).

(11) Write an algorithm that generates random connected r-regular graphs.

(12) Derive the O(|V| 4) estimate for the time required to calculate the
reachability matrix.

(13) Show there are only five regular planar graphs in which each face has the
same number of bounding edges.

(14) What can you say about a cubic graph that satisfies |E| = 2|V| - 3?

(15) Can a vertex be a cut-vertex in both G and G c?

(16) Let G(V,E) be a graph with weights on its edges. Prove that if
M1 has maximum edge weight among all matchings with k edges, and if p is an

Page 51

augmenting path with respect to M 1 of maximum edge weight, the matching M 2

obtained by augmenting M 1 using p has maximum edge weight among all matchings

with k + 1 edges.

(17) Prove the given alternating path algorithm does not work if the graph has
odd cycles by giving a counterexample.

(18) Prove that if M 1 and M 2 are edge disjoint matchings in a graph G(V,E),

there are matchings M 1' and M 2' such that 3M 1'3 = 3M 13 - 1, 3M 2'3 = 3M 23 + 1,

and M 1 U M 2 = M 1' U M 2'.

(19) Determine the performance of Demoucron's algorithm, assuming some
suitable data structures and using the known bounds on the size of planar
graphs.

(20) Use Demoucron's algorithm to establish the nonplanarity of K(3,3) and
K(5).

(21) Prove that for |V| ≥ 9, G or G c is non-planar; while for |V| < 8, G or

Gc is planar. The problem is difficult when |V| = 9 or 10.

(22) Design an O(|V| 6) algorithm to determine planarity using Kuratowski's
theorem.

(23) Embed K(5) on the Mobius strip.

(24) Construct a planar graph G with min(G) ≥ 5.

(25) Show that every planar graph of order at least 4 has at
least four vertices of degree at most 5.

(26) Prove there is no planar map with five regions in which every pair of
regions is adjacent.

(27) If G(V,E) is planar and girth(G) equals k ≥ 3,then |E| ≤ k(|V| - 2)/(k

- 2). Use this result to show that Petersen's graph is nonplanar.

(28) Let G(V,E) be a nonseparable planar graph. Prove that G is bipartite
if and only if the dual of G is eulerian.

(29) Represent K(10) as the union of three planar graphs.

(30) Carefully check that the eulerian trail algorithm is correct. Design an
alternative recursive implementation of the algorithm based directly on the
inductive proof of the Eulerian Characterization Theorem.

(31) Prove the Hamiltonian Closure Theorem.

(32) Prove the remaining part of Ore's Theorem.

(33) Modify the backtracking algorithm for hamiltonian paths so that it

Page 52

finds a hamiltonian path starting at a given vertex i and fails if there is
none. The algorithm should return the next hamiltonian path, with respect to
some ordering of the paths, each time it is called.

(34) Adapt the hamiltonian path algorithm so it allows one vertex to be
covered twice.

(35) Prove K(5,3) has neither a hamiltonian cycle nor path.

(36) Show Petersen's graph P(V,E) is not hamiltonian, but P - v is hamiltonian
for every vertex v in V(P).

(37) Suppose V is a set of people with |V| ≥ 4. Prove that if for every

subset X of 4 people in V, there is someone in X who knows everyone in X,
someone in V knows everyone in V.

(38) Implement the following procedure of Tutte (1963) for drawing any
planar three-connected graph (with straight lines!). Let C be a cycle which
bounds a region in some planar drawing of G. Place the vertices of C in
order at the vertices of a regular polygon. Then, place each of the other
vertices so that it is at the centroid of its adjacent vertices. Finally,
connect adjacent vertices by straight lines.

SECTION 1-1

 v 1 v 2 v 5

 o------o o
 | /| |\
 | / | | \
 | / | | \
 | / | | \
 | / | | \
 |/ | | \
 o------o o------o
 v 3 v 4 v 6 v 7

 V(G) =
{v 1,v 2,v 3,v 4,v 5,v 6,v 7}

 E(G) = { (v 1,v 2), (v 2,v 4), (v 2,v 3), (v 4,v 3),

 (v 3,v 1), (v 5,v 6), (v 6,v 7), (v 7,v 5) }

 Order (|V(G)|) = 7

 Size (|E(G)|) = 8

 Number of components = 2

 Figure 1-1. Example Graph G(V,E).

