The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 2 0 1 2 1 8 2 1 0 1 1 8 1 1 2 2 4 1 1 2 4 1 1 1 2 1 2 1 0 1 2 1 0 1 2 8 1 1 1 2 1 1 1 4 8 2 4 2 0 1 1 0 2 0 6 0 6 8 10 8 6 8 2 0 14 2 8 12 14 12 14 0 6 0 2 12 10 0 10 8 2 6 6 2 4 14 2 2 6 6 2 4 4 2 6 0 14 10 2 6 2 6 2 12 14 12 2 6 10 2 2 6 6 8 4 6 6 2 10 0 14 10 4 12 8 2 8 2 0 8 8 0 2 0 0 12 0 0 0 12 0 0 0 8 0 12 0 0 4 4 4 4 4 0 12 8 12 8 4 12 4 0 0 12 4 12 8 12 0 8 8 4 12 0 8 4 4 4 0 0 4 8 8 12 8 8 0 12 0 8 4 12 12 12 8 0 12 4 12 0 8 0 4 8 4 4 0 4 8 8 8 4 4 12 4 0 0 0 12 0 0 0 4 0 0 0 8 0 4 4 0 4 12 4 0 4 4 4 12 4 8 4 8 4 4 0 12 8 0 8 12 4 8 12 12 8 8 0 8 8 12 12 12 0 0 8 12 12 8 0 0 4 12 4 8 8 0 12 8 0 4 0 0 12 4 8 12 4 12 0 4 4 8 12 0 12 4 0 0 0 0 12 0 4 0 8 4 4 4 4 12 12 0 4 12 4 4 12 12 4 0 8 0 0 12 8 12 8 0 4 0 4 8 0 4 0 4 4 0 8 8 4 12 8 8 0 12 8 0 4 8 12 4 4 0 8 0 0 8 0 8 4 0 12 0 4 12 4 0 8 4 8 8 4 8 0 0 8 0 0 0 0 0 0 12 0 12 12 4 4 0 4 0 4 12 4 8 0 12 8 12 4 8 4 8 8 8 0 8 12 0 8 12 4 0 8 4 4 4 12 0 8 12 8 12 12 4 4 4 0 8 0 8 8 12 12 4 0 4 8 4 0 8 0 0 4 12 12 4 12 12 12 4 4 4 8 4 0 8 0 8 generates a code of length 82 over Z16 who´s minimum homogenous weight is 72. Homogenous weight enumerator: w(x)=1x^0+217x^72+116x^73+552x^74+432x^75+1167x^76+1068x^77+2040x^78+2416x^79+3359x^80+3144x^81+3940x^82+3260x^83+3414x^84+2164x^85+2000x^86+1192x^87+895x^88+412x^89+426x^90+124x^91+224x^92+8x^93+102x^94+48x^96+26x^98+18x^100+2x^102+1x^108 The gray image is a code over GF(2) with n=656, k=15 and d=288. This code was found by Heurico 1.16 in 33.2 seconds.