The generator matrix 1 0 0 0 0 0 1 1 1 2 0 1 1 1 0 1 1 0 2 1 2 2 1 1 2 1 2 0 1 0 0 2 0 1 1 2 1 2 2 1 0 0 0 2 1 2 1 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 1 2 1 1 0 3 1 2 1 1 2 0 1 0 3 1 1 2 1 1 1 1 0 2 2 3 2 0 2 1 2 2 1 0 0 3 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 2 1 1 3 1 3 3 1 2 0 2 2 0 1 1 1 1 0 0 3 0 2 3 1 1 1 1 1 1 0 1 0 2 2 1 3 3 3 1 2 0 0 0 0 1 0 0 0 1 1 1 2 0 0 0 0 0 0 2 2 3 3 1 1 1 3 3 2 1 3 2 3 3 3 2 3 1 3 2 3 2 0 0 1 1 2 0 2 3 0 3 2 2 0 0 0 0 1 0 1 0 1 3 2 0 0 0 0 3 1 1 3 1 3 0 2 2 2 1 1 3 3 1 2 2 1 0 0 1 2 2 3 3 2 2 1 2 0 2 1 0 3 3 0 3 0 0 0 0 0 1 1 3 2 1 1 1 3 2 3 0 1 0 3 1 2 2 3 0 3 0 2 3 2 3 2 3 2 3 0 0 3 0 2 2 2 1 0 2 3 2 2 0 1 3 0 2 0 0 0 0 0 0 2 2 0 2 2 2 2 0 2 2 0 2 0 0 2 2 0 0 2 0 0 0 2 0 2 0 0 0 2 0 2 2 2 0 0 0 0 2 2 2 0 0 2 0 0 2 generates a code of length 52 over Z4 who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+186x^42+546x^44+828x^46+964x^48+999x^50+1095x^52+1126x^54+1014x^56+713x^58+427x^60+233x^62+48x^64+10x^66+1x^70+1x^88 The gray image is a code over GF(2) with n=104, k=13 and d=42. This code was found by Heurico 1.10 in 2.8 seconds.