Number of different degree sequences of a graph with no isolated vertices

Axel Kohnert

Bayreuth University kohnert@uni-bayreuth.de www.mathe2.uni-bayreuth.de

Number of different degree sequences of a graph with no isolated vertices – p.1/21

۲

Number of different degree sequences of a graph with no isolated vertices – p.2/21

۲

7 different degree seqences

Partition

A *partition* is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

 $\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$

Partition

A *partition* is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

 $\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$

The *weight* of a partition is the sum over this sequence.

 $|\lambda| = 12$

Partition

A *partition* is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

 $\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$

The weight of a partition is the sum over this sequence.

 $|\lambda| = 12$

The *length* of a partition is the number of nonzero parts.

 $l(\lambda) = 6$

Partitions are visualized by left adjusted boxes in the first quadrant.

Number of different degree sequences of a graph with no isolated vertices – p.4/21

•

Partitions are visualized by left adjusted boxes in the first quadrant.

Conjugate Partition

The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.

•

Conjugate Partition

The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.

Conjugate Partition

The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.

Graphical Partitions

A partition λ is called *graphical*, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

•

Graphical Partitions

A partition λ is called *graphical*, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

graphical partitions only exist for even weight

Graphical Partitions

A partition λ is called *graphical*, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

graphical partitions only exist for even weight

not all even weight partitions are graphical

۲

۲

Number of different degree sequences of a graph with no isolated vertices – p.7/21

 \bullet

 \bullet

Problem

۲

We want g(n) := number of graphical partitions of length n.

Problem

We want g(n) := number of graphical partitions of length n. For general partitions only useful in the case of a maximal size of parts (< n)

Problem

We want g(n) := number of graphical partitions of length n. For general partitions only useful in the case of a maximal size of parts (< n)

Durfee

•

Durfee

•

Durfee square = (2, 2)

Number of different degree sequences of a graph with no isolated vertices – p.9/21

۲

Durfee

Durfee square = (2, 2)Durfee size = 2

۲

Number of different degree sequences of a graph with no isolated vertices – p.9/21

۲

•

Durfee Decomposition

 \bullet

۲

Durfee Decomposition

۲

۲

Durfee Decomposition

L = (4, 2)R = (2, 2)

Number of different degree sequences of a graph with no isolated vertices – p.10/21

•

Dominance Order

The 'natural' partial order on partitions. Let μ, ν be two partitions

Number of different degree sequences of a graph with no isolated vertices – p.11/21

•

Dominance Order

The 'natural' partial order on partitions. Let μ, ν be two partitions

$$\mu \succeq \nu :\Leftrightarrow \forall k \ge 1 : \sum_{i=1}^k \mu_i \ge \sum_{i=1}^k \nu_i$$

Dominance order is compatible with graphical partitions:

 ν graphical, $\mu \geq \nu \Rightarrow \mu$ graphical

Theorem: A partition λ of even weight is graphical

 $L(\lambda) \trianglerighteq R(\lambda)$

Number of different degree sequences of a graph with no isolated vertices – p.12/21

G(n) := set of graphical partitions of length n $G_s(n) :=$ set of graphical partitions of length nand maximal part of size s

$$G(n) = G_1(n) \dot{\cup} \dots \dot{\cup} G_{n-1}(n)$$

G(n) := set of graphical partitions of length n $G_s(n) :=$ set of graphical partitions of length nand maximal part of size s

$$G(n) = G_1(n)\dot{\cup}\dots\dot{\cup}G_{n-1}(n)$$

Each $G_s(n)$ is decomposed into disjoint subsets according to the weight

$$G_s(n) = G_{s,2}(n) \dot{\cup} \dots \dot{\cup} G_{s,n*(n-1)}(n)$$

Each set $G_{s,w}(n)$ is decomposed according to the size of the Durfee square

 $G_{s,w}(n) = G_{s,w,1}(n) \dot{\cup} \dots \dot{\cup} G_{s,w,n-1}(n)$

•

Each set $G_{s,w}(n)$ is decomposed according to the size of the Durfee square

$$G_{s,w}(n) = G_{s,w,1}(n) \dot{\cup} \dots \dot{\cup} G_{s,w,n-1}(n)$$

From the Durfee decomposition and the criterion we get a bijection:

