Open Problems suggested at Rational Points 2015 Franken-Akademie Schloss Schney, June 29, 2015

Alexei Skorobogatov:

Suppose k is a local field (of characteristic 0) and consider elliptic curves E over k for which the Galois module structure of E[p] is fixed (p a prime, not necessarily the residue characteristic). It is well known that the image of

$$E(k)/p \rightarrow H^1(k, E[p])$$

is a maximal isotropic subspace with respect to the symmetric bilinear pairing

$$H^1(k, E[p]) \times H^1(k, E[p]) \to H^2(k, \mu_p) \simeq \mathbb{Z}/p$$

induced by the cup product and the Weil pairing.

Question 1: Can E(k)/p be any maximal isotropic subspace?

Bjorn Poonen: If p = 2 there is an additional restriction on the image; it must also be isotropic with respect to corresponding the quadratic form.

Question 2: Is there a concrete way to compute this pairing?

Bartosz Naskręcki and others: results of Cremona-Fisher-O'Neil-Simon-Stoll on *n*-descents are likely to be relevant and may provide a method for computing the pairing.

Ronald van Luijk:

Question 1: Does there exist a minimal del Pezzo of degree 1 without a conic bundle (so that Picard number is one) that is unirational?

Question 2: Does there exist a minimal del Pezzo of degree 1 without a conic bundle (so that Picard number is one) that is not unirational?

Comments:

- When there is a conic bundle structure results of Kollar show that many (perhaps all?) are unirational.
- When there is a rational point, almost all are unirational.

David Holmes:

Let S/\mathbb{Q} be a smooth, projective geometrically connected scheme. Given a line bundle \mathcal{L} on S we get a height function,

$$h_{\mathcal{L}}: S(\overline{\mathbb{Q}}) \to \mathbb{R}$$
 (up to $O(1)$).

For $d \in \mathbb{Z}_{\geq 1}$ and $B \in \mathbb{R}$ let

$$X(d,B) = \left\{ s \in S(\overline{\mathbb{Q}}) \mid [\kappa(s) : \mathbb{Q}] \le d, \ h_{\mathcal{L}} \le B \right\}.$$

 $(\kappa(s))$ is the residue field of s.)

Question 1: When is X(d, B) not Zariski dense in S?

Question 2: What if \mathcal{L} is NEF and not \mathcal{O}_S ? Bjorn Poonen: If \mathcal{L} is numerically trivial, then it is dense.

Question 3: What if \mathcal{L} is NEF and has positive degree with respect to every line bundle?

Comments:

- If \mathcal{L} is ample, then X(d, B) is finite.
- If \mathcal{L} is semiampe and not \mathcal{O}_S , then X(d, B) is not Zariski dense.

David Harari:

Suppose G is a finite group scheme over \mathbb{Q} and $G \hookrightarrow SL_n$. Set $X = SL_n/G$.

Question 1: Is $X(\mathbb{Q})$ dense in $X(\mathbb{R})$? (Borovoi)

Comments:

- In terms of Galois cohomology this can be rephrased as asking whether the map $H^1(\mathbb{Q}, G) \to H^1(\mathbb{R}, G)$ is surjective.
- \bullet This is independent of the embedding because SL_n is cohomologically trivial.
- The answer is (trivially) yes if G is constant (i.e. Galois acts trivially on $G(\overline{\mathbb{Q}})$).
- The answer is yes if G is commutative. Sketch: use an exact sequence $1 \to G \to R \to T \to 1$ with R a quasi-trivial torus and use weak approximation of the reals for the torus T (Serre).
- There is no Brauer-Manin obstruction to this problem (G. Luccini Arteche)

Question 2: Suppose K is a number field with real completions K_1, \ldots, K_r and that G is constant. Is the map

$$H^1(K,G) \to \prod_{i=1}^r H^1(K_i,G)$$

surjective?

Michael Stoll:

Take N large (say $N \sim 100,000$). Let $\Lambda \subset \mathbb{Z}^N$ be a subgroup of index $\ll 2^N$ and let $a \in \mathbb{Z}^N$. (For the application in mind one has that Λ is the kernel of a map $\mathbb{Z}^N \to \prod (\mathbb{Z}/q_i\mathbb{Z})^{\times}$ and the image of a is of the form $(1, \ldots, 1, -1, \ldots, -1)$.)

Question 1: Are there some reasonable conditions (preferably on Λ rather than a) that would imply

$$(a + \Lambda) \cap \{0, 1\}^N \neq \emptyset$$
?

Question 2: If Λ and a are given explicitly and the intersection is known to be nonempty, is there a reasonably efficient what of finding an element of $(a + \Lambda) \cap \{0, 1\}^N$?