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7 different degree seqences
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Partition

A partition is a weakly decreasing sequence of
non-negative integers, where allmost all numbers are zero.

λ = 3, 3, 2, 2, 1, 1, 0, . . .
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Partition

A partition is a weakly decreasing sequence of
non-negative integers, where allmost all numbers are zero.

λ = 3, 3, 2, 2, 1, 1, 0, . . .

The weight of a partition is the sum over this sequence.

|λ| = 12
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Partition

A partition is a weakly decreasing sequence of
non-negative integers, where allmost all numbers are zero.

λ = 3, 3, 2, 2, 1, 1, 0, . . .

The weight of a partition is the sum over this sequence.

|λ| = 12

The length of a partition is the number of nonzero parts.

l(λ) = 6
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Ferrers Diagram

Partitions are visualized by left adjusted boxes in
the first quadrant.
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Ferrers Diagram

Partitions are visualized by left adjusted boxes in
the first quadrant.

1
1
2
2
3
3
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Conjugate Partition

The conjugate partition λ′ is the sequence of
numbers of boxes in the columns.
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Conjugate Partition

The conjugate partition λ′ is the sequence of
numbers of boxes in the columns.

6 4 2
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Conjugate Partition

The conjugate partition λ′ is the sequence of
numbers of boxes in the columns.

6 4 2 =(3, 3, 2, 2, 1, 1)′
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Graphical Partitions

A partition λ is called graphical, if there is a
simple (undirected, no loops, no multi-edges)
graph whose vertex degree sequence equals λ.
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Graphical Partitions

A partition λ is called graphical, if there is a
simple (undirected, no loops, no multi-edges)
graph whose vertex degree sequence equals λ.

• graphical partitions only exist for even weight

Number of different degree sequences of a graph with no isolated vertices – p.6/21



Graphical Partitions

A partition λ is called graphical, if there is a
simple (undirected, no loops, no multi-edges)
graph whose vertex degree sequence equals λ.

• graphical partitions only exist for even weight

• not all even weight partitions are graphical
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Example
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Example

2 2

3 3

1

1
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Example

2 2

3 3

1

1

↓

3,3,2,2,1,1
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Problem

We want
g(n) := number of graphical partitions of

length n.
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Problem

We want
g(n) := number of graphical partitions of

length n.
For general partitions only useful in the case of a
maximal size of parts (< n)
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Problem

We want
g(n) := number of graphical partitions of

length n.
For general partitions only useful in the case of a
maximal size of parts (< n)

(

2n−2
n

)

... n

n− 2
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Durfee

Number of different degree sequences of a graph with no isolated vertices – p.9/21



Durfee

X X Durfee square = (2, 2)

X X
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Durfee

X X Durfee square = (2, 2)

X X Durfee size = 2
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Durfee Decomposition
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Durfee Decomposition

L
L
L L
L L

R R
R R
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Durfee Decomposition

L
L
L L
L L

R R L = (4, 2)

R R R = (2, 2)
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Dominance Order

The ’natural’ partial order on partitions.
Let µ, ν be two partitions

µ D ν :⇔ ∀k ≥ 1 :
k

∑

i=1

µi ≥
k

∑

i=1

νi
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Dominance Order

The ’natural’ partial order on partitions.
Let µ, ν be two partitions

µ D ν :⇔ ∀k ≥ 1 :
k

∑

i=1

µi ≥
k

∑

i=1

νi

Dominance order is compatible with graphical
partitions:

ν graphical,µ D ν ⇒ µ graphical

Number of different degree sequences of a graph with no isolated vertices – p.11/21



Criterion

Theorem:
A partition λ of even weight is graphical

⇐⇒

L(λ) D R(λ)
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Recursion Formula (1)

G(n) := set of graphical partitions of length n

Gs(n) := set of graphical partitions of length n

and maximal part of size s

G(n) = G1(n)∪̇ . . . ∪̇Gn−1(n)
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Recursion Formula (1)

