Code details
best found code with parameters
q=17 k=3 n=256
minimum distance = 240
 this is new optimal code
the previous bounds were -1/240
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 11 orbits of sizes:
| 
1
 | 
4
 | 
64
 | 
4
 | 
64
 | 
2
 | 
32
 | 
64
 | 
4
 | 
64
 | 
4
 | 
The solution of the corresponding linear system of equations was found after less than 100 seconds:
| 
0
 | 
0
 | 
1
 | 
0
 | 
1
 | 
0
 | 
0
 | 
1
 | 
0
 | 
1
 | 
0
 | 
0
 | 
16
 | 
15
 | 
16
 | 
15
 | 
16
 | 
15
 | 
16
 | 
15
 | 
0
 | 
16
 | 
This produces the following generator matrix
| 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
| 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
16
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
0
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
5
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
11
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
12
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
10
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
4
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
6
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
14
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
2
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
7
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
9
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
1
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
15
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
3
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
13
 | 
| 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
16
 | 
14
 | 
1
 | 
12
 | 
5
 | 
15
 | 
11
 | 
10
 | 
2
 | 
3
 | 
7
 | 
13
 | 
4
 | 
9
 | 
6
 | 
8
 | 
Which is a code with the following weight distribution
1y256+768x240y16+4096x241y15+48x256