$$G_{s,w,d}(n) \longleftrightarrow$$

$$\begin{split} \mu &\geq \nu \\ \{ \ (\mu,\nu) \quad with \quad 1 \leq l(\mu) \leq d, \mu_1 = n - d, l(\nu) = id \ \}. \\ & |\nu| + |\mu| = n - (d-1) * d \end{split}$$

 $P(s_1, l_1, w_1, l_2, w_2) := \text{pairs } (\mu, \nu) \text{ with}$ $\mu \ge \nu, \ \mu_1 = s_1$ $l(\mu) = l_1, \ |\mu| = w_1$ $l(\nu) = l_2, \ |\nu| = w_2$

$$P(s_1, l_1, w_1, l_2, w_2) :=$$
pairs (μ, ν) with
 $\mu \ge \nu, \mu_1 = s_1$
 $l(\mu) = l_1, |\mu| = w_1$
 $l(\nu) = l_2, |\nu| = w_2$

rewrite above recursion with r = n - (d - 1) * d:

$$G_{s,w,d}(n) \longleftrightarrow \bigcup_{\substack{j=1,\ldots,d}} P(n-d,j,l,d,r-l)$$

 $l=0,\ldots,r$

۲

۲

۲

$P(\overline{s_1, l_1, w_1, l_2, w_2})$

۲

LLLLLLLLLLLRRRRRRRRR

 $P(s_{1}, l_{1}, w_{1}, l_{2}, w_{2})$ \downarrow \downarrow $P(s_{1} - 1, i, w_{1} - l_{1}, j, w_{2} - l_{2})$ $i = 0, \dots, l_{1}$ $j = 0, \dots, l_{2}$

Product Formula

We count pairs $\mu \geq \nu$, with certain properties

Product Formula

We count pairs $\mu \geq \nu$, with certain properties Unique minimal partition μ^- , unique maximal partition ν^+ .

Product Formula

We count pairs $\mu \ge \nu$, with certain properties Unique minimal partition μ^- , unique maximal partition ν^+ . If $\mu^- \ge \nu^+$ then (with p(..) = |P(..)|)

 $p(s_1, l_1, w_1, l_2, w_2) = p(s_1, l_1, w_1, 0, 0) (\sum_{i=1, \dots, w_2 - l_2 + 1} p(i, l_2, w_2, 0, 0)).$

Results

•

g(4),	g(19)	g(20),	
7	162769	7429.160296	
20	614198	28723.877732	
71	2.330537	111236.423288	
240	8.875768	431403.470222	
871	33.924859		
3148	130.038230		
11655	499.753855		
43332	1924.912894		

Results

•

g(4),	g(19)	g(20),	g(28),,g(34)
7	162769	7429.160296	385.312558.571890
20	614198	28723.877732	1504.105116.253904
71	2.330537	111236.423288	5876.236938.019298
240	8.875768	431403.470222	22974.847399.695092
871	33.924859	1.675316.535350	89891.104720.825873
3148	130.038230	6.513837.679610	351942.828583.179792
11655	499.753855	25.354842.100894	1.378799.828613.947813
43332	1924.912894	98.794053.269694	

 \bullet

•

Concluding Remarks

Limiting factors:

memory to store intermediate results

time if you do not store intermediate results

References

- Sierksma, Hoogeveen: Seven Criteria for Integer Sequences being Graphic, J. Graph Theory, 1991.
- N. Sloane: online database of integer sequences, number A095268
- A. Kohnert: Dominance Order and Graphical Partitions, Electronic Journal of Combinatorics, 2004