Page 53

 v 1 v 2 v 1 v 3

 o------------o o o
 | | |\ /|
 | | | \ / |
 | | | \/ |
 | | | /\ |
 | | | / \ |
 | | |/ \|
 o------------o o o
 v 4 v 3 v 4 v 2

 V 1 = {v 1, v 3} V 2 = {v 2, v 4}

 (a) Cyclic and Bipartite Presentations of C(4).

 v 1 v 2 v 3 v 1 v 5 v 3

 o---------o----------o o o o
 | | | |\ /|\ /|
 | | | | \ / | \ / |
 | | | | \/ | \/ |
 | | | | /\ | /\ |
 | | | | / \ | / \ |
 | | | |/ \|/ \|
 o---------o----------o o o o
 v 4 v 5 v 6 v 4 v 2 v 6

 V 1 = {v 1, v 3, v 5} V 2 = {v 2, v 4, v 6}

 (b) Different Presentations of a Bipartite Graph G(V 1, V 2, E).

 Figure 1-2. Bipartite and Nonbipartite Graphs.

 (1) P = X + Y

 (2) Q = Y div P

 (3) R = X * P

 (4) S = R - Q

 (5) T = R * P

 (6) U = T div S

 (a) Code Sequence.

Page 54

 U S Q P Y X R T
 o o o o o o o o

 o o o o o o

(6) / (4) - (2) / (1) + (3) * (5) *

 (b) Data Flow Diagram for (a).

 Figure 1-3. Bipartite Data Flow Model.

 v 1 v 2 v 1 v 4

 o-----------o o-----------o
 | | | |
 | | | |
 | G 1 | | G 2 |

 | | | |
 | | | |
 o-----------o o-----------o
 v 3 v 4 v 3 v 2

 Figure 1-4. Isomorphic Graphs.

 v 1 v 2 v 3

 o o o
 |\\ /|\ //|
 | \ \ / | \ / / |
 | \ \ | / / |
 | \/ \|/ \/ |
 | /\ /|\ /\ |
 | / / | \ \ |
 | / / \ | / \ \ |
 |// \|/ \\|
 o o o
 v 4 v 5 v 6

 (a) K(3,3).

Page 55

 w 1 w 4 w 2

 o----o----o
 |\ | /|
 | \ | / |
 | \ | / |
 | \|/ |
 | | |
 | /|\ |
 | / | \ |
 | / | \ |
 |/ | \|
 o----o----o
 w 5 w 3 v 6

 (b) G.

 Isomorphic Mapping from K(3,3) to G:

 v 1 ---> w 1

 v 2 ---> w 2

 v 3 ---> w 3

 v 4 ---> w 4

 v 5 ---> w 5

 v 6 ---> w 6

 Figure 1-5. A Pair of Isomorphic Graphs |
 v
 ------------o<-----------
 | |
 | |
 | |No
 | |
 v |
 Get Next 1-1 Vertex------> Is M Edge-preserving?
 Correspondence M |
 | |Yes
 |No More |
 v v
 Non-isomorphic Isomorphic
 | |
 | |
 ----------->o<-----------
 |
 v
 Figure 1-6. Exhaustive Search Algorithm for Isomorphism.

Page 56

 o-------------o
 |\ /|
 | \ / |
 | \ / |
 | o-----o |
 | | | |
 | | | |
 | | | |
 | o-----o |
 | |
 | |
 | |
 o-------------o

 (a) G 1.

 o-------------o
 |\ |
 | \ |
 | \ |
 | o-----o |
 | | | |
 | | | |
 | | | |
 | o-----o |
 | \ |
 | \ |
 | \|
 o-------------o

 (b) G 2.

 Figure 1-7. G 1 isomorphic to G 2?

 v 1 v 2

 o--------o
 /| |\
 / | | \
 / | | \
 v 3 o---|--------|---o v 4

 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 v 5 o---|--------|---o v 6

 \ | | /
 \ | | /
 \| |/
 o--------o
 v 7 v 8

 (a) G 1.

