Quadratic points on bielliptic modular curves $X_{0}(n)$

Filip Najman

University of Zagreb
joint work with Borna Vukorepa
Rational points 2022,
March 31st 2022.

Isogenies

Motivating question: What are the possible degrees of isogenies of non-CM elliptic curves over quadratic fields?

To determine all the possible isogenies over a field K of characteritic 0 it is enough to understand the isogenies with cyclic kernel, which is equivalent to determining the cylcic subgroups of E, which is in turn equivalent to finding all the non-cuspidal K-rational points on $X_{0}(n)$, for all n.

Rational points on $X_{0}(n)$

Mazur (1978): Let p be a prime. The modular curve $X_{0}(p)$ has non-cuspidal rational points if and only if

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\} .
$$

Kenku (1984): The modular curve $X_{0}(n)$ has non-cuspidal rational points if and only if

$$
n \in\{1, \ldots, 19,21,27,37,43,67,163\}
$$

Quadratic points on $X_{0}(n)$

The degree d points on $X_{0}(n)$, for all n, are not known for any $d>1$. So the current goal is to try to obtain results towards solving the case for $d=2$.

Unlike in the case of $X_{1}(p)$, there are noncuspidal quadratic points on $X_{0}(p)$ for infinitely many p; they come from CM elliptic curves.

It is however expected that there are finitely many p with $X_{0}(p)$ having non-cupsidal non-CM quadratic points.

Even the problem of finding all n such that $X_{0}^{+}(n)(\mathbb{Q})$ contains points that are neither CM nor cusps, which can be considered a sub-problem of our problem, is still open.
The set of such n has been conjectured by Elkies to be finite.

Quadratic points on $X_{0}(n)$

The quadratic CM points on $X_{0}(n)$ are known for all n.
To find the (non-CM) quadratic points on $X_{0}(n)$ for all n, one has to:
(1) Find an upper bound m such that for $n \geq m, X_{0}(n)$ has only cusps and CM points over all quadratic fields. This is currently not known.
(2) Determine the quadratic points on $X_{0}(n)$ for small n, up to this bound m.

We work towards 2).

Hyperelliptic curves

Let $X: y^{2}=f(x)$ be a hyperelliptic curve.
It has an obvious degree 2 map to \mathbb{P}^{1}, sending (x, y) to x.
It has infinitely many quadratic points of the form $(x, \sqrt{f(x)})$ for $x \in \mathbb{Q}$. These are called non-exceptional or obvious points, while the remaining quadratic points are called exceptional.
For almost all hyperelliptic $X_{0}(n)$, the hyperelliptic involution ι is w_{d}, for some $d \mid n$, which sends E to a d-isogenous curve.

The non-rational obvious points satisfy $\iota(P)=\sigma(P)$, so it follows that E is d-isognous to E^{σ}.

A \mathbb{Q}-curve is an elliptic curve isogenous to all of its Galois conjugates. So all obvious points correspond to \mathbb{Q}-curves.

So for hyperelliptic $X_{0}(n)$ it remains to find the exceptional points.

Results over quadratic fields

Bruin, N. (2015): determined the quadratic points on all hyperelliptic $X_{0}(n)$ such that $J_{0}(n):=J\left(X_{0}(n)\right)$ has rank 0 over \mathbb{Q}. This is satisfied if and only if
$n \in\{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71\}$.
In all these cases we have $2 \leq g\left(X_{0}(n)\right) \leq 5$.
Ozman, Siksek (2019): determined the quadratic points on all non-hyperelliptic $X_{0}(n)$ such that $J_{0}(n)$ has rank 0 over \mathbb{Q} and such that $2 \leq g\left(X_{0}(n)\right) \leq 5$. This is satisfied if and only if

$$
n \in\{34,38,42,44,45,51,52,54,55,56,63,64,72,75,81\} .
$$

Box (2021): determined the quadratic points on remaining $X_{0}(n)$ such that $2 \leq g\left(X_{0}(n)\right) \leq 5$, or

$$
n \in\{37,43,53,61,57,65,67,73\}
$$

Bielliptic curves

A curve X obviously has infinitely many quadratic points if there exists a map $X \rightarrow C$ of degree 2 , where $C(\mathbb{Q})$ has infinintely many points.

This is possible only if $C \simeq \mathbb{P}^{1}$ (X is hyperelliptic) or C is an elliptic curve (then X is called bielliptic) which has positive rank over \mathbb{Q}. Harris and Silverman (1991) showed that the converse is also true: these are the only possible cases when X with $g(X) \geq 2$ can have infinitely many quadratic points.

Bars (1999): determined all the values of n for which $X_{0}(n)$ is bielliptic.

Question (Mazur, 2021): Can we describe all the quadratic points on all the remaining bielliptic curves?

