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Isogenies

Motivating question: What are the possible degrees of isogenies

of non-CM elliptic curves over quadratic �elds?

To determine all the possible isogenies over a �eld K of

characteritic 0 it is enough to understand the isogenies with cyclic

kernel, which is equivalent to determining the cylcic subgroups of

E , which is in turn equivalent to �nding all the non-cuspidal

K -rational points on X0(n), for all n.

Filip Najman Quadratic points on bielliptic modular curves X0(n)



Rational points on X0(n)

Mazur (1978): Let p be a prime. The modular curve X0(p) has
non-cuspidal rational points if and only if

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.

Kenku (1984): The modular curve X0(n) has non-cuspidal
rational points if and only if

n ∈ {1, . . . , 19, 21, 27, 37, 43, 67, 163}.
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Quadratic points on X0(n)

The degree d points on X0(n), for all n, are not known for any

d > 1. So the current goal is to try to obtain results towards

solving the case for d = 2.

Unlike in the case of X1(p), there are noncuspidal quadratic points

on X0(p) for in�nitely many p; they come from CM elliptic curves.

It is however expected that there are �nitely many p with X0(p)
having non-cupsidal non-CM quadratic points.

Even the problem of �nding all n such that X+
0 (n)(Q) contains

points that are neither CM nor cusps, which can be considered a

sub-problem of our problem, is still open.

The set of such n has been conjectured by Elkies to be �nite.
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Quadratic points on X0(n)

The quadratic CM points on X0(n) are known for all n.

To �nd the (non-CM) quadratic points on X0(n) for all n, one has

to:

1 Find an upper bound m such that for n ≥ m, X0(n) has only
cusps and CM points over all quadratic �elds. This is currently

not known.

2 Determine the quadratic points on X0(n) for small n, up to

this bound m.

We work towards 2).
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Hyperelliptic curves

Let X : y2 = f (x) be a hyperelliptic curve.

It has an obvious degree 2 map to P1, sending (x , y) to x .

It has in�nitely many quadratic points of the form (x ,
√
f (x)) for

x ∈ Q. These are called non-exceptional or obvious points, while

the remaining quadratic points are called exceptional.

For almost all hyperelliptic X0(n), the hyperelliptic involution ι is
wd , for some d | n, which sends E to a d-isogenous curve.

The non-rational obvious points satisfy ι(P) = σ(P), so it follows

that E is d-isognous to Eσ.

A Q-curve is an elliptic curve isogenous to all of its Galois

conjugates. So all obvious points correspond to Q-curves.

So for hyperelliptic X0(n) it remains to �nd the exceptional points.
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Results over quadratic �elds

Bruin, N. (2015): determined the quadratic points on all

hyperelliptic X0(n) such that J0(n) := J(X0(n)) has rank 0 over Q.

This is satis�ed if and only if

n ∈ {22, 23, 26, 28, 29, 30, 31, 33, 35, 39, 40, 41, 46, 47, 48, 50, 59, 71}.

In all these cases we have 2 ≤ g(X0(n)) ≤ 5.

Ozman, Siksek (2019): determined the quadratic points on all

non-hyperelliptic X0(n) such that J0(n) has rank 0 over Q and such

that 2 ≤ g(X0(n)) ≤ 5. This is satis�ed if and only if

n ∈ {34, 38, 42, 44, 45, 51, 52, 54, 55, 56, 63, 64, 72, 75, 81}.

Box (2021): determined the quadratic points on remaining X0(n)
such that 2 ≤ g(X0(n)) ≤ 5, or

n ∈ {37, 43, 53, 61, 57, 65, 67, 73}.
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Bielliptic curves

A curve X obviously has in�nitely many quadratic points if there

exists a map X → C of degree 2, where C (Q) has in�nintely many

points.

This is possible only if C ' P1 (X is hyperelliptic) or C is an elliptic

curve (then X is called bielliptic) which has positive rank over Q.

Harris and Silverman (1991) showed that the converse is also true:

these are the only possible cases when X with g(X ) ≥ 2 can have

in�nitely many quadratic points.

Bars (1999): determined all the values of n for which X0(n) is
bielliptic.

Question (Mazur, 2021): Can we describe all the quadratic

points on all the remaining bielliptic curves?
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Bielliptic curves

The remaining values of n:

n g(X0(n)) rk(J0(n)(Q)) n g(X0(n)) rk(J0(n)(Q))

60 7 0 62 7 0

69 7 0 79 6 1

83 7 1 89 7 1

92 10 1 94 11 0

95 9 0 101 8 1

119 11 0 131 11 1

N., Vukorepa (202?): We solve all these cases. We get that in all

the cases the exceptional points have CM.