Page 57

 w 1 w 2 w 3 w 4

 o----------o---------o---------o
 |- \ / - |
 | - \ / - |
 | - \ / - |
 | - \ / - |
 | - \/- |
 | - /\ - |
 | - / \ - |
 | - / \ - |
 | - / \ - |
 |- / \ -|
 o---------o----------o---------o
 w 5 w 6 w 7 w 8

 (b) G 2.

 Figure 1-8. G 1 Isomorphic to G 2?

SECTION 1-2

 v 1 v 2

 o--------->o
 / ^
 / /
 / /
 v /
 o--------->o-------->o
 v 3 v 4 v 5

 (a) Digraph G.

 ADJ(v 1): v 2-->v 3

 ADJ(v 2): Nil

 ADJ(v 3): v 4

 ADJ(v 4): v 2-->v 5

 ADJ(v 5): Nil

 (b) Adjacency Lists for G.

 Figure 1-9. Adjacency List Representation for a Digraph.

Page 58

 -------- ---- ----
 | | --|-->| v 2 | | v 3 |

 | v 1 | | |----| |----|

 | | | | ---|--->| ---|---|
 | | | ---- ----

 | | |
 | v 2 | --|--|

 | | |
 | | |
 -------- ----
 | | --|-->| v 4 |

 | v 3 | | |----|

 | | | | ---|---|
 | | | ----
 -------- ---- ----
 | | --|-->| v 2 | | v 5 |

 | v 4 | | |----| |----|

 | | | | ---|--->| ---|---|
 | | | ---- ----

 | | |
 | v 5 | --|--|

 | | |
 | | |

 (a) Linear Array Representation for G.

 -------- ---- ----
 | | --|-->| v 2 | | v 3 |

 | v 1 | | |----| |----|

 |---- ---| | ---|--->| ---|---|
 | | | ---- ----
 ----|---
 v

 | | |
 | v 2 | --|--|

 |----|---|
 | | |
 ----|---
 v
 -------- ----
 | | --|-->| v 4 |

 | v 3 | | |----|

 |---- ---| | ---|---|
 | | | ----
 ----|---
 |
 v

Page 59

 -------- ---- ----
 | | --|-->| v 2 | | v 5 |

 | v 4 | | |----| |----|

 |----|---| | ---|--->| ---|---|
 | | | ---- ----
 ----|---
 v

 | | |
 | v 5 | --|--|

 |---- ---|
 | | |
 ----|---
 |
 -

 (b) Linked Linear List Representation for G.

Page 60

 ENTRY POINT---
 |
 |
 v
 -------- ---- ----
 | v 1 | --|-->| --|--->| ---|---|

 | | | |----| |----|
 ---- --- | | | | | |
 -|-- --|-
 | ------
 | /
 -------- <---- /
 ---->| | | /
 | | v 2 | --|--| /

 | ---- --- /
 | /
 | /
 | /
 | -------- v ----
 | | | --|-->| ---|---|
 | | v 3 | | |----|

 | ---- --- |/ |
 | /----
 | /
 | /
 | -------- v ---- ----
 | | | --|-->| ---|--->| --|-->
 | | v 4 | | |----| |----|

 | ---- --- | | | | | |
 | --|- --|-
 --------------------- |
 |
 -------- <---------------
 | | |
 | v 5 | --|--|

 ---- ---

 (c) Pure Linked Representation for G.

 Figure 1-10. Different Vertex Organizations for Adjacency Lists.

Page 61

 ENTRY POINT---
 |
 |
 v ADJ(v 1) ...

 -------- ----
 | v 1 | --|-->| --|---> ...

 | | | |----|
 ---- --- | | |
 ^ -|-- Shared Edge Rep.
 | --------------------> -----------
 ----------------------------------|----- |From|
 |-----------
 ----------------------------------|----- |To |
 | -----------
 v ADJ(v 2) ...

