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Summary. In this paper we construct sets of type (d1, d2) in the projective Hjelmslev plane.
For computational purposes we restrict ourself to planes over Zps with p a prime and s > 1,
but the method is described over general Galois rings. The existence of sets of type (d1, d2)
is equivalent to the existence of a solution of a Diophantine system of linear equations. To
construct these sets we prescribe automorphisms, which allows to reduce the Diophantine
system to a feasible size. At least two of the newly constructed sets are ’good’ u−arcs. The
size of one of them is close to the known upper bound.
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1 Introduction and Motivation

The projective Hjelmslev plane over a Galois ring is a generalization of the projective
plane over a finite field GF (q) with field size q a power of a prime p. Similar to the
finite field case the Galois ring GR(ps, psm) is defined for positive integers s,m as
the ring Zps [x]/(h) where h is a monic polynomial of degree m over Zps which is
irreducible over Zp. For different choices of the polynomial h, the resulting Galois
rings are isomorphic.

Two limiting special cases of Galois rings are the finite fields GF (q) which are
isomorphic to GR(p, q) and the modular integers Zps which are isomorphic to
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GR(ps, ps). Basic facts about Galois rings can be found in [21]. For computational
purposes we will restrict us to Zps in this paper.

To construct the projective Hjelmslev plane we define the points as the free rank 1
submodules of GR(ps, psm)3. The lines are the free submodules of rank 2. The in-
cidence is given by set inclusion. In general this construction works for the larger
class of chain rings R, the corresponding projective Hjelmslev plane is denoted by
PHG(2, R). In this paper the ring R is always a Galois ring. Much more on projec-
tive Hjelmslev planes can be found in the work of Honold, Landjev and their cowork-
ers [12, 13, 17, 16]. A useful tool is the homomorphism φ : Zps+1 → Zpswhich maps
an representing element from Zps+1 to its remainder modulo ps. φ can be extended
to a mapping φ̂ : PHG(2, GR(ps+1, p(s+1)m)) → PHG(2, GR(ps, psm)). This
function maps points to points and lines to lines. It allows to define a neighborhood
of a point (or a line) in PHG(2, GR(ps+1, p(s+1)m)) as the set of points (or lines)
having the same image under φ̂.

For two nonnegative integers d1 and d2 a set C of type (d1, d2) (also called two-
intersection set) in a projective Hjelmslev plane is a set of points such that every
line of the plane contains either d1 or d2 points of C. We always assume d1 < d2.
In the case of a finite field the problem of sets of type (d1, d2) has been studied in
a large number of papers (e.g. [10, 9, 11, 18, 19, 20]). They also study the more
general case of point sets in PG(k, q) with two intersection numbers with respect to
the hyperplanes.

The interest in such point sets in the projective plane comes from the fact that they
include hyperovals, some maximal arcs, unitals and Baer subplanes [11]. In the gen-
eral case of the projective space PG(k, q) with k > 2 the sets of type (d1, d2) have
been also studied in the equivalent language of linear codes. Then these point sets are
two-weight codes. For a survey see [8]. In coding theory one is interested in a high
minimum distance for a fixed length n of the code, this corresponds to a point set
with n points and intersection numbers as low as possible. There are cases where the
best (for coding theory) point sets are such of type (d1, d2). More on the connection
between linear codes and projective geometry can be found in [1, 3].

Also in the case of a projective Hjelmslev plane over a Galois ring there are links to
coding theory. There are famous codes like the Nordstrom-Robinson-Code which are
’better’ than the linear codes which are connected to PG(k, q). These better codes
are Z4−linear codes. To describe these Z4−linear codes using projective geometry
we need the projective Hjelmslev geometry. Now the hope is to find more good codes
studying PHG(k, GR(ps, psm)) in general.

