Generalised Symmetric Chabauty for cubic points on modular curves with infinitely many quadratic points

Stevan Gajović (University of Groningen/MPIM Bonn) Joint work with Josha Box (at the time, University of Warwick) and Pip Goodman (at the time, University of Bristol)

Rational Points 2022, 29/03/2022

Introduction

- Let X be a nice curve (smooth, projective, geometrically irreducible algebraic variety of dimension 1) defined over \mathbb{Q} of genus g (or g_{X} if we specify a curve).
- Denote by $X^{(d)}:=X^{d} / S_{d}$ the d th symmetric power of X.
- $\left\{\mathbb{Q}\right.$-rational points on $\left.X^{(d)}\right\} \simeq\{\mathbb{Q}$-rational effective degree d divisors on $X\}$.
- In other words:

$$
\begin{array}{r}
X^{(d)}(\mathbb{Q})=\left\{Q_{1}+\cdots+Q_{d}: Q_{1}, \ldots, Q_{d} \in X(\overline{\mathbb{Q}}),\right. \\
\left.(\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})) \sigma\left(Q_{1}+\cdots+Q_{d}\right)=Q_{1}+\cdots+Q_{d}\right\} .
\end{array}
$$

- If $X^{(d)}(\mathbb{Q})$ is finite (and in some other cases), knowing $X^{(d)}(\mathbb{Q}) \Longrightarrow$ knowing all points $X(L)$ for all extensions L / \mathbb{Q} of degree d.

Motivation

- Study points on symmetric powers of modular curves.
(1) Extending Mazur's results on classifying potential torsion subgroups and isogenies of elliptic curves defined over \mathbb{Q} to number fields.
- Determine non-cuspidal points on modular curves $X_{0}(N)$ and $X_{1}(N)$;
- Work of Banwait, Bruin, Derickx, Etropolski, Kamienny, Michaud-Jacobs, Momose, Morrow, Najman, Stein, Stoll, van Hoeij, Vukorepa, Zureick-Brown, ...
(2) Extending modularity statements from \mathbb{Q} to number fields:
- Freitas, Le Hung, Siksek - real quadratic fields;
- Derickx, Najman, Siksek - totally real cubic fields;
- Box - quartic fields not containing $\sqrt{5}$.

Symmetric Chabauty

- Klassen, "Algebraic points of low degree on curves of low rank", PhD thesis (1993)
- Siksek, "Chabauty for symmetric powers of curves" (2009)
- Let p be a prime of good reduction for curve X.
- Denote the reduction modulo p map by red ${ }_{p}$ of by a tilde on points.
- Let $\widetilde{\mathcal{Q}} \in X^{(d)}\left(\mathbb{F}_{p}\right)$. Its inverse image under red_{p}, denoted by $D(\widetilde{\mathcal{Q}}) \subseteq X^{(d)}\left(\mathbb{Q}_{p}\right)$, is called a residue class of $\widetilde{\mathcal{Q}}$.
- Similarly, for $\mathcal{Q} \in X^{(d)}\left(\mathbb{Q}_{p}\right)$ we denote $D(\mathcal{Q}):=D(\widetilde{\mathcal{Q}})$.
- Let $J(X)$ be the Jacobian of X. Denote by r (or r_{X} when we specify a curve) the rank of $J(X)(\mathbb{Q})$.
- Assume there is $\mathcal{Q} \in X^{(d)}(\mathbb{Q})$. Use \mathcal{Q} to define an Abel-Jacobi map $\iota: X^{(d)} \rightarrow J(X), \mathcal{P} \mapsto \mathcal{P}-\mathcal{Q}$.

The diagram of symmetric Chabauty

- To determine $X^{(d)}(\mathbb{Q})$ it suffices to determine its intersection with each of its residue classes.
- If the condition $r+d \leq g$ is satisfied, then we can hope for finitely many points of $X^{(d)}(\mathbb{Q})$.
- When $d=1$, using the classical method of Chabauty and Coleman, the set $\iota(D(\widetilde{\mathcal{P}})) \cap \overline{J(X)(\mathbb{Q})}$ is finite and we can determine it.
- Problem: Even if $r+d \leq g$, the set $\iota(D(\widetilde{\mathcal{P}})) \cap \overline{J(X)(\mathbb{Q})}$ might not be finite when $d \geq 2$.

