The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2
0 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 2X 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 0 0 2X
0 0 2X 0 0 0 2X 2X 2X 2X 2X 0 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 2X 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 0 0
0 0 0 2X 0 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 2X 2X 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 0 0 2X 2X 0 0 0 2X 2X 0 0 0 2X 2X 2X 2X
0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 2X 0 0 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 0 0 2X 2X 0 2X 2X 2X 2X 0 2X 2X 0 0 0
generates a code of length 83 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 82.
Homogenous weight enumerator: w(x)=1x^0+65x^82+160x^83+10x^84+10x^86+5x^88+4x^98+1x^106
The gray image is a code over GF(2) with n=664, k=8 and d=328.
This code was found by Heurico 1.16 in 1.33 seconds.