2 Parameters

There are several relations connecting the two parameters of the set C of type
(d1, d2) to the number of lines and points in PHG(2, GR(ps, psm)). These will
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allow to restrict the search to the cases of feasible pairs of parameters. We denote by
t1 and t2 the number of lines intersecting with d1 points respectively d2 points from
the set C. For a projective Hjelmslev plane over GR(ps, psm) with point set P and
line set L we know with q := pm :

Lemma 1. ([16] Fact 1)

1. |L| = |P | =(q2 + q + 1)q2(s−1)

2. Each line (point) is incident with (q + 1)qs−1 points (lines).

The first equations show that the numbers of lines and points in a Hjelmslev plane
over a Galois ring is a multiple of the number of points and lines in PG(2, q). It is
possible to get the Hjelmslev plane by substituting one point of PG(2, q) by q2(s−1)

points building a neighborhood in PHG(2, GR(ps, psm)). Using the lemma above
we can derive the following relations with c = |C| :

1. t1 + t2 = (q2 + q + 1)q2(s−1)

2. d1t1 + d2t2 = c(q + 1)qs−1

These two equations give restrictions on possible values of d1 and d2 as t1 and
t2 have to be integral numbers. In the case s = 1 (i.e. finite field) there is a third
relation, which we get by counting the number of pairs of different points in C
in two ways:

3. d1(d1 − 1)t1 + d2(d2 − 1)t2 = c(c− 1)

The right hand is the number of different pairs in C. The left hand side we get when
we look at the unique line corresponding to the pair of points. In t1 cases this is a
line having intersection number d1. Counting the possible pairs in C corresponding
to this line we get the first summand. This last equation can not easily be generalized
to an s greater than 1 as the number of lines through a pair of different points from
C depends then on the neighbor relation between the two points. There may be more
than one line through two points, which changes relation 3 into an inequality.

In general it is possible to construct new sets of type (d1, d2) over PHG(2, GR(ps+1, p(s+1)m))
using two-intersection sets in PHG(2, GR(ps, psm)). A useful starting point for
these recursive constructions are the single points and complete lines in PG(2, p)
which is isomorphic to PHG(2, GR(p, p)) or a single point in an arbitrary projec-
tive Hjelmslev plane.

Lemma 2. (Recursive construction)

Let S be a set of type (d1, d2) over GR(ps, psm), then there is a set of type (pd1, pd2)
over GR(ps+1, p(s+1)m).
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Proof. The key is the function φ̂: PHG(2, GR(ps+1, p(s+1)m)) →PHG(2, GR(ps, psm)).
It maps two-intersection sets to two-intersection sets. Each element in S is re-
placed by the p2 elements of the complete neighborhood (the preimages under φ̂)
in PHG(2, GR(ps+1, p(s+1)m)). The t1 lines intersecting in d1 points are mapped
to p2t1 lines intersecting in pd1 points, and the t2 lines intersecting in d2 points are
mapped to p2t2 lines intersecting in pd2 points.

Example 1. Take a line in the Fano plane PG(2, 2) = PHG(2, GR(2, 2)). This is a
set of type (1, 3) with t1 = 6 and t2 = 1 and order 3. From this we construct a set of
type (2, 6) in PHG(2, GR(4, 4)) with t1 = 24 and t2 = 4 and order 12.

3 Constrution of Sets of Type (d1, d2)

The set P of points and the set L of lines of a projective Hjelmslev plane PHG(2, GR(ps, psm))
define an incidence system. Denote by M the corresponding incidence matrix. The
rows are labeled by the lines, the columns are labeled by the points, then we have for
a point p and a line l:

Ml,p :=
{

1 if p is incident with l,
0 otherwise.

It is then possible to state the existence of a (d1, d2) using a Diophantine system of
equations:

Theorem 1.

There is a set of type (d1, d2) in PHG(2, GR(ps, psm)) if and only if there is a
0/1−solution x = (x1, . . . , x|P |)T of the following system of equations

Mx =

d1 or d2

...
d1 or d2

 .

This set of equation has to be read as follows: A solution x has the property that the
product of a single with x is d1 or d2. As we want to solve this Diophantine system
using some standard method we restate it as a linear equation as follows. Denote by
D the matrix of the same size as M with (d1 − d2) on the diagonal and 0 elsewhere.
We denote by (M |D) the block matrix built from the incidence matrix M and the
matrix D :

(M |D) :=


m1,1 m1,2 m1,|P | d1 − d2 0 . . . 0 0
m2,1 m2,2 m2,|P | 0 d1 − d2 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...
. . . 0 0 . . . d1 − d2 0

m|L|,1 m|L|,2 m|L|,|P | 0 0 . . . 0 d1 − d2

 .
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Corollary 1.