However

- Consider a hyperelliptic curve $X: y^{2}=f(x)$.
- Denote $\rho: X \rightarrow \mathbb{P}^{1}, \rho(x, y)=x$.
- For all $x_{0} \in \mathbb{P}^{1}(\mathbb{Q})$, we have

$$
\rho^{*}\left(x_{0}\right)=\left(x_{0}, \sqrt{f\left(x_{0}\right)}\right)+\left(x_{0},-\sqrt{f\left(x_{0}\right)}\right) \in X^{(2)}(\mathbb{Q})!
$$

\Longrightarrow We see that $X^{(2)}(\mathbb{Q})$ can be infinite regardless of r !

- There is a morphism $X \rightarrow \mathbb{P}^{1}$ or $X \rightarrow E$ of degree at most d, where E / \mathbb{Q} is an elliptic curve of rank $r \geq 1 \Longrightarrow X^{(d)}(\mathbb{Q})$ is infinite.
- $P \in X^{(d)}(\mathbb{Q})$ not coming from the previous maps, and such that $\iota(P)$ does not lie in any translate of a positive rank abelian subvariety of $J(X)$ contained in $\iota\left(X^{(d)}\right)$ is called an isolated point.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray (2019))

There are finitely many isolated points.

What then we do?

- Studying $X^{(d)}(\mathbb{Q})$ amounts to:
(1) Describe all infinite subsets of $X^{(d)}(\mathbb{Q})$;
(2) Find the finite set of isolated points of $X^{(d)}(\mathbb{Q})$.
- There is a subspace $\mathcal{V} \subset H^{0}\left(X, \Omega_{X / \mathbb{Q}}\right), \operatorname{dim}(\mathcal{V}) \geq g-r$, such that for all $\omega \in \mathcal{V}$, we have (the integral is Coleman integral)

$$
\int_{D} \omega=0 \text { for all } D \in \overline{J(\mathbb{Q})} .
$$

- \mathcal{V} is called the space of vanishing differentials.
- In principle, if $r+d \leq g$, get d equations on a d-dimensional space.
- Siksek: A criterion whether $\mathcal{Q} \in X^{(d)}(\mathbb{Q})$ is alone in its residue class, i.e., if $D(\mathcal{Q}) \cap X^{(d)}(\mathbb{Q})=\{\mathcal{Q}\}$.

Relative Symmetric Chabauty

- Assume there is a morphism of curves $\rho: X \rightarrow C$ over \mathbb{Q} of degree d.
- It induces the trace map $\operatorname{Tr}_{\rho}: H^{0}\left(X, \Omega_{X / \mathbb{Q}}\right) \rightarrow H^{0}\left(C, \Omega_{C / \mathbb{Q}}\right)$.
- There is an abelian variety A / \mathbb{Q} such that $J(X) \sim J(C) \times A$.
- Define $\mathcal{W}:=\mathcal{V} \cap \operatorname{ker}\left(\operatorname{Tr}_{\rho}\right)$ the space of vanishing differentials with trace zero.
- Use this space to "disregard" C, and replace the $J(X)$ to A in the Chabauty diagram, obtain the rank condition $r_{X}-r_{C} \leq g_{X}-g_{C}-d$.
- Siksek: A criterion whether a residue class of
$\mathcal{Q} \in \rho^{*}\left(C^{(d)}(\mathbb{Q})\right) \subseteq X^{(d)}(\mathbb{Q})$ consists only of the pull-back points, i.e., if $D(\mathcal{Q}) \cap X^{(d)}(\mathbb{Q}) \subseteq \rho^{*}\left(C^{(d)}(\mathbb{Q})\right)$.
- For $d^{\prime}>d$, such that $X^{\left(d^{\prime}-d\right)}(\mathbb{Q}) \neq \emptyset$, we also have that $X^{\left(d^{\prime}\right)}(\mathbb{Q})$ is infinite. Consider $\mathcal{Q}=\mathcal{Q}_{1}+\mathcal{Q}_{2}$, such that $\mathcal{Q}_{1} \in X^{\left(d^{\prime}-d\right)}(\mathbb{Q})$ and $\mathcal{Q}_{2} \in \rho^{*}\left(C^{(d)}(\mathbb{Q})\right)$. There was no known criterion to describe $D(\mathcal{Q}) \cap X^{(d)}(\mathbb{Q})$.

