The generator matrix 1 0 1 1 1 1 1 21 1 1 24 1 1 1 1 1 0 1 1 1 21 1 1 24 1 1 1 24 1 0 1 1 1 1 21 1 1 1 1 1 1 1 21 1 1 1 1 24 1 1 1 12 6 1 1 1 1 1 3 1 0 1 7 26 21 4 20 1 19 24 1 23 26 16 0 4 1 19 21 20 1 23 24 1 16 26 19 1 23 1 0 21 24 4 1 5 26 16 16 20 25 19 1 7 24 10 21 1 12 1 25 1 1 23 8 6 5 12 9 26 0 0 9 0 0 0 18 9 18 9 9 9 9 0 18 0 0 9 9 18 0 18 9 0 18 18 18 9 9 18 0 9 0 0 0 18 9 18 0 9 18 18 9 0 9 18 9 9 0 9 0 9 18 9 9 18 0 9 9 18 0 0 0 9 0 9 9 9 18 18 0 18 0 9 9 0 9 9 0 9 18 9 0 18 9 0 0 18 0 9 18 9 9 18 9 0 9 0 9 18 9 18 9 0 9 0 0 0 18 18 0 0 9 0 18 18 18 0 18 0 0 0 0 0 18 18 0 18 18 9 18 18 9 9 9 9 0 0 0 18 9 9 18 0 0 18 0 9 18 9 0 9 0 18 9 9 18 18 18 0 18 0 0 0 18 9 9 0 9 9 18 9 18 0 18 0 9 18 18 0 generates a code of length 60 over Z27 who´s minimum homogenous weight is 111. Homogenous weight enumerator: w(x)=1x^0+130x^111+114x^112+396x^113+1142x^114+474x^115+888x^116+2130x^117+912x^118+1206x^119+4224x^120+1086x^121+1548x^122+3022x^123+624x^124+726x^125+616x^126+150x^127+90x^128+104x^129+24x^130+26x^132+18x^133+6x^134+14x^135+4x^138+2x^147+4x^150+2x^153 The gray image is a code over GF(3) with n=540, k=9 and d=333. This code was found by Heurico 1.16 in 1.08 seconds.