 -------- ---- ^
 | | --|-->| ---|---> ... |
 | v 2 | | |----| |

 ---- --- | | | |
 --|- |
 | |

 Figure 1-11. Shared Representation for Pure Linked Organization.

SECTION 1-3

 v 1 v 2 v 3

 o---------o----------o
 | | |
 | | |
 M| M| |
 | | |
 | | |
 | | |
 o---------o----------o
 v 4 v 5 v 6

 Alternating Path: v 4-v 1-v 2-v 5-v 6

 Alternating Path: v 4-v 1-v 2-v 5

 Non-Alternating Path: v 4-v 1-v 2-v 3

 Figure 1-12. Alternating Paths.

Page 62

 v
 ------------o<-----------
 | |
 | |
 v |
 Get Next Cycle C ------------> 3V(C)3 Odd?
 | |
 |No More |Yes
 v v
 Bipartite NonBipartite
 | |
 | |
 ----------->o<-----------
 |
 v

Figure 1-13. Exhaustive Search Algorithm for Testing

 Bipartiteness.

SECTION 1-4
 v 1

 o
 /|\
 / | \
 / | \
 / | \
 / | \
 / | \
 / |v 6 \

 / o \
 / v 10 / \ v 7 \

 v 5 o-------o--------/---\---------o------o v 2

 \ / \ /
 \ \ / \ / /
 / \ / \
 \ / / \ /
 / / \ \
 \ / / \ \ /
 v 9 o o v 8

 \ / \ /
 / \
 \ / \ /
 v 4 o-------------------------o v 3

 Figure 1-14. Petersen's Graph: The Unique Five-Cage.

Page 63

 o-----------o
 / \
 / \ / \
 / \
 o \ / o
 / \
 / \ / \
 / / \ \
 o----\-------------------------/----o
 | / \ |
 | \ / |
 | / \ |
 | |
 o \ / \ / o
 | \ / |
 | \ / \ / |
 | \ / |
 | / \ / \ |
 | \ / |
 o / \ / \ / \o
 \ / \ /
 \ / \ /
 \o/ \ / \ o/
 \ /
 \ /
 \ \ / /
 o-----------o

 Figure 1-15. Heawood's Graph: The Unique Six-Cage.

SECTION 1-5-1

 v 1 v 2 v 3

 o o o
 |\ / \ /
 | \/ \ /
 | \/ \/
 | /\ /\
 | /\ / \
 |/ \ / \
 o o o

 v 4 v 5 v 6

 Figure 1-16. Bigraph.

Page 64

 s
 o
 /|\
 / | \
 / | \
 / | \

 / | \
 v 1 v v v 2 v v 3

 o o o
 |\ /\ /

 | \ / \ /
 | \/ \/
 | /\ /\
 | / \ / \
 vv v v v
 o o o

 v 4 \ |v 5 / v 6

 \ |/ /
 \ | /
 \ | /
 \ | /

 \ | /
 vvv

 o
 t

 Figure 1-17. Flow Network with Unit Capacity Edges.

SECTION 1-5-2

 M M
 o------o-------o------o-------o------o
 v 0(free) v 1 v 2 v 3 v 4 v 5(free)

 (a) Augmenting Path.

 M M M
 o-------o------o-------o------o-------o
 v 0 v 1 v 2 v 3 v 4 v 5

 (b) After Augmentation.

 Figure 1-18. Application of an Augmenting Path.

Page 65

 Root(O): Free
 o
 / \
 / \
 / \
 v 1(I) o o v 3(I)

 | |
 M | M |
 | |
 v 2(O) o o v 4(O)

 / \ \
 / \ \
 / \ \
 v 5(I) o v 7(I)o o v 9(-): Free

 | |
 M | M |
 | |
 o o
 v 6(O) v 8(O)

 Notation: Inner - I, Outer - O.

 Figure 1-19. Search Tree.

 Outermost vertex of (u,x)

 |
 -----------------|----
 | Search | |
 | Tree v |
 | u x | y z
 | o-------o----|----o---------o
 | M | M
 | |
 | |

 Figure 1-20. Extension of Search Tree Using the
 Pair of Edges (x,y) U (y,z).

