Generalised Symmetric Chabauty for cubic points on modular curves with infinitely many quadratic points

Stevan Gajović (University of Groningen/MPIM Bonn) Joint work with Josha Box (at the time, University of Warwick) and Pip Goodman (at the time, University of Bristol)

Rational Points 2022, 29/03/2022

Introduction

- Let X be a nice curve (smooth, projective, geometrically irreducible algebraic variety of dimension 1) defined over \mathbb{Q} of genus g (or g_X if we specify a curve).
- Denote by $X^{(d)} := X^d / S_d$ the *d*th symmetric power of *X*.
- {ℚ-rational points on X^(d)} ≃ {ℚ-rational effective degree d divisors on X}.
- In other words:

$$X^{(d)}(\mathbb{Q}) = \{Q_1 + \dots + Q_d : Q_1, \dots, Q_d \in X(\overline{\mathbb{Q}}), \\ (\forall \sigma \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \ \sigma(Q_1 + \dots + Q_d) = Q_1 + \dots + Q_d\}.$$

If X^(d)(Q) is finite (and in some other cases), knowing X^(d)(Q) ⇒ knowing all points X(L) for all extensions L/Q of degree d.

Motivation

- Study points on symmetric powers of modular curves.
- Extending Mazur's results on classifying potential torsion subgroups and isogenies of elliptic curves defined over Q to number fields.
 - Determine non-cuspidal points on modular curves $X_0(N)$ and $X_1(N)$;
 - Work of Banwait, Bruin, Derickx, Etropolski, Kamienny, Michaud-Jacobs, Momose, Morrow, Najman, Stein, Stoll, van Hoeij, Vukorepa, Zureick-Brown, ...
- (2) Extending modularity statements from \mathbb{Q} to number fields:
 - Freitas, Le Hung, Siksek real quadratic fields;
 - Derickx, Najman, Siksek totally real cubic fields;
 - Box quartic fields not containing $\sqrt{5}$.

Symmetric Chabauty

- Klassen, "Algebraic points of low degree on curves of low rank", PhD thesis (1993)
- Siksek, "Chabauty for symmetric powers of curves" (2009)
- Let p be a prime of good reduction for curve X.
- Denote the reduction modulo p map by red_p of by a tilde on points.
- Let \$\tilde{Q} ∈ X^(d)(\mathbb{F}_p)\$. Its inverse image under red_p, denoted by D(\$\tilde{Q}\$) ⊆ X^(d)(\mathbb{Q}_p)\$, is called a residue class of \$\tilde{Q}\$.
- Similarly, for $\mathcal{Q} \in X^{(d)}(\mathbb{Q}_p)$ we denote $D(\mathcal{Q}) := D(\widetilde{\mathcal{Q}})$.
- Let J(X) be the Jacobian of X. Denote by r (or r_X when we specify a curve) the rank of $J(X)(\mathbb{Q})$.
- Assume there is $\mathcal{Q} \in X^{(d)}(\mathbb{Q})$. Use \mathcal{Q} to define an Abel-Jacobi map $\iota \colon X^{(d)} \to J(X), \ \mathcal{P} \mapsto \mathcal{P} \mathcal{Q}$.

The diagram of symmetric Chabauty

- To determine $X^{(d)}(\mathbb{Q})$ it suffices to determine its intersection with each of its residue classes.
- If the condition $r + d \leq g$ is satisfied, then we can hope for finitely many points of $X^{(d)}(\mathbb{Q})$.
- When d = 1, using the classical method of Chabauty and Coleman, the set $\iota(D(\widetilde{\mathcal{P}})) \cap \overline{J(X)(\mathbb{Q})}$ is finite and we can determine it.
- Problem: Even if $r + d \leq g$, the set $\iota(D(\widetilde{\mathcal{P}})) \cap \overline{J(X)(\mathbb{Q})}$ might not be finite when $d \geq 2$.

However

• Consider a hyperelliptic curve $X : y^2 = f(x)$.

• Denote
$$ho:X
ightarrow\mathbb{P}^1$$
, $ho(x,y)=x$.

• For all $x_0 \in \mathbb{P}^1(\mathbb{Q})$, we have

$$ho^*(x_0) = (x_0, \sqrt{f(x_0)}) + (x_0, -\sqrt{f(x_0)}) \in X^{(2)}(\mathbb{Q})!$$

 \implies We see that $X^{(2)}(\mathbb{Q})$ can be infinite regardless of r!

- There is a morphism $X \to \mathbb{P}^1$ or $X \to E$ of degree at most d, where E/\mathbb{Q} is an elliptic curve of rank $r \ge 1 \implies X^{(d)}(\mathbb{Q})$ is infinite.
- P ∈ X^(d)(Q) not coming from the previous maps, and such that ι(P) does not lie in any translate of a positive rank abelian subvariety of J(X) contained in ι(X^(d)) is called an isolated point.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray (2019))

There are finitely many isolated points.