There is a set of type (d1, d2) in PHG(2, GR(ps, psm)) if and only if there is a
0/1−solution x|y = (x1, . . . , x|P |, y1, . . . , y|L|)T of the following system of equali-
ties

(M |D)(x|y) =

d1

...
d1

 .

Given the solution it is possible to read off if a line l intersects with d1 points. This
is the case if yl = 0, or with d2 points, in this case yl = 1.

The size of this problem is given by the number of points. In general this number is
growing too fast. To handle also larger cases we apply the following method. We
no longer look for an arbitrary set of type (d1, d2). We are now only interested
in a set which has a prescribed group G < PGL(2, GR(ps, psm)) of automor-
phisms. An automorphism ϕ of a point set C = {c1, . . . , cn} is an element from
PGL(2, GR(ps, psm) such that C = {ϕ(c1), . . . , ϕ(cn)}.
The main advantage of this method is that the size of the system of equations is much
smaller, it will only have the size equal to the number of orbits of G on the points of
PHG(2, GR(ps, psm)). We can summarize this construction as a two-step process:

• In a first step the solution of a construction problem is described as a solution of
a Diophantine system of linear equations.

• In a second step the size of the linear system is reduced by prescribing automor-
phisms.

This construction method is a general approach that works for many discrete struc-
tures as designs [15, 2], q-analogs of designs [6], arcs in projective geometries [7] or
linear codes [1, 4, 5]. The general method is as follows: The matrix M is reduced by
adding up columns (labeled by the points of PHG(2, GR(ps, psm)) corresponding
to the orbits of G. Now because of the relation

p ∈ l ⇐⇒ ϕ(p) ∈ ϕ(l) (1)

for any point p and line l and any automorphism ϕ ∈ G the rows corresponding to
lines from a orbit of G are equal, therefore these are removed from the system of
equations and we get a square matrix denoted by MG. The number of orbits on the
points and the number of orbits on the lines is equal, as we can label the lines by the
orthogonal point and then act with the transposed matrix. We denote by ω1, . . . , ωs

the orbits on the points and by Ω1, . . . , Ωs the orbits on the lines. For an entry of
MG we have:

MG
Ωi,ωj

= |{p ∈ ωj : p ∈ l}|
where l is a representative of the line orbit Ωi. Because of property (1) this definition
is independent of the representative. Now we can restate the above theorem in a
version with the condensed matrix MG :
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Theorem 2.

Let G be a subgroup of PGL(2, GR(ps, psm)). There is a set of type (d1, d2) in
PHG(2, GR(ps, psm)) whose group of automorphisms contains G as a subgroup
if, and only if, there is a 0/1−solution x = (x1, . . . , x|s|)T of the following system
of equations:

MGx =

d1 or d2

...
d1 or d2

 .

To solve this using a computer we transform it like in the above corollary into a
Diophantine system of linear equations and using the slack variables we get the in-
formation which lines intersect in d1 points and which one in d2 points.

4 Example

We describe the construction of the set of type (2, 5) over Z9 with 39 points, which
is a very good 5−arc as explained in the following section with results. PHG(2, Z9)
has 117 points, therefore the Diophantine system of equations which is to be solved
would have 234 variables and 117 equations. We prescribe a group G of automor-
phisms generated by a single element:

G :=

〈 7 1 0
4 8 4
5 3 8

〉
.