Page 66

 M y (free)
 o-------o-------o-------o
 | |\ |
 M | | \ |
 | | \ |
 | | \ w |
 o-------o o o
 x (free) z (free)
 (free)

 (a) Matching in G.

 M y (free)
 o o-------o-------o
 | |
 M | |
 | |
 | |
 o-------o
 x
 (free)

 (b) Augmenting Tree at x.
 M
 o-------o-------o-------o
 | |\ |
 M | M | \ |
 | | \ |
 | | \ w |
 o-------o o o
 (free) z (free)

 (c) Revised Matching in G.

 u (inner)
 o o
 | |\
 M | M | \
 | | \
 | | \ w
 o-------o o (free)

 (d) Hungarian Tree H at w.
 o-------o
 M |
 |
 |
 |
 o z (free)

 (e) G - H (also Hungarian).

 Figure 1-21. Maximum Matching on Bipartite Graph.

Page 67

SECTION 1-5-3

 v 1

 o
 / \
 / \
 x 12 / \ x 13

 / \
 / \
 / \
 o-------------o
 v 2 x 23 v 3

 Figure 1-22. Maximum Matching Problem.

 SECTION 1-5-4

 x
 -----------o v 2

 | |
 | |
 v 1 o | z

 | |
 | |
 | y |
 -----------o v 3

 (a) Example Graph K(3).

 0 x y

 -x 0 z

 -y -z 0

 (b) Tutte matrix.

 +xyz - xyz = 0

 (c) Expanded Determinant.

 Figure 1-23. Symbolic Determinant Example 1.

Page 68

 x
 v 1 o--------------o v 2

 | |
 | |
 z | | w
 | |
 | y |
 v 3 o------------->o v 4

 (a) Example Graph C(4).

 0 x z 0

 -x 0 0 w

 -z 0 0 y

 0 -w -y 0

 (b) Tutte matrix.

 -2xyzw + x 2 y 2 + w 2 z 2

 (c) Expanded determinant.

 Figure 1-24. Symbolic Determinant Example 2.

SECTION 1-6

 o-----o
 |\ /|
 | \ / |
 | \ |
 | / \ |
 |/ \|
 o-----o

 (a) Non-Planar Embedding of K(4).

Page 69

 | |
 | o-----o
 | |\ |
 | | \ |
 | | \ |
 | | \ |
 | | \|
 ----o-----o

 (b) Planar Embedding of K(4).

 Figure 1-25. Different Embeddings of K(4).

 ^
 --------------- |
 | | | x Region II
 | | |
 | -----------o o--
 | | | /| | |
 | | o | / | |
 | | /|\ | / |x |
 | | / | \ | / | |
 | | / | \ | / v |
 | | / | \ | / |
 | |/ | \|/ |
 | o o o |
 | u / \ Region I |
 | / \ |
 ------- --------------

 Figure 1-26. Attempted Planar Embedding of K(3,3).

 Area 1: 2, 4, 6

 Area 2: 1, 3, 4, 5, 6

 Area 3: 2, 5, 6

 Area 4: 1, 2, 5, 6

 Area 5: 2, 3, 4, 6

 Area 6: 1, 2, 3, 4, 5

 (a) Area Adjacency Requirements.

Page 70

 | |
 | v 1 |

 | -----o----- |
 | | | | |
 | | | | |
 | | | v 4 | |

 | | o | | |
 | | /|\ | |
 | | / | \ | |
 | | / | \ | |
 | | / | \ | |
 | |/ | \| |
 ----o | o-----
 v 6 |\ | /| v 2

 | \ | / |
 | \ | / |
 | \ | / |
 | \|/ |
 | o v 5 |

 | | |
 | | |
 | | |
 -----o-----
 v 3

 (b) Graphical Representation of Adjacency Requirements.

 | w 1 | w 8 (Exterior)

 | |
 | -----o----- |
 | | | | |
 | | | | |
 | | w 3 | w 2 | |

 | | o | | |
 | | /|\ | |
 | | / | \ | |
 | | / | \ | |
 | | / | \ | |
 | |/ w 4 | w 5 \| |