Stevan Gajović

What then we do?

• Studying $X^{(d)}(\mathbb{Q})$ amounts to:

- (1) Describe all infinite subsets of $X^{(d)}(\mathbb{Q})$;
- (2) Find the finite set of isolated points of $X^{(d)}(\mathbb{Q})$.
 - There is a subspace V ⊂ H⁰(X, Ω_{X/Q}), dim(V) ≥ g − r, such that for all ω ∈ V, we have (the integral is Coleman integral)

$$\int_D \omega = 0 \text{ for all } D \in \overline{J(\mathbb{Q})}.$$

- \mathcal{V} is called the space of vanishing differentials.
- In principle, if $r + d \le g$, get d equations on a d-dimensional space.
- Siksek: A criterion whether Q ∈ X^(d)(Q) is alone in its residue class,
 i.e., if D(Q) ∩ X^(d)(Q) = {Q}.

Relative Symmetric Chabauty

- Assume there is a morphism of curves $\rho: X \to C$ over \mathbb{Q} of degree d.
- It induces the trace map $\operatorname{Tr}_{\rho}: H^0(X, \Omega_{X/\mathbb{Q}}) \to H^0(C, \Omega_{C/\mathbb{Q}}).$
- There is an abelian variety A/\mathbb{Q} such that $J(X) \sim J(C) \times A$.
- Define $W := V \cap \ker(\operatorname{Tr}_{\rho})$ the space of vanishing differentials with trace zero.
- Use this space to "disregard" C, and replace the J(X) to A in the Chabauty diagram, obtain the rank condition $r_X r_C \leq g_X g_C d$.
- Siksek: A criterion whether a residue class of *Q* ∈ ρ^{*}(C^(d)(ℚ)) ⊆ X^(d)(ℚ) consists only of the pull-back points, i.e., if D(Q) ∩ X^(d)(ℚ) ⊆ ρ^{*}(C^(d)(ℚ)).
- For d' > d, such that X^(d'-d)(Q) ≠ Ø, we also have that X^(d')(Q) is infinite. Consider Q = Q₁ + Q₂, such that Q₁ ∈ X^(d'-d)(Q) and Q₂ ∈ ρ*(C^(d)(Q)). There was no known criterion to describe D(Q) ∩ X^(d)(Q).

Theorem (Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown (2020))

Completed the classification of the finite groups which appear as a torsion subgroup of E(K) for K a cubic number field and E/K an elliptic curve.

- In their work they wanted to determine $X_1(65)^{(3)}(\mathbb{Q})$.
- We could use the knowledge of $X_0(65)^{(3)}(\mathbb{Q})$ to determine $X_1(65)^{(3)}(\mathbb{Q})$.
- We know that $X_0(65)(\mathbb{Q}) = \{$ four cusps $\}$.
- ω_{65} is the Atkin-Lehner involution of $X_0(65)$.
- Denote $X_0(65)^+ := X_0(65)/\omega_{65}$, and $\rho_{65} : X_0(65) \to X_0(65)^+$ the quotient map.

•
$$ho_{65}:X_0(65) o X_0(65)^+$$
 is a map of degree 2.

Our concrete case

- $X_0(65)^+$ is an elliptic curve of rank 1 over \mathbb{Q} .
- $\implies X_0(65)^{(2)}(\mathbb{Q})$ is infinite!

Theorem (Box (2020))

 $X_0(65)^{(2)}(\mathbb{Q}) = \rho_{65}^*(X_0(65)(\mathbb{Q})^+) + sums \text{ of cusps.}$

Question (David Zureick-Brown, AWS 2020)

Can you determine $X_0(65)^{(3)}(\mathbb{Q})$ despite the fact that $X_0(65)^{(2)}(\mathbb{Q})$ is infinite?

Theorem (Box-G.-Goodman, 2022)

- $\rho: X \to C$ morphism of curves defined over \mathbb{Q} .
- deg $(\rho) \leq 3$, $\#C(\mathbb{Q}) = \infty$.
- $p \ge 11$ prime of good reduction.
- Denote by $\omega_1, \ldots, \omega_s$ the basis of \mathcal{W} .

