The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 X 1 1 1 1 1 1 1 X 1 1 1 1 aX 1 1 1 1 1 1 1 X X 1 1 (a+1)X 1 aX 1 1 X 1 1 0 1 1 a (a+1)X+a+1 0 (a+1)X+1 a (a+1)X+a+1 1 0 a (a+1)X+1 1 (a+1)X+a+1 X+a 1 X (a+1)X+1 aX+a+1 X+a X 1 aX+a+1 1 X aX+1 a+1 X+a 1 0 X aX aX+1 aX+1 a (a+1)X+a 1 1 aX+a+1 (a+1)X+a 1 (a+1)X+a 1 (a+1)X+1 aX+1 X (a+1)X X+a+1 0 0 (a+1)X 0 X X (a+1)X X (a+1)X X 0 0 X X 0 (a+1)X aX aX 0 (a+1)X aX (a+1)X aX aX (a+1)X X X 0 X (a+1)X (a+1)X (a+1)X 0 (a+1)X aX X 0 (a+1)X aX 0 0 aX (a+1)X 0 X X aX 0 aX 0 0 0 X aX X aX (a+1)X (a+1)X 0 X (a+1)X 0 aX aX (a+1)X 0 X 0 aX (a+1)X X 0 aX 0 0 aX (a+1)X X aX 0 aX (a+1)X (a+1)X X aX 0 (a+1)X (a+1)X X aX X 0 (a+1)X X (a+1)X (a+1)X aX (a+1)X generates a code of length 49 over F4[X,sigma]/(X^2) who´s minimum homogenous weight is 138. Homogenous weight enumerator: w(x)=1x^0+336x^138+240x^140+756x^142+258x^144+732x^146+192x^148+468x^150+216x^152+612x^154+84x^156+168x^158+9x^160+12x^164+12x^168 The gray image is a linear code over GF(4) with n=196, k=6 and d=138. This code was found by Heurico 1.16 in 0.176 seconds.