We do this by using 2 approaches:
1 Looking at the moduli interpretation and reducing the problem

to rational points on several modular curves.
2 The Box-Siksek method, a combinantion of the Mordell-Weil

sieve and relative symmetric Chabauty, with modi�cations
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Model for X0(95):

x2
0
+ 4x2x3 + 4x2x5 − 3x2

3
+ 2x3x4 + 4x3x5 + 19x2

4
− 32x4x5 + 10x2

5
− x2

6
+ 2x7x8 + 4x2

8
= 0,

x0x1 + 2x1x5 + 3x2x3 − 3x2x5 − 5x2
3
− 2x3x4 + 6x3x5 + 14x2

4
− 26x4x5 + 13x2

5
− x6x7 + x2

8
= 0,

x0x2 − 2x2x5 − 2x2
3
− x3x4 + x3x5 − 2x2

4
+ x4x5 + x2

5
− x2

7
= 0,

x0x3 − 2x2x3 + 3x2
3
− 2x3x5 − 9x2

4
+ 16x4x5 − 7x2

5
− x7x8 − x2

8
= 0,

x0x4 − 2x2x3 + x2
3
+ 2x3x4 − 2x3x5 − 6x2

4
+ 10x4x5 − 4x2

5
− x2

8
= 0,

x0x5 − x2x3 − x2x5 − x2
3
+ x3x4 + x3x5 − x2

4
− x4x5 + 2x2

5
= 0,

x0x7 − x1x6 + x4x6 + 2x4x7 − x4x8 − x5x6 + x5x8 = 0,

x0x8 − x2x6 + x3x6 − x4x7 + 3x4x8 + x5x6 + x5x7 − x5x8 = 0,

x2
1
− 4x2

4
+ 8x4x5 − 4x2

5
− x2

7
= 0,

x1x2 − 2x1x5 − 2x2x3 + 2x2x5 + 4x2
3
− 2x3x4 − 2x3x5 − 8x2

4
+ 18x4x5 − 10x2

5
− x7x8 − x2

8
= 0,

x1x3 − x1x5 − 2x2x3 + 2x2x5 + 2x2
3
+ 2x3x4 − 2x3x5 − 8x2

4
+ 14x4x5 − 8x2

5
− x2

8
= 0,

x1x4 − x1x5 − x2x3 + x2x5 + x2
3
− 2x2

4
+ 4x4x5 − 3x2

5
= 0,

x1x7 − x2x6 − x4x7 + 2x5x6 + x5x7 = 0,

x1x8 − x3x6 + x4x6 − x4x8 + x5x8 = 0,

x2
2
− 2x2x3 − 2x2x5 + x2

3
+ 4x3x4 − 2x3x5 − 8x2

4
+ 12x4x5 − 3x2

5
− x2

8
= 0,

x2x4 − x2x5 − x2
3
+ x3x4 + x3x5 − 3x4x5 + 2x2

5
= 0,

x2x7 − x3x6 − x4x7 + x5x6 − x5x7 = 0,

x2x8 − x4x6 − x4x8 + x5x6 − x5x8 = 0,

x3x7 − x4x6 − x4x7 − x4x8 + x5x6 + x5x8 = 0,

x3x8 − x4x7 + x5x7 − x5x8 = 0, x6x8 − x2
7
+ x7x8 + x2

8
= 0.
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Rational points on quotients

Looking at the moduli interpretation of the quotients allows us to

solve the cases n ∈ {62, 69, 92, 94}.

Take n = 94. Bruin and N. showed that all the quadratic points on

X0(47) are non-exceptional and correspond to Q-curves of degree

47.

As any elliptic curve with a subgroup of order 94 has a subgroup of

order 47, it follows that all quadratic points on X0(94) also
correspond to Q-curves of degree 47.

We want to take advantage of this fact, and ask to which modular

curves do Q-curves of degree 47 with a subgroup of order 2

correspond?
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Moduli interpretation of quotients

Proposition (N., Vukorepa)

Let E be a non-CM Q-curve of degree d de�ned over a quadratic

�eld K having in addition an m-isogeny de�ned over K with

(m, d) = 1 and m prime. Then either E corresponds to either a

rational point on X0(dm)/wd or is isogenous to an elliptic curve

which corresponds to a rational point on X+
0 (dm2).