• Let
$$Q = Q_1 + Q_2 + Q_3 \in X^{(3)}(\mathbb{Q}).$$

- For each i, let t_{Q_i} be a well-behaved uniformiser at Q_i .
- $\mathcal{K} := \mathbb{Q}_p(Q_1, Q_2, Q_3), \pi$ any generator of the maximal ideal in \mathcal{K} .
- The expansion of ω_j at $Q_i := Q_i$ reduced modulo π is

$$\omega_j = \sum_{l=0}^{\infty} \widetilde{a}_l(\omega_j, i) \widetilde{t}_{Q_i}^l d\widetilde{t}_{Q_i}.$$

Theorem (Box-G.-Goodman, 2022)

- There are pull-back divisors in Q, deg(ρ) = 2 (generalisation of the case from Siksek, 2009).
- (a) Assume $Q_1 \neq Q_2$, $Q_1 + Q_3 = \rho^*(R)$ for some $R \in C(\mathbb{Q})$, and that the matrix

$$egin{pmatrix} \widetilde{a}_0(\omega_1,1) & \widetilde{a}_0(\omega_1,2) \ \widetilde{a}_0(\omega_2,1) & \widetilde{a}_0(\omega_2,2) \end{pmatrix}$$

has rank 2.

- Let $\mathcal{P} \in X^{(3)}(\mathbb{Q})$ be in a residue class of \mathcal{Q} .
- We conclude that $\mathcal{P} = Q_2 + \rho^*(R')$, for some $R' \in C(\mathbb{Q})$.

Sketch of the proof

Proof.

- Let $\mathcal{P} = P_1 + P_2 + P_3 \in D(\mathcal{Q})$. Then, $\int_{Q_1}^{\mathcal{P}} \omega = 0$, for all $\omega \in \mathcal{W}$. • Denote $\rho^*(\rho(P_3)) = P_3 + P'_3$, then $\int_{Q_1+Q_3}^{P_3+P'_3} \omega = 0$. • $0 = \int_{Q_1+Q_2+Q_3}^{P_1+P_2+P_3} \omega = \int_{Q_1+Q_3}^{P_3+P'_3} \omega + \int_{P'_3}^{P_2} \omega + \int_{Q_2}^{P_2} \omega = \int_{P'_3}^{P_1} \omega + \int_{Q_2}^{P_2} \omega$. • Denote $t_{Q_1}(P_1) = z_1$, $t_{Q_1}(P'_3) = z'_1$, $t_{Q_2}(P_2) = z_2 \Longrightarrow$ $a_0(\omega, 1)(z_1 - z'_1) + \frac{a_1(\omega, 1)}{2}(z_1^2 - z'_1^2) + \dots + a_0(\omega, 2)z_2 + \frac{a_1(\omega, 2)}{2}z_2^2 + \dots = 0$. • Note $\operatorname{ord}_{\pi}(z_1)$, $\operatorname{ord}_{\pi}(z'_1)$, $\operatorname{ord}_{\pi}(z_2) > 0$. We want to prove $z_1 = z'_1$, $z_2 = 0$, i.e., $P_2 = Q_2$ and $P'_3 = P_1$. • $z_1 - z'_1 \neq 0$ or $z_2 \neq 0 \Longrightarrow$ that all higher terms have the property of higher divisibility by π .
 - Repeat this for at least two differentials until we get the matrix from the previous slide of rank 2.
 - This increases divisibility by π of at least one of $z_1 z'_1$ and z_2 . Contradiction!

Theorem (Box-G.-Goodman, 2022)

- There are pull-back divisors in Q, deg(ρ) = 2 (generalisation of the case from Siksek, 2009).
- (b) Assume $Q_1 = Q_2$, $Q_1 + Q_2 = \rho^*(R)$ for some $R \in C(\mathbb{Q})$, and that the matrix

$$egin{pmatrix} \widetilde{a}_0(\omega_1,1) & rac{\widetilde{a}_1(\omega_1,1)}{2} \ \widetilde{a}_0(\omega_2,1) & rac{\widetilde{a}_1(\omega_2,1)}{2} \end{pmatrix}$$

has rank 2.

- Let $\mathcal{P} \in X^{(3)}(\mathbb{Q})$ be in a residue class of \mathcal{Q} .
- We conclude that $\mathcal{P} = Q_3 + \rho^*(R')$, for some $R' \in C(\mathbb{Q})$.

Summary

- Generalised criteria from Siksek's paper.
- Found a new, "more in depth" criterion to deal with some situations when matrices from the theorem do not have sufficiently large rank.
- Our method has already contributed to (1) in work of Banwait and Derickx and (2) in work of Box.
- Using Mordell-Weil sieve and previous theorems we managed to compute cubic points on the curves

 $X_0(53), X_0(57), X_0(65), X_0(61), X_0(67) \text{ and } X_0(73).$

- Only truly cubic points on X₀(65) are defined over Q(α), α³ − α² + α − 2 = 0.
- Determined the quartic points on $X_0(65)$.

The end

Thank you for your attention!

Question

Any questions?

