The generator matrix 1 0 0 0 1 1 1 4 2 4 6 1 1 1 1 6 0 2 1 1 2 1 1 4 0 1 2 1 1 1 1 1 2 2 2 1 2 4 2 1 1 1 6 4 2 0 1 1 6 1 1 1 1 2 1 1 1 1 0 1 1 0 4 1 1 6 4 1 2 2 0 1 1 1 0 1 1 1 1 6 2 2 1 0 2 1 6 0 1 0 0 0 2 2 4 1 1 1 3 7 5 1 0 6 1 5 1 1 1 3 1 1 4 0 6 2 7 4 4 1 1 1 2 6 2 2 5 7 3 4 1 2 1 5 3 1 4 5 6 0 1 1 3 4 0 0 3 2 1 4 4 0 1 1 6 4 4 4 6 6 6 1 5 6 5 7 6 1 2 6 2 1 1 2 0 0 1 0 0 3 5 1 4 1 5 7 5 2 6 2 1 0 4 6 7 5 5 7 7 6 1 4 7 6 6 3 2 6 0 1 4 1 0 3 4 1 1 7 1 3 0 6 7 6 7 0 7 6 0 3 1 2 1 1 4 5 1 6 6 0 4 5 1 1 1 7 4 6 0 1 4 2 6 0 2 1 4 0 7 6 1 0 0 0 1 1 3 2 7 1 5 0 2 5 7 4 1 0 7 6 1 6 7 0 2 3 1 1 0 6 7 4 1 7 2 6 4 1 5 1 5 0 6 3 1 1 0 2 1 5 5 5 4 6 1 3 1 1 6 6 6 3 5 3 1 4 4 0 2 4 4 4 7 4 4 2 4 1 1 1 1 7 0 0 1 7 0 7 0 0 0 0 2 2 0 6 2 6 4 4 2 2 4 6 4 2 4 2 0 2 4 4 2 2 2 0 0 6 4 6 2 4 0 0 6 6 0 0 2 2 0 0 0 2 6 0 4 4 0 2 6 0 0 4 4 6 4 6 6 4 4 0 6 6 6 2 4 2 2 0 2 0 0 6 0 0 4 4 0 6 6 2 0 2 4 0 0 0 0 0 4 4 0 0 4 4 0 0 4 4 4 4 4 0 0 4 4 4 0 0 4 4 4 0 4 0 0 0 4 0 4 0 0 4 0 4 4 4 4 0 4 0 0 0 4 4 4 0 0 4 4 0 4 0 0 4 0 0 4 0 4 0 0 4 0 4 4 0 4 4 0 0 4 0 4 0 0 4 4 4 0 4 generates a code of length 87 over Z8 who´s minimum homogenous weight is 77. Homogenous weight enumerator: w(x)=1x^0+226x^77+482x^78+926x^79+1122x^80+1550x^81+1587x^82+2184x^83+2042x^84+2654x^85+2517x^86+2594x^87+2441x^88+2622x^89+2120x^90+2000x^91+1535x^92+1396x^93+928x^94+832x^95+388x^96+282x^97+125x^98+82x^99+47x^100+34x^101+13x^102+16x^103+8x^104+2x^105+4x^106+6x^107+2x^109 The gray image is a code over GF(2) with n=348, k=15 and d=154. This code was found by Heurico 1.16 in 65 seconds.