The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 X 1 1 1 aX 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 a a+1 0 (a+1)X+1 (a+1)X+a+1 a 1 0 (a+1)X+1 (a+1)X+a+1 a 1 X a 1 (a+1)X+1 (a+1)X+a+1 1 0 (a+1)X+1 X+a 1 aX+1 a aX 0 (a+1)X X+a aX X+a (a+1)X+a aX (a+1)X+a+1 aX+1 0 1 0 0 (a+1)X 0 0 0 X aX X X X (a+1)X (a+1)X aX aX aX aX aX aX (a+1)X (a+1)X X X aX aX aX (a+1)X 0 aX X (a+1)X (a+1)X aX 0 0 (a+1)X X aX X 0 0 0 X 0 X (a+1)X (a+1)X X (a+1)X 0 (a+1)X X 0 (a+1)X X (a+1)X 0 0 (a+1)X (a+1)X X (a+1)X 0 (a+1)X X X (a+1)X X 0 aX aX (a+1)X 0 (a+1)X X 0 X aX 0 0 0 0 (a+1)X (a+1)X (a+1)X (a+1)X 0 aX X aX 0 (a+1)X X X 0 (a+1)X X (a+1)X (a+1)X (a+1)X 0 aX aX (a+1)X aX 0 aX 0 X 0 (a+1)X (a+1)X aX X (a+1)X 0 aX generates a code of length 39 over F4[X,sigma]/(X^2) who´s minimum homogenous weight is 104. Homogenous weight enumerator: w(x)=1x^0+267x^104+216x^106+990x^108+672x^110+1602x^112+1440x^114+2757x^116+2160x^118+2859x^120+1416x^122+1440x^124+240x^126+186x^128+60x^132+42x^136+30x^140+3x^144+3x^148 The gray image is a linear code over GF(4) with n=156, k=7 and d=104. This code was found by Heurico 1.16 in 0.8 seconds.