The generator matrix 1 0 0 0 0 0 0 1 1 1 2 1 1 1 2 1 1 1 1 0 1 2 1 2 1 0 1 2 0 0 2 1 1 1 0 0 1 1 1 1 0 0 1 1 2 1 2 1 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 0 0 2 2 2 3 3 3 1 1 3 3 1 3 1 1 3 1 1 3 0 1 3 3 1 3 3 0 0 1 0 0 0 0 0 0 0 0 2 1 3 1 2 3 3 0 1 3 1 2 1 3 1 2 0 2 1 2 2 1 2 1 0 3 0 0 2 3 3 0 2 1 3 0 0 2 0 3 1 0 0 0 0 1 0 0 0 0 0 0 0 3 1 2 3 1 3 0 1 2 1 3 3 1 2 0 2 2 1 2 2 0 0 3 1 1 0 2 3 2 1 0 0 3 1 1 1 1 3 2 2 1 2 0 0 0 0 1 0 0 2 1 3 1 1 2 3 3 3 1 2 2 0 3 2 0 2 2 3 2 1 1 1 1 2 1 3 3 3 0 3 3 1 1 1 0 2 1 3 1 0 3 1 0 0 3 0 0 0 0 0 1 0 3 1 2 3 0 0 0 0 3 1 0 3 3 2 0 2 1 1 0 3 1 2 1 0 2 3 3 3 2 1 3 0 0 2 1 2 1 3 3 3 0 0 0 1 2 0 0 0 0 0 0 0 1 1 2 3 3 0 0 0 0 1 2 1 0 3 3 1 3 2 0 3 1 1 1 2 2 0 1 3 1 3 0 0 0 3 2 0 0 2 3 2 1 2 1 3 1 0 0 generates a code of length 53 over Z4 who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+272x^42+776x^44+1242x^46+1533x^48+1962x^50+2372x^52+2270x^54+2164x^56+1684x^58+1212x^60+566x^62+243x^64+66x^66+16x^68+2x^70+2x^72+1x^96 The gray image is a code over GF(2) with n=106, k=14 and d=42. This code was found by Heurico 1.16 in 57.3 seconds.