 ----o | o-----
 |\ | /|
 | \ | / |
 | \ | / |
 | \ | / |
 | \|/ |
 | w 6 o w 7 |

 | | |
 | | |
 | | |
 -----o-----

Page 71

 ADJ(w 1): w 2, w 3, w 8

 ADJ(w 2): w 1, w 3, w 5

 ADJ(w 3): w 1, w 2, w 4

 ADJ(w 4): w 3, w 5, w 6

 ADJ(w 5): w 2, w 4, w 7

 ADJ(w 6): w 4, w 7, w 8

 ADJ(w 7): w 5, w 6, w 8

 ADJ(w 8): w 1, w 6, w 7

 (c) Planar Dual Data.

 w 8 w 1

 ------o-----------o-------
 | | | |
 | | | A 3 |

 | | | |
 | | A 2 w 2 o-------o w 3

 A 6 | A 1 | | |

 | | | |
 | | | |
 | w 7 o-----------o w 5 |

 | | | |
 | | A 4 | A 5 |

 | | | |
 | | | |
 ------o-----------o-------
 w 6 w 4

 (d) Planar Representation of Dual Graph.

 Figure 1-27. Planar Dual and Adjacency Constraints.

Page 72

 v 1

 o
 /|\
 / | \
 / | \
 / | \
 / | \
 / | \
 / |v 6 \

 / o \
 / v 10 / \ v 7 \

 v 5 o-------o--------/---\---------o------o v 2

 \ / \ /
 \ \ / \ / /
 / \ / \
 \ / / \ /
 / / \ \
 \ / / \ \ /
 v 9 o o v 8

 \ / \ /
 / \
 \ / \ /
 v 4 o-------------------------o v 3

 Figure 1-28. Petersen's Graph: Nonplanar.
 v 1 (1)

 o
 /|\
 / | \
 / | \
 / | \
 / | \
 / | \
 / |v 6 \

 / o \
 / v 10 / (1) v 7 \

 (2) v 5 o-------o--------/-------------o------o v 2 (2)

 / /
 \ / / /
 / /
 \ / / /
 / /
 \ / / /
 v 9 o

 \ / (2) /
 /
 \ / /
 (1) v 4 o-------------------------o v 3

 Figure 1-29. Subgraph of Petersen's Graph Homeomorhic to K(3,3).

Page 73

 | |
 | Face f of R |
 | |
 | ----------- |
 | | Part p | |
 | | of G - R | |
 | | | |
 c 1 o---------o - - - - - o----------o c 2

 | q 1 | q 2 | q 3 |

 | | | |
 | --o-------- |
 | | |
 | | |
 ------------o-------------------

 c 3

 Contact Vertices: c 1, c 2, c 3

 Path q: q 1 U q 2 U q 3

 Figure 1-30. Addition of Path q to R.

 v 1

 o
 /|\
 / | \
 / | \
 / | \
 / | \
 / | \
 / |v 6 \

 / o \
 / \ \
 v 5 o \ o v 2

 \
 \ \ /
 \
 \ \ /
 \
 \ \ /
 o v 8

 \ \ /
 \
 \ \ /
 v 4 o-------------------------o v 3

 Figure 1-31. Second R Construct for Petersen's Graph.

Page 74

 v 6(R)

 o
 /
 /
 /
 v 10(p) / v 7(p)

 v 5(R) o-------o-------/-------------o------o v 2(R)

 \ / /
 \ / /
 / \ /
 / /
 / / \
 / / \
 v 9(p) o o v 8(R)

 /
 /
 /
 /
 v 4(R) o

 V(p): v 7, v 9, v 10

 Contact Vertices of p: v 6, v 5, v 4, v 8, v 2

 Faces of R:

 f 1: {v 1, v 5, v 4, v 3, v 8, v 6}

 f 2: {v 1, v 2, v 3, v 8, v 6}

 f 3: (v 1, v 2, v 3, v 4, v 5}

 Figure 1-32. A Unique Part p Relative to R.