Our concrete case

Theorem (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown (2020))

Completed the classification of the finite groups which appear as a torsion subgroup of $E(K)$ for K a cubic number field and E / K an elliptic curve.

- In their work they wanted to determine $X_{1}(65)^{(3)}(\mathbb{Q})$.
- We could use the knowledge of $X_{0}(65)^{(3)}(\mathbb{Q})$ to determine $X_{1}(65)^{(3)}(\mathbb{Q})$.
- We know that $X_{0}(65)(\mathbb{Q})=\{$ four cusps $\}$.
- ω_{65} is the Atkin-Lehner involution of $X_{0}(65)$.
- Denote $X_{0}(65)^{+}:=X_{0}(65) / \omega_{65}$, and $\rho_{65}: X_{0}(65) \rightarrow X_{0}(65)^{+}$the quotient map.
- $\rho_{65}: X_{0}(65) \rightarrow X_{0}(65)^{+}$is a map of degree 2.

Our concrete case

- $X_{0}(65)^{+}$is an elliptic curve of rank 1 over \mathbb{Q}.
- $\Longrightarrow X_{0}(65)^{(2)}(\mathbb{Q})$ is infinite!

```
Theorem (Box (2020))
X0(65)}\mp@subsup{)}{}{(2)}(\mathbb{Q})=\mp@subsup{\rho}{65}{*}(\mp@subsup{X}{0}{}(65)(\mathbb{Q}\mp@subsup{)}{}{+})+\mathrm{ sums of cusps.
```


Question (David Zureick-Brown, AWS 2020)

Can you determine $X_{0}(65)^{(3)}(\mathbb{Q})$ despite the fact that $X_{0}(65)^{(2)}(\mathbb{Q})$ is infinite?

Main theorem, special case, setup

Theorem (Box-G.-Goodman, 2022)

- $\rho: X \rightarrow C$ morphism of curves defined over \mathbb{Q}.
- $\operatorname{deg}(\rho) \leq 3, \# C(\mathbb{Q})=\infty$.
- $p \geq 11$ prime of good reduction.
- Denote by $\omega_{1}, \ldots, \omega_{s}$ the basis of \mathcal{W}.
- Let $\mathcal{Q}=Q_{1}+Q_{2}+Q_{3} \in X^{(3)}(\mathbb{Q})$.
- For each i, let $t_{Q_{i}}$ be a well-behaved uniformiser at Q_{i}.
- $\mathcal{K}:=\mathbb{Q}_{p}\left(Q_{1}, Q_{2}, Q_{3}\right), \pi$ any generator of the maximal ideal in \mathcal{K}.
- The expansion of ω_{j} at $\widetilde{Q}_{i}:=Q_{i}$ reduced modulo π is

$$
\omega_{j}=\sum_{l=0}^{\infty} \widetilde{a}_{l}\left(\omega_{j}, i\right) \widetilde{t}_{Q_{i}}^{\prime} d \widetilde{t}_{Q_{i}}
$$

Main theorem, special case, cases

Theorem (Box-G.-Goodman, 2022)

- There are pull-back divisors in $\mathcal{Q}, \operatorname{deg}(\rho)=2$ (generalisation of the case from Siksek, 2009).
(a) Assume $\widetilde{Q_{1}} \neq \widetilde{Q_{2}}, Q_{1}+Q_{3}=\rho^{*}(R)$ for some $R \in C(\mathbb{Q})$, and that the matrix

$$
\left(\begin{array}{ll}
\widetilde{a}_{0}\left(\omega_{1}, 1\right) & \widetilde{a}_{0}\left(\omega_{1}, 2\right) \\
\widetilde{a}_{0}\left(\omega_{2}, 1\right) & \widetilde{a}_{0}\left(\omega_{2}, 2\right)
\end{array}\right)
$$

has rank 2.

- Let $\mathcal{P} \in X^{(3)}(\mathbb{Q})$ be in a residue class of \mathcal{Q}.
- We conclude that $\mathcal{P}=Q_{2}+\rho^{*}\left(R^{\prime}\right)$, for some $R^{\prime} \in C(\mathbb{Q})$.

Sketch of the proof

Proof.