This group has 9 orbits, each of size 13. In fact this group is a lifted version (i.e.
a preimage under φ) of the Singer cycle in PGL(2, 3). PHG(2, Z9) can be con-
structed from PG(2, 3) by substituting each point in PG(2, 3) by 9 ’lifted’ points of
PHG(2, Z9). Each orbit now contains for each point of PG(2, 3) one lifted point.
The condensed matrix MG is a 9× 9 matrix:

MG =



0 3 2 2 1 1 0 1 2
0 0 2 2 1 1 3 1 2
1 1 0 3 2 2 1 2 0
2 2 1 1 0 0 2 3 1
1 1 0 0 2 2 1 2 3
3 0 2 2 1 1 0 1 2
1 1 3 0 2 2 1 2 0
2 2 1 1 3 0 2 0 1
2 2 1 1 0 3 2 0 1


.

The solution x = (1, 0, 0, 0, 1, 1, 0, 0, 0) of the equation from Theorem 2 corre-
sponds to the set of type (2, 5) with 39 points built from three orbits. From
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MGxT =



2
2
5
2
5
5
5
5
5


we read off which line orbits have intersection size 2 and which one size 5.

5 Results

In this section we give results for projective Hjelmslev planes over the Galois rings
isomorphic to Z4, Z8, Z9, Z16, Z25, Z27. As the complement of a set of type (d1, d2)
is again a set with only two intersection numbers, we list only those sets C where
|C| is at most half of the points. In the following table we list the parameters (d1, d2)
of two-intersection sets we constructed with the method described. By t1 and t2
we denote the number of lines having intersection numbers d1 and d2. We denote
by ∗ in the second column if this set can not be constructed using the recursive
method from 2. We do not list the trivial set consisting of one point. This list is not
complete, as we only construct a two-intersection set C if we first choose a group G
such that there is a C with this group of automorphism, and secondly the resulting
Diophantine system is small enough to be solved. So it may happen that further
parameters (d1, d2) are possible and for pairs (d1, d2) already in the list there may
be other sets, with different groups of automorphisms.
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R |C| d1 d2 t1 t2

Z4 4 0 2 16 12
6∗ 0 2 10 18
7∗ 0 2 7 21
12 2 6 24 4
14∗ 2 4 14 14

Z8 4 0 2 88 24
6∗ 0 2 76 36
8∗ 0 2 64 48
16 0 4 64 48
24 0 4 40 72
28∗ 2 6 84 28
28 0 4 28 84
32∗ 2 6 72 40
36∗ 3 7 88 24
36∗ 2 6 60 52
44∗ 2 6 36 76
48∗ 2 6 24 88
48∗ 4 8 80 32
48 4 12 96 16
52∗ 3 7 40 72
52∗ 4 8 68 44
56 4 8 56 56

Z9 9 0 3 81 36
30∗ 2 5 75 42
36 3 12 108 9
39∗ 3 6 78 39
39∗ 2 5 39 78
42∗ 3 6 66 51

R |C| d1 d2 t1 t2

Z16 4 0 2 400 48
6∗ 0 2 376 72
8∗ 0 2 352 96
12∗ 0 2 304 144
16 0 4 352 96
24 0 4 304 144
28∗ 0 4 280 168
32 0 4 256 192
40∗ 0 4 208 240
64 0 8 256 192
96 0 8 160 288
112 4 12 336 112
112 0 8 112 336
128 4 12 288 160
144 4 12 240 208
144 6 14 352 96
176 4 12 144 304
192 8 24 384 64
192 8 16 320 128
192 4 12 96 352
208 6 14 160 288
208 8 16 272 176
224 10 14 224 224

Z25 25 0 5 625 150
155∗ 5 10 620 155
310∗ 9 14 310 465
310∗ 10 15 465 310

These results are also interesting if you look for arcs. There are at least two cases
where we found improvements against previously known values for the maximal
size of u−arcs. More on arcs in projective Hjelmslev planes can be found in [12].
The construction of u−arcs over Galois rings will also be covered in a forthcoming
paper with M. Kiermaier. Some first results can be found in the proceedings of the
2007 conference on optimal codes [14].

The most interesting set is the 39−set of type (2, 5) in Z9. This is a 5−arc just one
point below the upper-bound of 40 points. It improves the previously known 5−arc
with 31 points. The other improvement is the 310−set of type (9, 14) in Z25. The
paper by Landjev and Honold only cover the cases with s = 2. We didn’t find tables
for Z8 and Z16.
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