Page 75

 1

 o----------------o
 |\ /|
 | \ 2 / |
 | \ / |
 | o--------o |
 | | | |
 | 5 | 6 | 3 |
 | | | |
 | | | |
 | o--------o |
 | / \ |
 | / 4 \ |
 |/ \|
 o----------------o

 |V| = 8, |E| = 12, |F| = 6

 Figure 1-33. Illustration for |V| + |F| = |E| + 2.

 New
 o--------o--------o <--Vertex
 | | ^
 | | |
 | | |New
 | | |Edge
 | | |
 o--------o

 (a) |V| and |E| Both Increase by 1.

 Split
 Face
 o---------o---------o
 | | 3
 | | 3
 | | Split 3 <--- New Edge
 | | Face 3
 | | 3
 o---------o---------o

 (b) |F| and |E| Both Increase by 1.

 Figure 1-34. The Different Effects of Adding an Edge.

Page 76

 --
 | ^ |
	x
	y
-----------o o------------->	
	o
	/
	/
	/
	/
y	/
-------->o	o
o-------------	
^	
	x
 --

 Figure 1-35. Embedding of K(3,3) on Torus.

 Section 1-7

 o o
 / \ / \
 / \ / \
 / \ / \
 o-------o o-------o o-------o
 |\ /| |\ /| |\ /|
 | \ / | | \ / | | \ / |
 | \ / | | \ / | | \ / |
 | \ | | \ | | o |
 | / \ | | / \ | | / \ |
 | / \ | | / \ | | / \ |
 |/ \| |/ \| |/ \|
 o o o-------o o-------o

 (a) Eulerian (b) Semieulerian (c) Noneulerian

 Figure 1-36. Example Graphs.

Page 77

 c
 o
 / \
 / \
 / \
 d o o b
 \ /
 \ /
 \ /
 o a
 / \
 / \
 / \
 g o o e
 \ /
 \ /
 \ /
 o
 f

 Figure 1-37. Fleury Example.

SECTION 1-8

 v 1 v 2

 o o
 |\ /|
 | \ / |
 | \ / |
 | \ / |
 | o v 3 |

 | / \ |
 | / \ |
 | / \ |
 |/ \|
 o o
 v 4 v 5

 Figure 1-38. Sharpness of Ore Hamiltonian Condition.

Page 78

 v 1

 o
 / \
 // \\
 / \
 / / \ \
 / \
 / / \ \
 / \
 / / \ \
 / \
 / / \ \
 v 2 o o v 3

 | / \ |
 | |
 | / \ |
 | |
 | / \ |
 | |
 | / \ |
 | |
 |/ \|
 | |
 |/ \|
 v 4 o o v 5

 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 o
 v 6

 (a) Graph G whose Closure is to be Found.

Page 79

 v 1

 o
 /|\
 //|\\
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 v 2 o | o v 3

 | / | \ |
 | | |
 | / | \ |
 | | |
 | / | \ |
 | | |
 | / | \ |
 | | |
 |/ | \|
 | | |
 |/ | \|
 v 4 o----------|----------o v 5

 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \|/
 o
 v 6

 (b) First Closure Iteration.

Page 80

 v 1

 o
 /|\
 //|\\
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 v 2 o | o v 3

 |\ / | \ /|
 | \ | / |
 | /\ | /\ |
 | \ | / |
 | / \ | / \ |
 | | |
 | / / | \ \ |
 | / | \ |
 |/ / | \ \|
 | / | \ |
 |/ | \|
 v 4 o----------|----------o v 5

 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \ | /
 \|/
 o
 v 6

 (c) Second Closure Iteration.

Page 81

 v 1

 o
 /|\
 //|\\
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 / | \
 / / | \ \
 v 2 o----------|----------o v 3

 |\ / | \ /|
 |\ \ | / /|
 | /\ | /\ |
 | \ \ | / / |
 | / \ | / \ |
 | \ | / |
 | / / | \ \ |
 | \ / | \ / |
 |/ / | \ \|
 | / \ | / \ |
 |/ | \|
 v 4 o-----\----|----/-----o v 5

 \ | /
 \ \ | / /
 \ | /
 \ \ | / /
 \ | /
 \ \ | / /
 \ | /
 \ \|/ /
 \ | /
 \|/
 o
 v 6

 (d) Third Closure Iteration.

