The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 X 1 1 1 1 1 1 1 0 1 1 a*X X 1 1 1 1 1 1 1 1 1 0 1 1 a a^2 0 a^2*X+1 a^2*X+a^2 a 1 0 a^2*X+1 a 1 a^2*X+a^2 X+a 1 a^2*X+1 0 a^2*X+a^2 a^2*X+a^2 a X a^2*X+1 1 X a*X+a 1 1 a*X+a^2 a*X+1 a*X+a a X+a 1 a*X+1 a^2*X+1 a^2*X+a^2 0 0 a^2*X 0 0 0 X X X X X X a^2*X a^2*X a*X a^2*X a^2*X 0 a^2*X a*X a^2*X 0 X 0 a^2*X a*X X X a*X 0 a*X 0 a*X a*X a^2*X 0 a*X a^2*X 0 0 0 X 0 X a^2*X 0 X a^2*X X 0 a*X a^2*X 0 0 X a*X X 0 a^2*X X a*X 0 a^2*X X a*X X a^2*X a*X X X X a*X 0 0 X a^2*X 0 0 0 0 a^2*X a^2*X X a^2*X a*X 0 a^2*X X X a*X X X X 0 0 a*X 0 a*X a^2*X a*X a^2*X a^2*X X a*X a*X a^2*X a*X a^2*X 0 a*X a*X 0 X X generates a code of length 38 over F4[X]/(X^2) who´s minimum homogenous weight is 100. Homogenous weight enumerator: w(x)=1x^0+87x^100+72x^101+324x^103+330x^104+408x^105+840x^107+462x^108+1008x^109+1224x^111+1176x^112+1872x^113+1872x^115+1146x^116+1992x^117+1428x^119+675x^120+792x^121+456x^123+66x^124+60x^128+51x^132+27x^136+12x^140+3x^144 The gray image is a linear code over GF(4) with n=152, k=7 and d=100. This code was found by Heurico 1.16 in 0.762 seconds.