Bielliptic curves

The remaining values of n :

n	$g\left(X_{0}(n)\right)$	$\operatorname{rk}\left(J_{0}(n)(\mathbb{Q})\right)$	n	$g\left(X_{0}(n)\right)$	$\operatorname{rk}\left(J_{0}(n)(\mathbb{Q})\right)$
60	7	0	62	7	0
69	7	0	79	6	1
83	7	1	89	7	1
92	10	1	94	11	0
95	9	0	101	8	1
119	11	0	131	11	1

N., Vukorepa (202?): We solve all these cases. We get that in all the cases the exceptional points have CM.
We do this by using 2 approaches:
(1) Looking at the moduli interpretation and reducing the problem to rational points on several modular curves.
(2) The Box-Siksek method, a combinantion of the Mordell-Weil sieve and relative symmetric Chabauty, with modifications

$$
\begin{aligned}
& x_{0}^{2}+4 x_{2} x_{3}+4 x_{2} x_{5}-3 x_{3}^{2}+2 x_{3} x_{4}+4 x_{3} x_{5}+19 x_{4}^{2}-32 x_{4} x_{5}+10 x_{5}^{2}-x_{6}^{2}+2 x_{7} x_{8}+4 x_{8}^{2}=0, \\
& x_{0} x_{1}+2 x_{1} x_{5}+3 x_{2} x_{3}-3 x_{2} x_{5}-5 x_{3}^{2}-2 x_{3} x_{4}+6 x_{3} x_{5}+14 x_{4}^{2}-26 x_{4} x_{5}+13 x_{5}^{2}-x_{6} x_{7}+x_{8}^{2}=0, \\
& x_{0} x_{2}-2 x_{2} x_{5}-2 x_{3}^{2}-x_{3} x_{4}+x_{3} x_{5}-2 x_{4}^{2}+x_{4} x_{5}+x_{5}^{2}-x_{7}^{2}=0, \\
& x_{0} x_{3}-2 x_{2} x_{3}+3 x_{3}^{2}-2 x_{3} x_{5}-9 x_{4}^{2}+16 x_{4} x_{5}-7 x_{5}^{2}-x_{7} x_{8}-x_{8}^{2}=0, \\
& x_{0} x_{4}-2 x_{2} x_{3}+x_{3}^{2}+2 x_{3} x_{4}-2 x_{3} x_{5}-6 x_{4}^{2}+10 x_{4} x_{5}-4 x_{5}^{2}-x_{8}^{2}=0, \\
& x_{0} x_{5}-x_{2} x_{3}-x_{2} x_{5}-x_{3}^{2}+x_{3} x_{4}+x_{3} x_{5}-x_{4}^{2}-x_{4} x_{5}+2 x_{5}^{2}=0, \\
& x_{0} x_{7}-x_{1} x_{6}+x_{4} x_{6}+2 x_{4} x_{7}-x_{4} x_{8}-x_{5} x_{6}+x_{5} x_{8}=0, \\
& x_{0} x_{8}-x_{2} x_{6}+x_{3} x_{6}-x_{4} x_{7}+3 x_{4} x_{8}+x_{5} x_{6}+x_{5} x_{7}-x_{5} x_{8}=0, \\
& x_{1}^{2}-4 x_{4}^{2}+8 x_{4} x_{5}-4 x_{5}^{2}-x_{7}^{2}=0, \\
& x_{1} x_{2}-2 x_{1} x_{5}-2 x_{2} x_{3}+2 x_{2} x_{5}+4 x_{3}^{2}-2 x_{3} x_{4}-2 x_{3} x_{5}-8 x_{4}^{2}+18 x_{4} x_{5}-10 x_{5}^{2}-x_{7} x_{8}-x_{8}^{2}=0, \\
& x_{1} x_{3}-x_{1} x_{5}-2 x_{2} x_{3}+2 x_{2} x_{5}+2 x_{3}^{2}+2 x_{3} x_{4}-2 x_{3} x_{5}-8 x_{4}^{2}+14 x_{4} x_{5}-8 x_{5}^{2}-x_{8}^{2}=0, \\
& x_{1} x_{4}-x_{1} x_{5}-x_{2} x_{3}+x_{2} x_{5}+x_{3}^{2}-2 x_{4}^{2}+4 x_{4} x_{5}-3 x_{5}^{2}=0, \\
& x_{1} x_{7}-x_{2} x_{6}-x_{4} x_{7}+2 x_{5} x_{6}+x_{5} x_{7}=0, \\
& x_{1} x_{8}-x_{3} x_{6}+x_{4} x_{6}-x_{4} x_{8}+x_{5} x_{8}=0, \\
& x_{2}^{2}-2 x_{2} x_{3}-2 x_{2} x_{5}+x_{3}^{2}+4 x_{3} x_{4}-2 x_{3} x_{5}-8 x_{4}^{2}+12 x_{4} x_{5}-3 x_{5}^{2}-x_{8}^{2}=0, \\
& x_{2} x_{4}-x_{2} x_{5}-x_{3}^{2}+x_{3} x_{4}+x_{3} x_{5}-3 x_{4} x_{5}+2 x_{5}^{2}=0, \\
& x_{2} x_{7}-x_{3} x_{6}-x_{4} x_{7}+x_{5} x_{6}-x_{5} x_{7}=0, \\
& x_{2} x_{8}-x_{4} x_{6}-x_{4} x_{8}+x_{5} x_{6}-x_{5} x_{8}=0, \\
& x_{3} x_{7}-x_{4} x_{6}-x_{4} x_{7}-x_{4} x_{8}+x_{5} x_{6}+x_{5} x_{8}=0, \\
& x_{3} x_{8}-x_{4} x_{7}+x_{5} x_{7}-x_{5} x_{8}=0, \quad x_{6} x_{8}-x_{7}^{2}+x 7 x_{8}+x_{8}^{2}=0 .
\end{aligned}
$$