 Figure 1-39. Hamiltonian Closure Condition.

Page 82

 o o
 \ /
 \ /
 o o
 \ /
 \ /
 o
 |
 |
 o
 |
 |
 o

 Figure 1-40. One Connected Graph with Nonhamiltonian Square.

 -------o----------o-----------o------
 | \ | / |
 | \ | / |
 | o--o----o-----o--o |
 | \ \ / / |
 | \ \ / / |
 | o--o-o--/ / |
 | \ | / |
 | \ | / |
 | o-o--o |
 | \ / |
 | o- |
 | | |
 o---o--------o--o--o--o--o----o---o---o
 | | / / \ \ | | |
 | | / / \ \ | | |
 | o---o-o--o o--o o---o |
 | | | / \ \| | |
 o---o o / \ o o---o
 | | /| / \ \ | |
 | | / |/ \ \ | |
 | |/ o \ \| |
 | o / \ o |
 | | / \ | |
 | |/ \| |
 | o o |
 | / \ |
 | / \ |
 |/ \|
 o-------------------------------------o

 Figure 1-41. Cubic Planar Three-Connected but Nonhamiltonian.

Page 83

 o-------o---.......----o-------o
 v i1 v i2 vk-1 v k

 Path(1) = v i1

 Path(2) = v i2

 .
 .
 Path(k - 1) = vk-1
 Path(k) = v k

 Figure 1-42. Path Notation for Backtracking.

 v 1 v 2

 o o------
 |\ /| |
 | \ / | |
 | \ / | |
 | \ / | |
 | o v 3 | |

 | / \ | |
 | / \ | |
 | / \ | |
 |/ \| |
 o---o v 6 o |

 v 4 | v 5 |

 | |

 (a) Example for Backtracking Algorithm.

 v 1

 v 1 v 3

 v 1 v 3 v 2

 v 1 v 3 v 2 v 4

 v 1 v 3 v 2 v 4 v 6 * Backup

 v 1 v 3 v 2 v 4 * Backup

 v 1 v 3 v 2 v 5

 v 1 v 3 v 2 * Backup

 v 1 v 3 v 4

 v 1 v 3 v 4 v 2

 v 1 v 3 v 4 v 2 v 5

 v 1 v 3 v 4 v 2 * Backup

 v 1 v 3 v 4 v 6

 v 1 v 3 v 4 *

 v 1 v 3 v 5

 v 1 v 3 v 5 v 2

Page 84

 v 1 v 3 v 5 v 2 v 4

 v 1 v 3 v 5 v 2 v 4 v 6 Hamiltonian Path

 * Indicates a deadend entailing backup.

 (b) Trace of Backtrack Algorithm.

 Figure 1-43. Example for Find_Hamiltonian_Path.

 v 1

 o
 / \
 // \\
 / \
 / / \ \
 1 / 2 2 \ 1
 / / \ \
 / \
 / / \ \
 / 1 \
 v 2 o----/---------\----o v 3

 |\ /|
 | \/ \/ |
 | \ / |
 3| / \ / \ |2
 | 2 / \ 2 |
 | / / \ \ |
 | / \ |
 v 4 o-------------------o v 5

 1

 (a) Graph G with Euclidean Weights.

 v 1

 o
 /
 1 /
 /
 /
 / 1
 v 2 o---------o v 3

 \
 \
 \ 2
 \
 \
 v 4 o---------o v 5

 1
 (b) Minimum Spanning Tree for G.

Page 85

 Length

 C 0: v 1 v 2 (v 3 v 2 v 5) v 4 v 5 v 2 v 1 10

 C 1: v 1 v 2 v 3 v 5 (v 4 v 5 v 2) v 1 9

 C 2: v 1 v 2 v 3 v 5 (v 4 v 2 v 1) 9

 C 3: v 1 v 2 v 3 v 5 v 4 v 1 7

 (c) Successive Euclidean Reductions of Initial Circuit C 0.

 Figure 1-44. Euclidean TSP Approximation Example.

