The generator matrix 1 0 0 1 1 1 6 1 0 1 6 1 1 6 6 1 4 1 1 6 1 1 0 0 1 1 0 1 0 1 4 6 1 4 1 1 1 6 1 1 1 6 2 1 1 6 1 1 2 1 1 2 1 4 2 1 6 6 1 1 1 1 1 1 6 6 6 4 1 1 1 1 6 6 1 0 1 1 1 0 2 4 1 1 0 1 0 1 0 0 1 1 1 6 1 6 1 3 7 0 6 5 1 0 6 1 7 1 1 1 6 2 6 7 1 3 1 6 7 2 2 4 7 1 7 6 0 1 6 6 0 1 5 7 1 7 3 1 4 1 2 0 4 4 3 5 1 2 6 5 1 6 1 6 5 7 4 5 0 0 1 1 2 2 6 1 1 1 4 6 1 6 0 0 1 1 1 0 1 5 0 4 3 1 0 1 1 5 3 1 0 0 4 3 6 3 7 2 1 6 2 5 5 1 5 1 7 2 4 1 4 7 2 6 1 7 2 6 4 7 5 3 5 3 3 2 1 2 1 1 2 6 2 5 3 5 3 1 0 1 0 1 7 6 1 1 2 3 4 6 5 4 6 6 4 5 2 4 0 0 0 2 0 0 4 4 2 6 2 2 2 2 4 4 2 4 6 4 0 2 6 4 2 4 2 2 4 0 6 2 6 4 4 0 4 0 0 0 6 6 4 2 2 2 4 0 4 2 6 4 6 4 4 4 6 4 0 2 6 2 4 6 6 6 2 0 2 0 2 0 6 6 0 6 0 0 0 4 0 4 6 6 6 2 0 0 0 0 2 0 2 6 6 2 0 4 2 2 2 4 2 0 0 6 2 2 4 0 6 2 0 0 0 4 6 6 4 4 0 6 4 4 4 2 4 0 2 4 2 2 2 6 2 6 6 0 4 6 4 4 4 6 2 6 2 6 2 0 0 4 2 2 0 0 0 4 4 6 2 6 4 2 0 6 4 4 6 4 0 2 0 0 0 0 0 2 4 0 0 0 4 4 6 0 0 4 4 0 0 0 2 0 0 4 0 0 4 2 6 2 6 2 6 6 2 2 2 6 0 6 6 4 2 6 2 2 6 2 6 6 0 4 4 4 0 4 2 4 0 4 2 6 2 0 2 6 0 2 6 2 4 4 4 0 0 6 6 2 0 6 0 2 2 4 6 0 generates a code of length 86 over Z8 who´s minimum homogenous weight is 75. Homogenous weight enumerator: w(x)=1x^0+106x^75+314x^76+460x^77+724x^78+1126x^79+1295x^80+1634x^81+2086x^82+2228x^83+2428x^84+2686x^85+2725x^86+2690x^87+2611x^88+2336x^89+1946x^90+1510x^91+1191x^92+930x^93+655x^94+404x^95+237x^96+180x^97+107x^98+50x^99+47x^100+28x^101+12x^102+12x^103+4x^104+2x^105+1x^106+2x^107 The gray image is a code over GF(2) with n=344, k=15 and d=150. This code was found by Heurico 1.16 in 53.6 seconds.