Rational points on quotients

Looking at the moduli interpretation of the quotients allows us to solve the cases $n \in\{62,69,92,94\}$.

Take $n=94$. Bruin and N. showed that all the quadratic points on $X_{0}(47)$ are non-exceptional and correspond to \mathbb{Q}-curves of degree 47.

As any elliptic curve with a subgroup of order 94 has a subgroup of order 47, it follows that all quadratic points on $X_{0}(94)$ also correspond to \mathbb{Q}-curves of degree 47.

We want to take advantage of this fact, and ask to which modular curves do \mathbb{Q}-curves of degree 47 with a subgroup of order 2 correspond?

Moduli interpretation of quotients

Proposition (N., Vukorepa)

Let E be a non-CM \mathbb{Q}-curve of degree d defined over a quadratic field K having in addition an m-isogeny defined over K with $(m, d)=1$ and m prime. Then either E corresponds to either a rational point on $X_{0}(d m) / w_{d}$ or is isogenous to an elliptic curve which corresponds to a rational point on $X_{0}^{+}\left(d m^{2}\right)$.

So for $X_{0}(94)$, we need to find the rational points on $X_{0}(94) / w_{47}$, which is an elliptic curve with 2 rational points, and $X_{0}^{+}(188)$, which is dealt with by Theorem of Momose.

- We have a degree 2 map $f: X \rightarrow X^{\prime}, p$ a prime good reduction, $J:=J(X), D_{\text {pull }}=f^{*}(B)$ for some $B \in X^{\prime}(\mathbb{Q})$ and $G \leq J(\mathbb{Q})$ such that $l \cdot J(\mathbb{Q}) \leq G$,
- $\iota: X^{(2)}(\mathbb{Q}) \rightarrow J(\mathbb{Q}), \iota(P)=\left[P-D_{\text {pull }}\right]$;
- $\phi: X^{(2)}(\mathbb{Q}) \rightarrow G, \phi(P)=I \cdot\left[P-D_{\text {pull }}\right]$;
- $m: J(\mathbb{Q}) \rightarrow G, m(D)=I \cdot D$;
- $\operatorname{red}_{p}: J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right), \operatorname{red}_{p}(D)=\widetilde{D}$;
- $h_{p}: G \rightarrow J\left(\mathbb{F}_{p}\right), h_{p}(D)=\operatorname{red}_{p}(D)=\widetilde{D}$;
- $m_{p}: J\left(\mathbb{F}_{p}\right) \rightarrow J\left(\mathbb{F}_{p}\right), m_{p}(\widetilde{D})=I \cdot \widetilde{D}$;

The Box-Siksek method

We suppose we have a set of known points $S_{\text {known }}$ on $X^{(2)}(\mathbb{Q})$, which are not pullbacks from a quotient X^{\prime} of X.

We star with $B_{0}:=G$. In each step i, we choose a prime p_{i} and define $B_{i}=\operatorname{ker} h_{p_{i}} \cap B_{i-1}$, so we divide B_{i-1} into B_{i}-cosets, e.g. subsets of the form $w+B_{i}$.

These cosets have the property that $h_{p_{i}}$ is constant on each of the cosets.

There's a relative Chabauty criterion of Box and Siksek which can, for a point $P \in J\left(\mathbb{F}_{p_{i}}\right)$ check that $\iota^{-1}\left(\operatorname{red}_{p_{i}}^{-1}(P)\right)$ contains only one element, up to pullbacks of rational points from X^{\prime}.

Let $Q \in X^{(2)}(\mathbb{Q})$ be a unknown point which is not a pullback.
If we have $\iota\left(\left(\operatorname{red}_{p}\right)(P)\right)=A$ for some $P \in S_{\text {known }}$ for every $A \in m_{p_{i}}^{-1}(B)$, then obviously $h_{p_{i}}(\phi(Q))$ cannot be B if the Box-Siksek criterion is satisfied for all $A \in m_{p_{i}}^{-1}(B)$.