So for X0(94), we need to �nd the rational points on X0(94)/w47,

which is an elliptic curve with 2 rational points, and X+
0 (188),

which is dealt with by Theorem of Momose.
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The Box-Siksek method

We have a degree 2 map f : X → X ′, p a prime good

reduction, J := J(X ), Dpull = f ∗(B) for some B ∈ X ′(Q) and
G ≤ J(Q) such that I · J(Q) ≤ G ,

ι : X (2)(Q)→ J(Q), ι(P) = [P − Dpull ];
φ : X (2)(Q)→ G , φ(P) = I · [P − Dpull ];
m : J(Q)→ G , m(D) = I · D;

redp : J(Q)→ J(Fp), redp(D) = D̃;

hp : G → J(Fp), hp(D) = redp(D) = D̃;

mp : J(Fp)→ J(Fp), mp(D̃) = I · D̃;

X (2)(Q)

ι

��

φ

$$
J(Q)

m //

redp
��

G

hp
��

J(Fp)
mp
// J(Fp).

Filip Najman Quadratic points on bielliptic modular curves X0(n)



The Box-Siksek method

We suppose we have a set of known points Sknown on X (2)(Q),
which are not pullbacks from a quotient X ′ of X .

We star with B0 := G . In each step i , we choose a prime pi and
de�ne Bi = ker hpi ∩ Bi−1, so we divide Bi−1 into Bi -cosets, e.g.

subsets of the form w + Bi .

These cosets have the property that hpi is constant on each of the

cosets.

There's a relative Chabauty criterion of Box and Siksek which can,

for a point P ∈ J(Fpi ) check that ι−1(red−1pi
(P)) contains only one

element, up to pullbacks of rational points from X ′.

Let Q ∈ X (2)(Q) be a unknown point which is not a pullback.

If we have ι((redp)(P)) = A for some P ∈ Sknown for every

A ∈ m−1pi
(B), then obviously hpi (φ(Q)) cannot be B if the

Box-Siksek criterion is satis�ed for all A ∈ m−1pi
(B).
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The Box-Siksek method

If this happens, we can remove the Bi -coset in G in which φ(P)
lives.

Furthermore if hpi (φ(P)) /∈ mpi (J(Fpi )) for some P ∈ G , then we

can again remove the Bi -coset to which P belongs.

Repeating this procedure for various primes we hope to remove all

of G .

If we succeed in doing this, we have proved that there are no

unknown points on X that are not pullbacks of rational points on

X ′.

This succeeds for X0(n) for n ∈ {60, 95, 119}, but not for
{79, 83, 89, 101, 131}.

However, even when this does not succeed in �nding all the points

it can give us information about what φ(Q) should look like for

some unknown point that is not a pullback.
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The curve X0(p)

Suppose now from on p ∈ {79, 83, 89, 101, 131}, let wp be the

Atkin-Lehner involution.

X0(p)
ι1 //

ρp
��

J0(p)

(ρp)∗
��

X+
0 (p)

ι2 // J0(p)
+.

By a theorem of Mazur we know that the torsion of J0(p) is of order
equal to the numerator of p−1

12 and generated by Tp = [∞− 0].

In all these cases we have that X+
0 (p) is an elliptic curve and

r(J0(p)(Q)) = r(J0(p)
+(Q)) = 1.

Let D be the generator of the free part of J0(p)
+(Q) and

Dp = ((ρp)∗)
∗(D).

We have Dp ∈ 2J0(p)(Q). In particular if D is a generator of the

free part of J0(p)(Q), then 2D ∈ 〈Dp,Tp〉.
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The cases p ∈ {73, 83, 101}

In these cases we take I = 2 and using the Box-Siksek method we

get that for a hypothetical point Q, which is not a pullback of a

rational point on X+
0 (p), we obtain φ(Q) = 2[Q − Dpull ] = kDp.

So we have wp(2[Q − Dpull ]) = 2[Q − Dpull ], so
wp([Q − Dpull ])− [Q − Dpull ] is of order dividing 2.

But J0(p)(Q) has no points of order 2, so it follows that

wp([Q − Dpull ]) = [Q − Dpull ].

Since Dpull is a pullback of a point on X+
0 (p), it follows

wp(Dpull) = Dpull , so we have [wp(Q)−Q] = 0, and since X0(p) is
not hyperelliptic, wp(Q) = Q.

Writing Q = Q1 + Qσ
1 for some points Q1 ∈ X0(p), it follows that

wp either swaps Q1 and Qσ
1 , in which case Q is a pullback from

X+
0 (p), or Q1 is a �xed point of wp and hence corresponds to a CM

elliptic curve, which is easy to check.
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p ∈ {89, 131}

The case p = 89 is eliminated in a similar way, with some

additional considerations since it has a 2-torison point.

For the case we p = 131 we take G = J0(p)(Q)tors and I = 1−wp.

Applying the Box-Siksek method and using the fact that

(1− wp)J0(p)(Q) ⊆ J0(p)(Q)tors we get

φ(Q) = (1−wp)[Q −Dpull ] = 0, so wp([Q −Dpull ]) = [Q −Dpull ],
and we proceed as before.
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The end

Thank you for your attention!
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