EFFECTIVE COMPUTATION OF BRAUER-MANIN OBSTRUCTIONS

ANDREW KRESCH

Let k be a number field. Let X be a smooth projective geometrically irreducible variety over k. Then $\operatorname{Br} X \supset \operatorname{Br}_1 X := \ker (\operatorname{Br} X \to \operatorname{Br} \overline{X})$. We have

$$X(k) \subset X(\mathbf{A}_k)^{\mathrm{Br}} \subset X(\mathbf{A}_k)^{\mathrm{Br}_1} \subset X(\mathbf{A}_k).$$

There is a Brauer-Manin obstruction to the Hasse principle when $X(\mathbf{A}_k) \neq \emptyset$ but $X(\mathbf{A}_k)^{\mathrm{Br}} = \emptyset$.

Question 0.1. Can we effectively test whether $X(\mathbf{A}_k)^{\mathrm{Br}} \neq \emptyset$, or whether $X(\mathbf{A}_k)^{\mathrm{Br}} \neq \emptyset$?

Cases

- X is a rational surface (i.e., \overline{X} is birational to $\mathbb{P}^2_{\overline{k}}$); then $\operatorname{Br}_1 X = \operatorname{Br} X$, so $X(\mathbf{A}_k)^{\operatorname{Br}_1} = X(\mathbf{A}_k)^{\operatorname{Br}}$. Also, $(\operatorname{Br} X)/(\operatorname{Br} k) \simeq H^1(G, \operatorname{Pic} \overline{X})$, which is a finite group (studied by many people, including Iskovskikh, Colliot-Thélène-Kanevsky-Sansuc,
- X is a K3 surface: (Br X)/(Br k) is finite (Skorobogatov-Zarhin, 2006 preprint).

There are varieties for which $(\operatorname{Br} X)/(\operatorname{Br} k)$ is infinite. It is an open question whether $(\operatorname{Br} \overline{X})^G$ is always finite.

Theorem 0.2 (Kresch-Tschinkel). Assume that X is given by equations, and that $\operatorname{Pic} X$ is finitely generated and torsion-free with given generators. Assume that $X(k_v) \neq \emptyset$ for all v. Assume that we know K such that the generators of $\operatorname{Pic} \overline{X}$ are defined over K. Then there is an effective procedure to compute $X(\mathbf{A}_K)^{\operatorname{Br}_1}$.

- Outline of proof. (1) Make $\operatorname{Br}_1(X)/\operatorname{Br}(k) \simeq H^1(G, \operatorname{Pic} \overline{X})$ explicit: Given an element of $H^1(G, \operatorname{Pic} \overline{X})$, find a 2-cocycle with values in $\mathcal{O}_{X_K}(U)^{\times}$ representing a corresponding element of $\operatorname{Br}_1(X)$, where U is some dense open subset of X.
 - (2) Repeat to obtain enough U's to cover X.
 - (3) Evaluate on k_v -points.

Example 0.3 (Cassels-Guy 1966). Let X be $5x^3 + 9y^3 + 10z^3 + 12t^3 = 0$. Let $k = \mathbb{Q}(\zeta)$ where $\zeta := e^{2\pi i/3}$. We have $X(k) \neq \emptyset$ if and only if $X(\mathbb{Q}) \neq \emptyset$. Let $K = k(\sqrt[3]{9/5}, \sqrt[3]{10/5}, \sqrt[3]{12/5})$. So $G := \operatorname{Gal}(K/k)$ is isomorphic to $(\mathbb{Z}/3\mathbb{Z})^3$. We find $H^1(G, \operatorname{Pic} \overline{X}) = \mathbb{Z}/3\mathbb{Z}$, and we get huge cocycles. Colliot-Thélène-Kanevsky-Sansuc manage to work within bicubic extensions, and get smaller cocycles. In fact, cubic extensions suffice: $K = k\left(\sqrt[3]{\frac{5\cdot 12}{9\cdot 10}}\right)$. One finds that $H^1(\mathbb{Z}/3\mathbb{Z}, \operatorname{Pic} X_K) = \mathbb{Z}/3\mathbb{Z}$, where $\operatorname{Pic} X_K$ has rank 3. Because the Galois group is cyclic, say generated by τ , one may use the complex

$$\operatorname{Pic}(X_K) \xrightarrow{1-\tau} \operatorname{Pic}(X_K) \xrightarrow{1+\tau+\tau^2} \operatorname{Pic}(X_K) \xrightarrow{1-\tau} \cdots$$

Date: July 27, 2007.

to compute the cohomology. Given the class of a linear combination D' of exceptional curves defined over K' of degree 3 over K, with $\operatorname{Gal}(K'/K) \simeq \langle \rho \rangle$, we want $\mathcal{O}_{X_{K'}}(D') \simeq \mathcal{L}$, where \mathcal{L} is a line bundle on X_K . Descent:

$$\mathcal{O}_{X_{K'}(D')} \xrightarrow{\phi} \mathcal{O}_{X_{K'}(^{\rho}D')} \xrightarrow{\rho_{\phi}} \mathcal{O}_{X_{K'}(^{\rho^2}D')} \xrightarrow{\rho^2_{\phi}} \mathcal{O}_{X_{K'}(D')}$$

Take

$$\phi := -\frac{1}{2}(1 + \sqrt[3]{15})\frac{z + \sqrt[3]{6/5t}}{x + \sqrt[3]{9/5y}}$$

A rational section of \mathcal{L} gives a twisted cubic $C \subset X_K$.

We now want to convert this 1-cocycle into a 2-cocycle with values in $K(X)^{\times}$. We have a linear equivalence

 $C + {}^{\tau}C + {}^{\tau^2}C \sim 3$ (hyperplane)

given by some $r \in K(X)^{\times}$ defined uniquely up to a scalar multiple. We can choose r to have coefficients in k. The constant $1 + \sqrt[3]{15}$ and the scaling here both require satisfying a cocycle condition. The obstruction to the correct choice of scale is an element of $H^2(\operatorname{Gal}(K'/K), K'^{\times})$ or $H^3(G, K^{\times})$. The first obstruction vanishes since $\operatorname{Pic} X_K \xrightarrow{\sim} (\operatorname{Pic} X_{K'})^{\operatorname{Gal}(K'/K)}$ given the existence of local points. For the second obstruction, when G is cyclic, we have $H^3(G, K^{\times}) = H^1(G, K^{\times}) = 0$ by Hilbert 90; more generally, the obstruction vanishes after possibly enlarging K.

Fact: $H^3(G, K^{\times})$ is cyclic of order $\gcd\{[K:k]/[K_v/k_v]\}_v$. Inflation maps it to $H^3(\operatorname{Gal}(L/k), L^{\times})$, and will be trivial when $[K:k]|[L_v:k_v]$ for some v. Let ℓ be a cyclotomic extension of k, and let $L = K\ell$.

Bright and Swinnerton-Dyer (2004) give an effective procedure to test an (i + 1)-cocycle for triviality, and when trivial, to lift it to an *i*-cochain; this involves S-unit computations.

Summary: from the Leray spectral sequence we have

The 0 at the bottom comes from $\operatorname{Pic} \overline{X}$ being torsion-free.

When $\operatorname{Pic} \overline{X}$ is not torsion-free, there exist nontrivial finite étale covers $\overline{Y} \to \overline{X}$; i.e., $\pi_1(\overline{X})^{\operatorname{alg}} \neq \{1\}$, and there is a possibility of nonabelian obstructions to the Hasse principle.