The Box-Siksek method

If this happens, we can remove the B_{i}-coset in G in which $\phi(P)$ lives.

Furthermore if $h_{p_{i}}(\phi(P)) \notin m_{p_{i}}\left(J\left(\mathbb{F}_{p_{i}}\right)\right)$ for some $P \in G$, then we can again remove the B_{i}-coset to which P belongs.

Repeating this procedure for various primes we hope to remove all of G.

If we succeed in doing this, we have proved that there are no unknown points on X that are not pullbacks of rational points on X^{\prime}.

This succeeds for $X_{0}(n)$ for $n \in\{60,95,119\}$, but not for $\{79,83,89,101,131\}$.

However, even when this does not succeed in finding all the points it can give us information about what $\phi(Q)$ should look like for some unknown point that is not a pullback.

Suppose now from on $p \in\{79,83,89,101,131\}$, let w_{p} be the Atkin-Lehner involution.

$$
\begin{aligned}
& X_{0}(p) \xrightarrow{\iota_{1}} J_{0}(p) \\
& \underset{\downarrow}{\rho_{p}} \stackrel{\rho^{2}}{\left.\rho_{\rho}\right)_{*}} \\
& X_{0}^{+}(p) \xrightarrow{\iota_{2}} J_{0}(p)^{+} .
\end{aligned}
$$

By a theorem of Mazur we know that the torsion of $J_{0}(p)$ is of order equal to the numerator of $\frac{p-1}{12}$ and generated by $T_{p}=[\infty-0]$. In all these cases we have that $X_{0}^{+}(p)$ is an elliptic curve and $r\left(J_{0}(p)(\mathbb{Q})\right)=r\left(J_{0}(p)^{+}(\mathbb{Q})\right)=1$.
Let D be the generator of the free part of $J_{0}(p)^{+}(\mathbb{Q})$ and $D_{p}=\left(\left(\rho_{p}\right)_{*}\right)^{*}(D)$.
We have $D_{p} \in 2 J_{0}(p)(\mathbb{Q})$. In particular if D is a generator of the free part of $J_{0}(p)(\mathbb{Q})$, then $2 D \in\left\langle D_{p}, T_{p}\right\rangle$.

The cases $p \in\{73,83,101\}$

In these cases we take $I=2$ and using the Box-Siksek method we get that for a hypothetical point Q, which is not a pullback of a rational point on $X_{0}^{+}(p)$, we obtain $\phi(Q)=2\left[Q-D_{\text {pull }}\right]=k D_{p}$.
So we have $w_{p}\left(2\left[Q-D_{\text {pull }}\right]\right)=2\left[Q-D_{\text {pull }}\right]$, so
$w_{p}\left(\left[Q-D_{\text {pull }}\right]\right)-\left[Q-D_{\text {pull }}\right]$ is of order dividing 2 .
But $J_{0}(p)(\mathbb{Q})$ has no points of order 2 , so it follows that $w_{p}\left(\left[Q-D_{\text {pull }}\right]\right)=\left[Q-D_{\text {pull }}\right]$.
Since $D_{\text {pull }}$ is a pullback of a point on $X_{0}^{+}(p)$, it follows $w_{p}\left(D_{\text {pull }}\right)=D_{\text {pull }}$, so we have $\left[w_{p}(Q)-Q\right]=0$, and since $X_{0}(p)$ is not hyperelliptic, $w_{p}(Q)=Q$.

Writing $Q=Q_{1}+Q_{1}^{\sigma}$ for some points $Q_{1} \in X_{0}(p)$, it follows that w_{p} either swaps Q_{1} and Q_{1}^{σ}, in which case Q is a pullback from $X_{0}^{+}(p)$, or Q_{1} is a fixed point of w_{p} and hence corresponds to a CM elliptic curve, which is easy to check.

$p \in\{89,131\}$

The case $p=89$ is eliminated in a similar way, with some additional considerations since it has a 2-torison point.

For the case we $p=131$ we take $G=J_{0}(p)(\mathbb{Q})_{\text {tors }}$ and $I=1-w_{p}$.
Applying the Box-Siksek method and using the fact that $\left(1-w_{p}\right) J_{0}(p)(\mathbb{Q}) \subseteq J_{0}(p)(\mathbb{Q})_{\text {tors }}$ we get $\phi(Q)=\left(1-w_{p}\right)\left[Q-D_{\text {pull }}\right]=0$, so $w_{p}\left(\left[Q-D_{\text {pull }}\right]\right)=\left[Q-D_{\text {pull }}\right]$, and we proceed as before.

Thank you for your attention!