G(n) := set of graphical partitions of length n

Gs(n) := set of graphical partitions of length n

and maximal part of size s

G(n) = G1(n)∪̇ . . . ∪̇Gn−1(n)

Each Gs(n) is decomposed into disjoint subsets
according to the weight

Gs(n) = Gs,2(n)∪̇ . . . ∪̇Gs,n∗(n−1)(n)
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Recursion Formula (2)

Each set Gs,w(n) is decomposed according to the
size of the Durfee square

Gs,w(n) = Gs,w,1(n)∪̇ . . . ∪̇Gs,w,n−1(n)
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Recursion Formula (2)

Each set Gs,w(n) is decomposed according to the
size of the Durfee square

Gs,w(n) = Gs,w,1(n)∪̇ . . . ∪̇Gs,w,n−1(n)

From the Durfee decomposition and the criterion
we get a bijection:

Gs,w,d(n)←→

{

µ D ν

(µ, ν) with 1 ≤ l(µ) ≤ d, µ1 = n− d, l(ν) = id

|ν|+ |µ| = n− (d− 1) ∗ d

}.
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Recursion Formula (3)

P (s1, l1, w1, l2, w2) := pairs (µ, ν) with
µ D ν, µ1 = s1

l(µ) = l1, |µ| = w1

l(ν) = l2, |ν| = w2
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Recursion Formula (3)

P (s1, l1, w1, l2, w2) := pairs (µ, ν) with
µ D ν, µ1 = s1

l(µ) = l1, |µ| = w1

l(ν) = l2, |ν| = w2

rewrite above recursion with r = n− (d− 1) ∗ d :

Gs,w,d(n)←→
˙⋃

j = 1, . . . , d

l = 0, . . . , r

P (n− d, j, l, d, r − l)
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Recursion Formula (4)

L L

L L

L L L

L L L

R R

R R

R R
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Recursion Formula (4)

L L

L L

L L L

L L L

R R

R R

R R
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Recursion Formula (4)

L L

L L

L L L

L L L

R R

R R

R R

P (s1, l1, w1, l2, w2)
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Recursion Formula (4)

L L

L L

L L L

L L L

R R

R R

R R

P (s1, l1, w1, l2, w2)

l
˙⋃

P (s1 − 1, i, w1 − l1, j, w2 − l2)

i = 0, . . . , l1

j = 0, . . . , l2
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Product Formula

We count pairs µ D ν, with certain properties
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Product Formula

We count pairs µ D ν, with certain properties
Unique minimal partition µ−, unique maximal
partition ν+.
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Product Formula

We count pairs µ D ν, with certain properties
Unique minimal partition µ−, unique maximal
partition ν+.
If µ− D ν+ then (with p(..) = |P (..)|)

p(s1, l1, w1, l2, w2) = p(s1, l1, w1, 0, 0)(
∑

i=1,...,w2−l2+1

p(i, l2, w2, 0, 0)).
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Results

g(4), .. ..g(19) g(20), ...

7 162769 7429.160296

20 614198 28723.877732

71 2.330537 111236.423288

240 8.875768 431403.470222

871 33.924859

3148 130.038230

11655 499.753855

43332 1924.912894
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Results

g(4), .. ..g(19) g(20), ... g(28), ..., g(34)

7 162769 7429.160296 385.312558.571890

20 614198 28723.877732 1504.105116.253904

71 2.330537 111236.423288 5876.236938.019298

240 8.875768 431403.470222 22974.847399.695092

871 33.924859 1.675316.535350 89891.104720.825873

3148 130.038230 6.513837.679610 351942.828583.179792

11655 499.753855 25.354842.100894 1.378799.828613.947813

43332 1924.912894 98.794053.269694
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Concluding Remarks

Limiting factors:

memory to store intermediate results

time if you do not store intermediate results
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