- Let $\mathcal{P}=P_{1}+P_{2}+P_{3} \in D(\mathcal{Q})$. Then, $\int_{\mathcal{Q}^{\mathcal{P}}}^{\mathcal{P}} \omega=0$, for all $\omega \in \mathcal{W}$.
- Denote $\rho^{*}\left(\rho\left(P_{3}\right)\right)=P_{3}+P_{3}^{\prime}$, then $\int_{Q_{1}+Q_{3}}^{P_{3}+P_{3}^{\prime}} \omega=0$.
- $0=\int_{Q_{1}+Q_{2}+Q_{3}}^{P_{1}+P_{2}+P_{3}} \omega=\int_{Q_{1}+Q_{3}}^{P_{3}+P_{3}^{\prime}} \omega+\int_{P_{3}^{\prime}}^{P_{1}} \omega+\int_{Q_{2}}^{P_{2}} \omega=\int_{P_{3}^{\prime}}^{P_{1}} \omega+\int_{Q_{2}}^{P_{2}} \omega$.
- Denote $t_{Q_{1}}\left(P_{1}\right)=z_{1}, t_{Q_{1}}\left(P_{3}^{\prime}\right)=z_{1}^{\prime}, t_{Q_{2}}\left(P_{2}\right)=z_{2} \Longrightarrow$
$a_{0}(\omega, 1)\left(z_{1}-z_{1}^{\prime}\right)+\frac{a_{1}(\omega, 1)}{2}\left(z_{1}^{2}-z_{1}^{\prime 2}\right)+\cdots+a_{0}(\omega, 2) z_{2}+\frac{a_{1}(\omega, 2)}{2} z_{2}^{2}+\cdots=0$.
- Note $\operatorname{ord}_{\pi}\left(z_{1}\right), \operatorname{ord}_{\pi}\left(z_{1}^{\prime}\right), \operatorname{ord}_{\pi}\left(z_{2}\right)>0$. We want to prove $z_{1}=z_{1}^{\prime}$,

$$
z_{2}=0 \text {, i.e., } P_{2}=Q_{2} \text { and } P_{3}^{\prime}=P_{1} .
$$

- $z_{1}-z_{1}^{\prime} \neq 0$ or $z_{2} \neq 0 \Longrightarrow$ that all higher terms have the property of higher divisibility by π.
- Repeat this for at least two differentials until we get the matrix from the previous slide of rank 2.
- This increases divisibility by π of at least one of $z_{1}-z_{1}^{\prime}$ and z_{2}. Contradiction!

Main theorem, special case, cases

Theorem (Box-G.-Goodman, 2022)

- There are pull-back divisors in $\mathcal{Q}, \operatorname{deg}(\rho)=2$ (generalisation of the case from Siksek, 2009).
(b) Assume $\widetilde{Q_{1}}=\widetilde{Q_{2}}, Q_{1}+Q_{2}=\rho^{*}(R)$ for some $R \in C(\mathbb{Q})$, and that the matrix

$$
\left(\begin{array}{ll}
\widetilde{a}_{0}\left(\omega_{1}, 1\right) & \frac{\widetilde{a}_{1}\left(\omega_{1}, 1\right)}{2} \\
\widetilde{a}_{0}\left(\omega_{2}, 1\right) & \frac{\widetilde{a}_{1}\left(\omega_{2}, 1\right)}{2}
\end{array}\right)
$$

has rank 2.

- Let $\mathcal{P} \in X^{(3)}(\mathbb{Q})$ be in a residue class of \mathcal{Q}.
- We conclude that $\mathcal{P}=Q_{3}+\rho^{*}\left(R^{\prime}\right)$, for some $R^{\prime} \in C(\mathbb{Q})$.

Summary

- Generalised criteria from Siksek's paper.
- Found a new, "more in depth" criterion to deal with some situations when matrices from the theorem do not have sufficiently large rank.
- Our method has already contributed to (1) in work of Banwait and Derickx and (2) in work of Box.
- Using Mordell-Weil sieve and previous theorems we managed to compute cubic points on the curves

$$
X_{0}(53), \quad X_{0}(57), X_{0}(65), X_{0}(61), \quad X_{0}(67) \text { and } X_{0}(73)
$$

- Only truly cubic points on $X_{0}(65)$ are defined over $\mathbb{Q}(\alpha)$, $\alpha^{3}-\alpha^{2}+\alpha-2=0$.
- Determined the quartic points on $X_{0}(65)$.

The end

Thank you for your attention!

Question

Any questions?

